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The problem of finding an optimal admission policy to an M/M/c queue with customers with
deadlines is addressed in this paper. There are two streams of customers (customers of class 1
and 2) that are generated according to independent Poisson processes with constant arrival rates.
All service times are exponentially distributed with a class independent service rate. Upon arrival a
class 1 customer may be admitted or rejected, while incoming class 2 customers are always admitted.
Associated with the n-th class 1 customer is a deadline, Dy, by which it must complete service
where {D,,}$° is a sequence of i.i.d. random variables. We are interested in the throughput of class
1 customers that complete their service before their deadline (usually referred to as goodput), and
we wish to determine an admission control that maximizes this throughput. At each decision epoch
we assume that the controller has available to it the complete history of the total queue length
process as well as all of the past decisions that have been made up to that epoch. We show that,
for a large class of deadline distributions, there exists a stationary admission policy of a threshold
type that maximizes a discounted cost function (for small discount factors) that corresponds to the
discounted goodput of customers that make their deadline. The proof relies on a new device that
consists in a partial construction of the solution of the dynamic programming equation. In addition,
we show that there also exists a threshold admission control that maximizes the long-run average
problem (i.e., maximizes the goodput). The proposed method is of independent interest and should
apply to many queueing control problems.
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1 INTRODUCTION

We consider an M/M/c queueing system (1 < ¢ < o0) fed by two independent Poisson streams of
customers, with intensities A\; > 0 and Ay > 0. Customers of stream i will be referred to as class ¢
customers, ¢ = 1, 2. The buffer has unlimited capacity and the customers are served according to the
first-in-first-out service discipline. The customer service times are independent and exponentially
distributed random variables, with class-independent service rate u > 0. The n-th arriving class 1
customer has a deadline D, associated with it, where {D,}$° is a sequence of i.i.d. nonnegative
random variables. The arrival, service time and deadline sequences are assumed to be mutually
independent.

Our objective is to find an admission control (policy) for class 1 customers that maximizes the
fraction of class 1 customers that complete their service before their deadline has expired. We
assume that the controller has only available to it the total number of customers currently in the
queue at the time a new class 1 customer arrives, as well as the history of the queue length process
and the history of the decisions that have been made (i.e., rejection or admittance). We also assume
that all class 1 customers admitted into the queue are served regardless of whether they make their
deadline or not.

This study is motivated by the new services available in current communication networks (ISDN’s).
In this context, class 1 customers represent interactive traffic (e.g., packetized voice) and class 2
customers non interactive traffic (e.g., batch file transfers), where both traffic types compete for
the use of limited resources (e.g., telephone exchanges). Therefore, a natural objective is to seek
an admission policy that maximizes the throughput of customers that complete by their deadlines,
i.e. the goodput of this system. If all of the class 1 customers are accepted in the system, then the
queue will build up and they will be more likely to miss their deadline; on the other hand, if these
are all rejected then the goodput with respect to class 1 customers will be zero. Consequently, it is
reasonable to expect the existence of an optimal policy that will tradeoff these two effects.

Throughout the years, several authors have studied problems of control of arrivals (or flow control
problems) in the context of queueing systems, and a comprehensive discussion can be found in the
survey paper by Stidham [13]. A standard approach in the control of queueing systems consists in
formulating the optimization problem at hand as a Markov (see e.g., Serfozo [12], Lin and Kumar
[8]) or Semi-Markov (see e.g., Lippman [10]) decision problem, from which the functional equation
of dynamic programming can be derived (Heyman and Sobel [6]). Then, the policy improvement
algorithm (see e.g., Lin and Kumar [8]) or the propagation of “good” properties, such as convexity,
concavity, (sub)modularity, monotonicity properties in the induction of dynamic programming (see
e.g., Hajek [5], Johansen and Stidham (7], Ma and Makowski [11]) may be used to determine the
optimal policy (e.g., threshold policy, switch-over policy).

Let us now give a short description of the optimization problem model that will be considered in
this paper, as well as the results that will be obtained. When a new class 1 customer is admitted, it
earns a reward g(k+1) if there are k customers in the queue upon its arrival, where the properties of g
are given in Section 2. These properties will be chosen so as to place the model in the communication
network framework that has been discussed earlier. The aim is to find an admission policy that
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maximizes the total average discounted reward earned over an infinite horizon (discounted reward
problem) and then to derive from this result the control that maximizes the long-run average reward
(average reward problem). We will establish the existence of an optimal threshold admission policy
for both the discounted reward problem (in the case of small discount factors) and the average
reward problem. - ’

Because of the particular assumptions we place on the reward function (in particular, that it is
neither monotone nor convex, see Section 2), none of the classical techniques listed above applies to
our problem. We therefore employ a new device, first proposed by de Waal [3], based on a partial
construction of the optimal value function, from which the optimal control can be determined. This .
method is of independent interest and should apply to many similar optimization problems.

In Section 2 the problem is formulated as a Markov decision problem. Section 3 addresses the
discounted reward control problem in the case where A2 = 0, which will turn out to be consider-
ably simpler to analyse than the case where Ay > 0 of which the analysis is given in Section 4.

The existence of an optimal threshold policy for the average reward contro! problem is shown in
Section 5.

2 THE MODEL

All of the random variables considered in this paper are defined on some fixed probability triple
(Q, F,P). IN will denote the set of nonnegative integers, IR the set of real numbers and IR™ the set of
strictly positive real numbers. The optimization problem described in Section 1 is now formulated as
a Markov decision problem. This formulation closely follows that of Lippman in [9] (an alternative
formulation can be found in de Waal [4], pp. 46-67). '

Let a, 0 < a% < ab < -+, be the arrival time of the n-th class ¢ customer, ¢ = 1,2, and let d,, be
the departure time of the n-th customer that is served, n > 1. Define {¢,}$° := {al}$* U {a2}$° U
{dn}°, 0 < t1 < ta < ---. In order to cast our problem into the framework of Markov Decision

Processes (MDP’s) [6], we specify the decision epochs, the state of the system and the action space.

We assume that the n-th decision U, € {0,1} is made at time t,, n > 1. If ¢, ¢ {ajl-}fo, then
the decision is irrelevant since only the stream of class 1 customers is controlled. In that case, we
shall assume by convention that U, = 0. If ¢,, € {a}}‘f", then the decision may be either to accept
(U, = 1) or to reject (U, = 0) the new class 1 customer.

Let Q; be the total number of customers in the system at time ¢, ¢ > 0, including the cus-
tomers in service, if any. At time t,, n > 1, the state of the system is represented by the pro-

cess Zn = (Qn,Xn) € N x {0,1}, where @, = Q, 1{tn & {agl}i)o} + Q- 1{t, € {agl}(fo} and
Xy :=1{ty € {a}}‘f"} Here, Q,- stands for the number of customers in the system just before the

occurrence of the n-th event. Let Ay, be the action space when the state of the system is (k, ),
k€N, z € {0,1}. It follows from the above definitions that Ao = {0} and Ax; = {0,1}.
The process Z := {Z,, n > 1} is a MDP, since clearly

P(Zn+1 = (ln—l-lv yn+1) l Zl = (llayl)aUl =ULy-- -y Ly = (lnayn)a Un = un)



=P (Zn+1 = (ln+1ayn+1) | Zy = (ln,yn)a U, = un)a

for all li > 0, Yi, U; € {0, 1}, 1= 1,2, o, n 1. We let IHn = (Zl, Ul, Z2, UQ, ey Zn_l, Un—l,Zn)
denote the history of Z up to time t,, n > 1.
At the n-th decision epoch, a nonnegative discounted reward exp(—at,)r(Z,;U,) is earned,

where

r(k,z;u) :=g(k+1)1{u=1, z =1}, (2.1)

for all k € IN, z,u € {0,1} and where g is a mapping IN — IR*. We will restrict ourselves to
mappings that are modified unimodal as defined below.

DEFINITION 2.1 The mapping g : IN — IR* is called modified unimodal with mode ¢ and exponential
factor ¥, wherec=1,2,..., and 0 < ¥ < 1, if

kg(k) <(k+1)g(k+1), fork=1,2,...,c—1; (2.2)
g(k+1) < Vg(k), fork=c,c+1,... (2.3)

An admissible control U is a sequence {u,}$° of [0,1]-valued random variables such that u,
is measurable with respect to the o-field ¥, := o(IH,), with the interpretation that for n > 1,
Un :P(Un = 1|fn)a

Let U be the set of admissible controls. A control is said to be stationary if u, only depends on
the value of Z, and if it is non-randomized, i.e., u, € {0,1}, n > 1.

Let us now introduce the so-called value function for the discounted problem. Let 0 < o < +00

Valk,z;U) :=E [Z e " r(Zy; Up)

n>1

7 = (k,x)] , (2.4)

be the total average discounted reward gained over an infinite horizon starting from state (k,z) €
IN x {0,1}, when policy U € U is used. It is easily seen from definitions (2.1)-(2.4) that the value
function V,(k,z;U) is uniformly bounded in k, z and U. More precisely,

0 < Valk,;U) < (a“l
(8%

) cg(c), (2.5)

forall ke N,z € {0,1}, U € U.
Our first objective is to find an admissible control that maximizes (2.4) over the set of admissible
controls U for all (k,z) € IN x {0,1}. Let

Vi(k,z) := sup Vu(k,z; U), (2.6)
Ueu

for all (k,z) € N x {0,1}.
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Define the total rewafd Wr(k,z;U) gained under policy U € U over a horizon of length T' > 0.
given the initial state is (k,z) € IN x {0,1}, as

Wr(k,x;U):E{ D m(Za;Un)
{n:0<t,<T}

7y = (lc,x)j| , (2.7)

Our second objective is to find an admissible control that maximizes the long-run average reward
gained over an infinite horizon defined as

N | .
W(k,z;U) := ll%r%élolf T Wr(k,z;U), (2.8)

foral U e, ke N, z € {0,1}.
Theorem 2.1 gives the Dynamic Programming (DP) equation that is satisfied by the optimal
value function V.

THEOREM 2.1 There exists an optimal stationary policy for the discounted problem. In addition,
Vi (k,x) is the unique uniformly bounded solution in (k,x) to the DP equation

Va(k,z) = max {r(k,x;uw#"’“’—’@— > Q(l,ylk,w;u)VJ(l,y)}, (29)

ueAra o+ O,z (u) IEN,ye{0,1}

for all k € N, z € {0,1}, where

o Q(-,-|k,z;u) is the one-step probability transition of the process Z given the current state 18
(k,z) and that the action u is chosen;

e 04, (u) is the transition rate out of state (k,z) given that action u is chosen.

Furthermore, the stationary control which selects an action mazimizing the right-hand side of (2.9)
for all k € N, z € {0,1}, is optimal.

PROOF. The proof follows from Theorem 1 in Lippman [10]. O
For k € IN, z € {0, 1}, introduce

A= A+ Ao
pe = pmin(k,c);
v = A pks
Orz(v) = vel{u=0}+ 11 1{u=1}

By dbserving from the model description that

/\l/yk+17 lfl:k+17y:17
)‘Z/Vk+la 1fl:k+27y:0a
lLLylk,1;1) = .
.yl ) Prt1/Vkt1, L=k, y=0;
0, otherwise;

(2.10)



/\1/ka 1fl=k,y=1,

Xefvg, ifl=k+1,y=0;
ur/ve, fk>11=k-1,y=0;
0, otherwise,

QU y|k,1;0) = Ql,y|k,0;0) = (2.11)

routine manipulations of (2.9) yield

(a+v)VE(k,0) = MVI(k, 1)+ AVo(k+1,0) + w Vo (k—1,0)1{k > 1}, (2.12)
Vi(k,1) = max{g(k+1)+ V (k+1,0);V;(k,0)}, (2.13)

for all £ € IN.
As a consequence of the last statement of Theorem 2.1 and (2.13), the optimal action when the

state of the system is (k,1) (denoted as uj) is the one that maximizes [g(k + 1) + V3 (k + 1,0) —
Vi (k,0)] v 0, that is
up = 1{V;(k+1,0) — V;(k,0) +g(k+1) >0}, (2.14)
for all £ € IN.
Define V¥(k) := VZ(k,0), k € IN (from now on, the subscript a in V; (k) will be omitted). By
substituting the r.h.s. of (2.13) for V*(k,1) in (2.12), we finally obtain, by using (2.14), that V*(k),
k € IN, is the unique uniformly bounded solution in k to the DP equation

0 = —aV*(k)+M\ul[V(k+1)— V*(k) + g(k +1)]
a2 [V*(k+1) = V*(R)] = i [V* (k) = V*(k - 1)) 1{k > 1}, (2.15)

for k € IN, with uj = 1{V*(k + 1) — V*(k) + g(k + 1) > 0}.
The following equivalent form of equation (2.15) will be frequently used. Define z* : IN — IR as

i _ ) V*(0), k =05
(k) = { VHk) = V*(k—1), k> 1. (2.16)

Then, the DP equation (2.15) can be rewritten as

k
0=—a> 2" () + Muj [2*(k + 1) + g(k + )] + Ao z*(k + 1) — ma* (k) L{k > 1}, k20, (2.17)
1=0

with
up = H{z*(k+ 1)+ g(k + 1) > 0}. , (2.18)

The DP equation (2.15)/(2.17) will play a central role in the characterization of the optimal ad-
mission policy (Sections 3-5).

To conclude this section, let us briefly motivate the choice of the function g. As indicated in
Section 1, our objective is to maximize the fraction of class 1 customers that complete before their
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deadline. Therefore, a natural candidate for the reward function g is to let g(k) be the probability
that a new class 1 customer meets its deadline given there are k customers in the system, including
itself, upon its arrival.

With this definition of g, it is easily seen that condition (2.2) of Definition 2.1 is satisfied, since
g(k) =P (S < D), k=1,2,...,c, where S (resp. D) is a generic random variable for the service
time (resp. deadline) of a customer.

In the case that P (D < z) = 1—exp(—yz) for z > 0, v > 0 (exponentially distributed deadlines),
it is easily seen that

g(k):{ /(e + ), k=1,2,...,c
(w/ (1 +7)) (cp/(cp+7)*¢ k=c+lc+2,...

It is easy to show that the above expression for g(k) satisfies the definition of a modified unimodal
mapping with ¥ = cu/(cu + 7).

In the general case where where the deadline distribution function is arbitrary, then g(k) cannot
be computed under closed form. However, many interesting deadline distribution functions give rise
to modified unimodal mappings. More precisely, we have the following result:

PROPOSITION 2.1 The mapping g is modified unimodal if one of the three following conditions is
fulfilled:

1. the deadlines are deterministic;
2. the deadlines have a failure rate that is bounded away from 0 by a strictly positive constant,

3. the deadlines have an Erlang distribution.

The proof of Proposition 2.1 can be found in de Waal [4]. Note that condition 2 in Proposition 2.1
is satisfied by a large class of distributions, including the exponential distribution, subsets of the
class of Gamma distributions, and truncated normal distributions (see Barlow and Proschan [1],
Sec. 5).

3 DISCOUNTED REWARD PROBLEM: THE SINGLE-STREAM CASE ‘
This section is devoted to the analysis of the single-stream discounted problem (i.e., A2 = 0). In
that case the DP equation (2.17) reads:

k
0=—aY. z*(@) + M uj[e*(k+ 1) + gk + 1)] — ™ (k) 1{k > 1}, k>0. (3.1)
—~ | |

The main result of this section is:

PROPOSITION 3.1 Let g : IN — IR™ be a modified unimodal mapping with mode ¢ and exponential
factor ¥. Let u* : IN — {0,1} be the optimal stationary control for the discounted problem with
A2 = 0. Define uj, := u*(k). Then, '



1. uy=1fork=0,1,...,¢

2.4f0 < a < cu(l —¥)/¥ and if there is an | € IN such that uf = 0, then uj, = 0 for
E=1L1+1,...

PROOF. We first prove 1. by induction. Substituting ¥ = 0 and k = 1 into equation (3.1) yields
0 = —az*(0)+ Aiyg (z*(1) + g(1)), (3.2)
0 = —a(z"(0) +27(1) + Muj (£°(2) + g(2)) — paz™(1). (3.3)
Subtracting (3.2) from (3.3) yields
Aui(e®(2) +9(2)) — Mug(e™(1) + 9(1)) = (e + pa)z*(1).
If we assume that u§ = 0, then since uj (z*(2) + g(2)) > 0 we can write
(a+ p1)z*(1) 2 0. (3.4)

However, because uf, = 0, it follows that 0 > z*(1) + g(1) > z*(1). But according to (3.4), z*(1) is
nonnegative which results in a contradiction and therefore uj = 1.
Assume now that uf§y = u} = --- =wuj_; = 1 for I < c and let us show that uj = 1. Substituting

k=1and k = [+ 1 into equation (3.1) and subtracting the first equation from the second one,
yields

Aufyg (@ (14 2) + g(1+2) — M (@ (14 1) + g+ 1)) = (a + py)e™((+ 1) — (D). (3.5)
If we assume that uj = 0, we then deduce from (3.5) that
(a+ mp)z* (14 1) — (1) 2 0,

since u;  (*(I +2) + g(I + 2)) > 0, or equivalently that

(a+ mp)(@* (1 +1) + g+ 1)) = m(a*(0) + 9(1) — g+ V(@ + pyr) + ugl) 2 0. (36)

By noting now that z*(I+1)+ g(l+1) < 0 (since u; = 0 by assumption), —(z*(l) + g()) < 0 (since
uj_; = 1 by assumption) and —g(! + 1)pi41 + ulg(l) < 0 (since g is modified unimodal) we see
that the left-hand side of equation (3.6) is strictly negative, which gives a contradiction. Therefore
up = 1.

We also prove 2. by induction. Fix a such that 0 < a < cpu (1 — ¥)/¥. Let I € IN, [ > ¢ be such
that u; = 0. This implies that z*(I + 1) < —g(l +1).

Define z : IN — IR as

z*(k), kE=0,1,...,1;
x(k) = 3.7)
—aY i a(i)/(a+ep), k=1+1,1+2,...



Note that z(k), k > [, is the recursion we get from (3.1) if we choose u} =0 for k > I.
We prove that z(k) < —g(k) for k > [ by induction on k.
Basis step. Let k = [+ 1. From the definition of z we have

l

2(l+1) = —aY e()/(a+ ),

=0

= —aZx [(a+ cp),

(02" (1 + 1) = My (2 (14 2) + (0 +2)) + ™1+ 1)) /(e + ),
z"(1+1),
—g(l+1).

IA

IA

The last two steps follow from the fact that uj(z*(k+1) + g(k+1)) > 0 for all £ € IN and the fact
that u; = 0.

Inductive step. We assume that z(k') < —g(k’) for ¥’ = 14+1,1+2,..., k. We show that z(k+1) <
—g(k+1).

Il
I

k-1
(b +1) B —a Y 2(i)| /(a+cu),
=1

—[az(k) — (a + cp)z(k)]/(a + cp),

= cpz(k)/(a+cp),
< —cepg(k)/(a+cp),
S —g(k + 1)7

by the induction hypothesis, the assumptions on g and the condition on . We have thus found a
sequence of real numbers that when substituted for z*(k) in equation (3.1) satisfies that equation.

Define now V (k) := ¥ ;x(4), k € IN. First observe that V satisfies the DP equation (2.15). Let
us show that V (k) is uniformly bounded in k. Since by construction V' (k) = V*(k) for 0 < k < [,
V (k) is bounded for 0 < k <. On the other hand, the definitions of z and V' imply that

-

V(k)-V(k-1)= P V(k-1), fork2>1, (3.8)
which, in turn, entails that
o\ P!
V(k) = < ) V), fork>1, (3.9)
a+cu

which shows that V' (k) is uniformly bounded in k. Hence, V = V* since (2.15) has a unique solution
that is uniformly bounded in k, which in turn yields z = z*. Therefore, z*(k) + g(k) < 0 for k > [,
or equivalently, uj = 0 for k > [, which concludes the proof. O
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The methodology used in the proof of Proposition 3.1 does not fall into any of the categories
that were reported in Section 1. Therefore, we remark that the importance of the result lies not
as much in the optimality of threshold policies (which is what we would intuitively expect) but
rather in the method of proof. The next section shows that this method also applies to the case
where Ao > 0, although this case differs from the single-stream case in an essential way: in the
two-stream case, the number of customers in the system is never bounded from above regardless
of the admission policy for class 1 customers. This fact makes the analysis of the two-stream case
much more involved.

4 DiSCOUNTED REWARD PROBLEM: THE TwO-STREAM CASE

This section presents the analysis of the discounted problem with two streams of customers. Recall
that only the stream of class 1 customers is controlled. Again, our objective is to find an admission
policy that maximizes the discounted cost function (2.4).

To illustrate the basic difference between both cases Ay = 0 and Ao > 0, let us briefly come
back to the single-stream case. Denote by S(I) the system of [ + 1 equations obtained from the DP
equations (2.15) by setting uy =0 for k =0,1,...,l -1 and u] = 0.

Consider first the case where Ay = 0. Fix « as indicated in Proposition 3.1, and let I* < 400
be the smallest integer such that uj. = 0 (the boundedness of I* will be discussed later on, see
Remark 4.2). Then, uj, = 1{k < I*} by Proposition 3.1, and the optimal threshold [* is the smallest
integer | > ¢ such that the (unique) solution z to the system S(I) of [ + 1 unknown variables and
[ + 1 equations satisfies the inequalities z(k) + g(k) >0 for 1 <k <land z({+1)+g(l+1) <O0.
Note that this procedure defines a computational algorithm for the determination of the optimal
threshold (see the end of this section where & much simpler numerical approach is given).

Assume now that Ao > 0, and suppose that there exists a threshold policy that solves the
discounted problem — which is what we would intuitively expect. Then, a glance at S(I) indicates
that this set of equations now contains [+ 2 unknown variables and only [+ 1 equations. Therefore,
an equation is missing in order to compute the optimal threshold.

The next lemma addresses the problem of determining this missing equation in the case where a
threshold policy is optimal. This will yield the construction of the optimal value function (Propo-
sitions 4.1 and 4.2), and subsequently the optimal control (Proposition 4.3).

Let us first introduce some notation. Let

a+cp+ A — Vie+ep+ )2 —4dacp

= 4.1

B " (4.1)
a+cp+ A2+ +cpu+Ao)2 — 4

g = Sterthiien i) e (42)

be the two roots of the polynomial (in z) A2 22 — (a + cpt 4+ A2) z + cu. Note that 0 < 81 < 1 < B2
for all a > 0.

The following result will also be used. Assume that Ay < cu. Then, by observing that 5; =1
when o = 0, and that the mapping a — [ is strictly decreasing in [0, 4+00), it is seen that there
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exists ap > 0 such that ‘ . :
B>V, A (4.3)

for 0 < a < agp, where ¥ has been introduced in (2.3).

The lemma below determines the missing equation in the case where up, = 0 for £ > [, and
therefore strongly suggests what has to be the analog to (3.7) in the case where Ao > 0 (see
Proposition 4.1).

LEMMA 4.1 Assume that there ezists ¢ <1 < 400 such that uy =0 for k > 1. Then,
V)=V (k—-1), fork>1I, (4.4)

and
z*(k) = prz*(k—1), fork>1Ll (4.5)

PROOF. If uj =0 for £ > [ > ¢, then from (2.15)
V¥ k+ 1 — (a+cu+ X))V (k)+cuV*(k—1)=0, (4.6)

for k > 1. Let us show that any solution (V' (k))g>i—1 of (4.6) can be expressed as

V(k) =apf+0b8s, (4.7)

for kK > 1 — 1, where a and b are arbitrary numbers.

First observe that both functions & — ﬂf,'z' = 1,2, satisfy (4.7), which therefore implies that
k — a B¥+b Bk also satisfies (4.6) for any pair (a, b) of real numbers. Conversely, let (V (k))r>i—1 be a
solution of (4.6) and let us show that there exists two numbers a and b such that V (k) = a 8¥ +b 3%,

k>1-1.
Since 31 # B2, B1 # 0, B2 # 0, it is seen that the following system of equations in (z,y):
Vi-1) = B 'e+6y; (4.8)
V() = Biz+ By, (4.9)

has a unique solution (a, b). Using now the fact that (V' (k))x>i—1 is a solution of (4.6) together with
(4.8), (4.9), it is readily seen by induction that V (k) = a 8¥ + b 3% for k > I — 1, which proves (4.7).
Assume now that V*(I — 1) and V*(!) are known numbers. Then, cf. (4.6), (4.7),

V(1) + B V*(1—1) ¢
1B -p1) (410)
V) - BV - 1)
BN (B —B1)

(4.11)
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If b # 0, then we deduce from (4.7) that |limgje, V*(K)| = 400 since f1 < 1 and Sz > 1fora >0
(cf. (4.1), (4.2)), which contradicts the fact that V*(k) is uniformly bounded in k (cf. Section 2).
Therefore, b = 0, or equivalently, cf. (4.11), V*(I) = 81 V*(I — 1), which in turn yields from (4.7).
that V*(k) = BV*(k — 1) for k > I. Using now (2.16) and (4.4), we readily obtain (4.5), which
completes the proof. a

From now on, we shall assume that:

e g:IN — R* is modified unimodal with mode ¢ and exponential factor ¥;
e g(k)>g(k+1), for k=1,2,...,¢—1 (see Remark 4.1);

e )\ < cl;

e « lies in (0, ap).

Note that the case where Ao < cp is the only case of interest for the average reward problem (which
is the criterion we are really interested in), since otherwise the long-run average cost function (2.8)
is zero under any admission policy, which in turn implies that all admission policies are equivalent
(see Section 5).

We now state the key result of this section:

PROPOSITION 4.1 If there exists a finite integer m > 0 such that the set of equations

0 = —aZy Y4+ M (yk+1)+g(k+ 1)+ Aoy +1) — pry(k), 0<k<m+c (4.12)
m+c

0 = —azy(i)+/\2y(m+c+1)—cuy(m+c); (4.13)
1=0

0 = ym+c+1)-pfry(m+c), (4.14)

has a solution y that satisfies
y(k)+g(k) >0, forl<k<m+cg (4.15)
yim+c+1)+g(m+c+1) <0, (4.16)
then
1. z*(k) =y(k) for0 <k < m+c+1andz*(k)=pPra*(k—1) fork>m+c+1;
2. uf =1{k <m+c} forkeIN. |

PROOF. Let m > 0 be such that (y(k))7* ™! satisfies the set of equations (4.12)-(4.14) and in-
equalities (4.15), (4.16). Define z : IN — IR as

y(k), k=0,1,...,1;
z(k) = (4.17)
bixz(k-1), k=1+1,14+2,...,
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with | := m + c. Note that z(k), k >1, is the recursion we get from Lemma 4.1 if we choose u} =0
for k > 1.

We prove that z(k) + g(k) < 0 for k£ > I by induction on k.

Basis step. Let k =1+ 1. From the definition of z we have

z(l+1) = By,
= y(l+1), from (4.14),
—g(l + 1)7

INA

from (4.16).

Inductive step. We assume that z(k') + g(k') < 0 for ¥ = 1+ 1,1+ 2,...,k. We show that
z(k+1) 4+ g(k+ 1) < 0. We have, cf. (4.17),

z(k+1) = pBiz(k),
< —p1g(k), from the induction hypothesis,
< —Ug(k), from (4.3),
< —g(k+1),

since g is modified unimodal. Consequently,

z(k)+g(k) <0, fork>I. (4.18)

By combining this result together with the definitions of y, z and 1, it is easily seen that z satisfies
the DP equation (2.17). A
Let V(k) := Zf:o z(i), k € IN. Then, V satisfies the DP equation (2.15), and further it is easily
seen from the properties of = that V is uniformly bounded in k. Therefore, V* = V since (2.15)
has a unique uniformly bounded solution (Theorem 2.1), which implies that * = z. Consequently,
cf. (4.15), (4.17) and (4.18), u; = 1{k < I} for k € IN. a
The next result establishes the existence of a solution to (4.12)-(4.16).

PROPOSITION 4.2 There exists a finite integer m = m*, m* > 0, such that the (unique) solution to

the set of equations (4.12)- (4.14) satisfies the constraints (4.15), (4.16). Further, m* is uniformly
bounded as o | 0.

The proof of Proposition 4.2 relies upon the following three lemmas, whose proofs are given in
Appendix A. We introduce the following notation: for any m > 0, (Zmc(k))7it! will denote the

unique solution to the set of equations (4.12)-(4.14) (the uniqueness of the solution is discussed at
the beginning of Appendix A).

LEMMA 4.2 The unique solution (z.(k) Zi%, to the set of equations (4.12)-(4.14) when m = 0 is
such that .
zc(k)+g(k) >0, forl1<k<e. (4.19)
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LEMMA 4.3 Let C,,, m > 0, be the condition on the model parameters A1, A2, u, ¢, o, (9(k) Z‘;ll“,
which is equivalent to Tmic(m—+14c)+g(m+1+c) < 0. If none of the conditions Co, C1,...,Crn-1
holds, m > 1, then Tmic(k) +g(k) >0 fork=1,2,...,m+c.

LEMMA 4.4 There exists m, 0 < m < +00, such that $m+c(m+c+ 1)+g(m+c+1) < 0. Moreover,
m 18 uniformly bounded as o | 0.

PRrROOF(of Proposition 4.2).

Fix a such that 0 < o < ap. Let m* be the smallest nonnegative integer such that
T pe(m* +c+1) + g(m* + ¢+ 1) < 0, where the existence of m* is ensured by Lemma 4.4.
If m* = 0 then the proposition follows from Lemma 4.2, whereas if m* > 0 the proposition follows
from Lemma 4.3. The second part follows from the second statement of Lemma 4.4. O

Combining Propositions 4.1 and 4.2 yields the following final result:

PROPOSITION 4.3 Assume Ay < cu. Let g be modified unimodal with mode ¢ and exponential factor
V. If g is nonincreasing in [1,c], then the threshold policy uy = 1{k < m* + ¢}, k € IN, is optimal
for a € (0,a9). Moreover, m* < 400 and m* is uniformly bounded as a | 0.

Before concluding this section, let us briefly address the numerical computation of the optimal
threshold m* + ¢. This computation can be performed very easily (i.e., without solving systems
of linear equations) from (A.51) by using the recursions (A.23) and (A.24) in Appendix A. More
precisely, m* will be the smallest nonnegative integer such that (A.51) holds.

REMARK 4.1 The assumption that g is nonincreasing in [1,c] is used in the proof of Lemma 4.2.
It is clearly fulfilled by the function g that has been defined at the end of Section 2. We conjecture
that Lemma 4.2 holds without this extra assumption on g (we have checked it for c =2 and ¢ = 3,
which implies, in particular, that Proposition 4.3 holds for ¢ < 3 without this assumption).

REMARK 4.2 Since limy, |9 81 = cp/(cu+a), it follows that relations (4.4) reduce to relations (3.9)
that were obtained in the single-stream case. Hence, as expected, the results of the single-stream
case may be deduced from the analysis of the two-stream case by letting A2 | 0. In particular, this
implies the finiteness of the optimal threshold in the single-stream case.

5 THE AVERAGE REWARD CONTROL PROBLEM
In this section we shall discuss the long-run average reward control problem for the M/M/c queue
with A; > 0 and g > 0.

Since Vu(k, z; U) is well defined for all k € IN, € {0,1}, U € U (see (2.4), (2.5)), we know from
a Tauberian theorem (Widder [14], pp. 181-182) that

WT(k,(L'; U)

W(k,z;U) = Il}r%l;}f T

< liminf a V4 (k, z; U), (5.1)
al0
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for all k € IN, z € {0,1}, U € U. Further, if limpyoo Wr(k,z; U)/T exists then limg o aVa(k,z;U)
exists as well, and A
W(k,z;U) = liﬁ’)la Valk,z;U), , (5.2)

forallke N,z € {0,1}, U € U.

Assume first that Ay < cp and let k and z be fixed numbers in IN and {0, 1}, respectively. For
any a € (0, ap), let u) : IN — {0, 1} be the optimal control for the discounted reward problem, that
is from Proposition 4.3,

ug(7) = H{j < c+mg},

for j > 0 with 0 < m? < +oo. Consequently, for a € (0, ap),
aVu(k,z;U) < aVy(k,z;ul), (5.3)

forall U € U.

Let {;}$° be a sequence in (0, ap) such that a; | 0 as i T co. Since the mapping a@ — mg, is
uniformly bounded as o | 0 (cf. Proposition 4.3) and since m, is an integer, there exists J < +o00
and a subsequence of {c;}$°, denoted as {a;}5°, such that mZ is a constant (denoted as m*) for
all j > J. Define u*(j) :==1{j <c+m*}, j > 0.

If we now take the limit in (5.3) along a;j, j T 0o, we get from (5.1) that for any policy U € U

W (k,z;U) < liminf a V,(k, z;u"). (5.4)
JToo

Under the stationary threshold policy u* the Markov chain {Z,}{° is clearly ergodic. Therefore,
limrjoo Wr(k, z;u*) /T exists (Chung [2], Section 1.15) which implies from (5.2) and (5.4) that

W(k,z;U) < W(k,z;u"),

forall U e U.
For Ay > cp, it should be clear from (2.1), together with the fact that limgjo, g(k) = 0, cf. (2.3),

that W(k,z;U)=0forallU e, k€ N, z € {0,1}.
The results of this section are collected in the following proposition:

PROPOSITION 5.1 Let g be modified unimodal with mode c and exponential factor ¥ such that
g(k) > g(k+1) for 1 <k <c—1. If \a < cp, then there exists a stationary threshold policy with
finite threshold that is average optimal over the class of all admissible policies. If Ao > cp, then all
admissible policies are average optimal.

ACKNOWLEDGEMENT. The authors would like to thank P. Mussi for ‘a useful discussion about
Lemma 4.1.
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A APPENDIX

We first introduce some notation and establish some intermediate results.
Define the matrices '

ap o «a «a «a bo
—pj o+ A o o' a b
0 —pjr1 a+A
0 0 —Hj+2
.Mf,z(ao,bo,co) = ’ (Al)
‘ o
a+ A a
0 0 0 —pk—1 a+X by
0 0 0 0 —Ur €
for1 <j <k, and
Mf(ag, bo, co) = ( w0 b > ; (A.2)
—pr  Co

for k > 1, where ag, bp and ¢y are arbitrary constants (recall that p; = pmin(j, ¢))
Let | M| be the determinant of any matrix M, with the convention that |z| = « if z is a scalar
number. It is easily seen by using an induction argument that

| M (ao, bo, co)| > 0, (A:3)
when ag > 0, b9 > 0and ¢g >0, for 1 <j<k.

Let us show that the set of equations (4.12)-(4.14) has a unique solution for all m > 0. Let
Tmic(k) :=y(k), k=0,1,...,m+ c+1, in Proposition 4.1.

By substituting (4.14) into (4.13), by eliminating Z,+.(0) from (4.12) by using (4.13), and finally
by using the definition of (3;, we obtain the matrix equation:

Am+c Xm+te = -1 8m+cs (A4)
where
— ' T,
Xm4e = (xm+c(1)a-~7mm+c(m+c)) >
e = (9(1),....g(m+e)T;
A MY i(a+Xep/Bi— Ao, A+ ep/Br), if m+e>1;
m+c A+ cp/B, ifm+c=1.

By noting that cu/B1 — A2 > 0 (since 1 < 1, cf. (4.1) for @ > 0, and Ay < cu) we see from (A.3)
that |Apm4c| > 0 for m > 0. Therefore, the set of equations (4.12)-(4.14) has a unique solution for
allm > 0.
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We start with the probf of Lemma 4.2.

PROOF(of Lemma 4.2). For m = 0 rewrite the equation (A.4) as
A. [xc + gc] = [Ac - A Ic] 8c = h,,

where I.. stands for the identity matrix and h. := (h(1),..., hc(c))T. It follows readily that

c—1
he(k) = —pr-1 gk — 1) 1{k > 1} +a Y gi) + Ao g(k) + (-‘gf “x)gl),  (45)
i=k

fork=1,2,...,c
By developing the determinant which forms the numerator of z.(j) + g(j) to the j-th column we
get after a tedious but easy computation

(ze(7) + 9(7)) 14| = | 4I+Y] Z he(k) |Ak- I'EJ 3 W

ZlAk 1| 1), WY RNV, (A-6)
i=j+1

for j =1,2,...,c, where

M (a+ Meu/Br = Ao, M+ ep/Br), if1<j<e—1;

Al = A1+ cp/Br, if j =c;
vio | Mij(aen/Bi— Do\ +ep/B), f1<j<c—1;
¢ cu/1 = A, ifj=c
Ml j(a+XNao,a+ ), ifk>1; ,
A = a+ A, ifk=1; (A.7)
1, ifk=0.
With the above definitions the following recursions can easily be established for j = 1,2,...,c—1,
|4l = (a+X) A+ ju VIt (A.8)
VI = alAl +jp|VZH. (A.9)

Repeated application of the recursions (A.8) and (A.9) leads to

c
A = X7 > NTITNVE j=0,1,...,c— 1 (A.10)
i=j+1
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Introducing (A.10) into (A.6) finally yields for j = 1,2,...,¢,

i e
. . J=1)! i c—i . i—j— i
(aeli) + 96 14d = 3 YN ik S het) X7 + Y [helk) — he(D) XTIV
(k—1)! £
k=1 i=j+1
As we have seen before |Ac| > 0, |[Ag_1| > 0 for k = 0,1,...,¢—1, |V} >0fori=1,2,...,c
Further, the assumptions on g imply that h.(k) > 0 for k = 1,2,...,c and that h.(k) — he(i) > 0
for k < 7. Hence, z.(j) + g(j) > 0 for j = 1,2,..., ¢, which concludes the proof of Lemma 4.2. O
PRrROOF(of Lemma 4.3). Let us show that the lemma is true if

Tm+c(0) > Tm-14¢(0), (A.11)

when condition Cr,—1,-m > 1, is not satisfied. We use an induction argument.
First notice that, cf. (4.12), (4.13),

k-1 N B
Tmtc(k) = @ Yizg Tme(i) = 1 gik) + 1 Tmye(k 1), 1<k<m+c¢(A12)

m+c ;
et o+ 1) = 2Easb Imeell L hmictmen t o) (A.13)

forallm >0,c¢> 1.
Basis step. Assume that Cp is not satisfied and let us show that z;4.(k) + g(k) >0 for 1 <k <
1+ c. From (A.12) and the inequality (A.11) (with m = 1), it is readily seen that

Tiye(k) > z.(k), for 0 <k <cg, (A.14)
which implies from Lemma 4.2 that
Tive(k) +9(k) > zc(k) + g(k),
> 0,

fork=1,2,...,c
Further, cf. (A.12), (A.13), (A.14),

ZTi4e(l+c) = o) io T1+c(t) — Ali](l +c)+ ch1+c(6)’
s @ Yi=0Zc(1) = Ag(1 + ¢) + pexc(c)
A ’
Aoze(1+¢) — Mg(1+¢)

A b
and so
A2
Titc(l+c)+g(l+c) > Y (zc(1+c¢) +9(1+¢)),

> 0, (A.15)
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from the assumption on Cj.
Inductive step. Assume that none of the conditions Cy, C1, ..., Chn—2, m > 2, is satisfied and that

Tm—-14c(k) +g(k) >0, for1<k<m-1+c. (A.16)

Let us show that zmic(k) +g(k) > 0 for 1 < k < m+ ¢ if Cpy—1 is not satisfied. It is easily seen
from (A.11), (A.12), (A.13), that

Tmtc(k) > ZTm-i11c(k), for1<k<m-—-1+4g¢ (A.17)

AoTm—1+c(m +¢) — Aig(m + )
A

Tmye(m+c) > . (A.18)

Consequently, Zm4c(k)+g(k) > 0for 1 <k < m—1+cfrom (A.16) and (A.17), and Zpyc(m + )+
g(m+c¢) > 0 from (A.18) and the assumption on Cp,—1.

We are therefore left to prove that (A.11) holds if the condition C,,_; is not satisfied, m > 1.
More precisely, we shall show that

[ se(0) = Zm-14e(0)] [ Amsel = 22 X4 (ﬂ—’j - Az) Gm-tie(m+c) +g(m+ )],  (A.19)

for all m > 1, if Cy,—1 is not satisfied (i.e., Zm—14c(m +¢) + g(m + ¢) > 0), which will prove (A.11)
since |Am+c| > 0 and cu/B1 — A2 > 0. The proof decomposes into 3 steps:

Step 1: Computation of zp—14c(m+¢) + g(m + ¢)

Recall the definition of Ay (cf. (A.7)). Let -

Ml%—l(a-*_)‘v/l’k,uk), if k> 1
Y =1 pu, ifk=1; (A.20)
0, if k=0.

With these definitions, we easily obtain that

[Ak] = (a+ ) [Ak_1|+a|Yk_1|; (A.21)
Yel = pe (|Ak—1] + [Ye-al), (A.22)

for k£ > 1, from which we deduce that

Ape|Ar—1] = pr |Ak] — a|Yzl; l (A.23)
A |Yeq] (a+ ) [Yi| — pr [Axl, (A.24)

for £ > 1.
By means of the recursion

Im+c(m + C) lAm—i-cl = _Alg(m + C) |Am—1+c| + m—1+c $m+c—l(m -1+ C) |Am—1+c|y m 2> 0,
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that follows from (A.4) we obtain for m > 0,

m+c m—1+4c
Zmte(m+¢) [Amiel = =A1 D g() 141l T s (A.25)
i=1 i=j
m = . (C_ 1)' c—j
= =M (ew)™ > 9(i) =5 £ Il
j=1 (.7 - 1)
— A1 Y90+ ) (ew)™ 7 A1, (A.26)
7=0
where by convention we have assumed that E?Zl -=0.

Next, we introduce the new quantities

A ) MEei(ad A ep/Br— Ao, A +ep/Br), iEm =1
m AL+ cp/ B, ifm=0;
v — My, o—q1(esep/Bi — Ao, A1+ cu/Br), ifm>1;
m cp/Br — Az, if m=0.

Then, for m>0,c > 1,
Amrel = Aemt| [Ams] + [Yeor| [rsal- (A.27)

For ¢ = 1, the proof of (A.27) is trivial by noting that A1 = Amy1 when ¢ = 1, Ag = 1
(cf. (A.7)) and Yy = 0 (cf. (A.20)). For ¢ > 2, the proof follows from Lemma A.1. -
For these new matrices, it is easily seen that for m > 0,

|Am+1|‘ = (a+)) |Am| +cp ilea (A.28)

lf/m+1‘ = o |Am| +cp |Vm|v (A.29)

from which it follows that for m > 0, .
Va1l = [Amsr] = A Aml; (A-30)

|f~1m+2' = (a+A+cp) Ijlm+1| - CﬂMAmIa (A.31)

provided |Ag| = 1 and |Vo| = 1 — A1/ (cp).
Further, (A.27) and (A.30) imply that for m > 0,

| Ameel = (|Ae-1] + [Yeo1]) [Ama] = AlYe-1] [ Am]. (A.32)

Introducing the matrix

A= Mg o 1(a+Xa,a+ ), ifm>1;
mH T a4, if m =0,



we have similarly to (A.32)
Amte| = (|Ac—1| + [Ye-1l) mm+1| =AY lj\mla

for m > 0, with the convention that IAOI =1.
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(A.33)

Using (A.33), (A.26) and the relation zm_14c(m+c) = B1 Tm—14+c(m—1+c¢), cf. (4.14), we finally

obtain for m > 1,

[Tm-1+c(m +c) + g(m + o] [Am—1+c| =

c—1
_ L (e=1)V
9l + ) Am-vecl = 1 B (00)™ ™ Yo 0) (=10 0 Iy -
i=1 '
m—1 ) - ~
MB1L Y 9 +)em)™ T (el + [Yera ) 1] = A |Yeor] 1K) -
j=0
Step 2: Computation of Z;,4¢(0) — Zrm—14¢(0)
In order to describe z,4.(0), we introduce the matrix
i Ml (ayep/Br— A, AL+ ep/By), f1<j<m+e
m+e cu/Br — Az, ifj=m+ec.

By straightforward manipulations with the determinants, it can be shown that

|Am+0| - IV'r}L+c| (o

Tmse(1) | Ameel = =1 g(1) =" + 1 30 9N Vg, m 0.

j=2
From this relation, it follows readily by using (A.12) with k¥ = 1 that

)\1 m+c . . )
Tm+¢(0) [Amte| = ™ X:l 9N Vihsel, m>0.
§=
From the definitions of the matrices V,f, +c and Vm+1+c_j we have
Vrzhtc = ~m+1+c—ja
for ¢ < 7 < m + c. Further, by applying again Lemma A.1 to V,{; +c it is easily seen that
Vael = W11 [Ama| + 1221} Vi,

for1<j<ec-—1,m >0, where

wi — M}Z—z(a,a,a +2), f1<j<c-2
c—-1 - Q, if] =c— 1;
j — Mg—?(aaﬂc—l7uc—1), if 1 S .7 S c— 2;
Zc—l =

He—1, ifj=c—1.

(A.34)

(A.35)

(A.36)

(A.37)
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These matrices satisfy the recursions

W = (e NIW |+ alZl_y; (A.38)

1z = en(IWLil+1224]), | (A.39)

for j = 1,2,...,c— 1, ¢ > 2, while |W§| = a and |Z¢| = cp for ¢ > 1. With the aid of relations
(A.36) and (A.37) we may rewrite (A.35) as

Y= i
Emte(0) [Amtel = =39V WL [Ama] + 1224 ] [P
j=1
+ }: (c+ )X Vp1-5], m>0. (A.40)

Hence, for m > 1,

= [Zm+c(0) = Tm—1+¢(0)] | Amtecl |Am—1+c| =

A1
_ - c—1
(14m a1l 1Am- el = 1Aml | Ameel ) 3 9() N 71 WEy|
j=1
_ - c—1
+ (IVonsr [Am-tsel = Vinl [Amael) 329G V71224
j=1
+ g(m+ ) NV | Am 14|
m—1
+ Z 9(j +¢) N ite (le+1‘j| |[Am—1+c| — |Vm—j| |Am+6|) : (A.41)
7=0

It can be shown by induction on m (and by using (A.31)) that form > 1and j =1,2,...,m—1
orm=1and j =0,

I/im+1| If/m—jl - !Am] |‘7m+1—jl = Ah (C.U)m_l_j X IVll |AJ| (A.42)

By applying (A.27) and (A.42) to the first two terms in the right-hand side of (A.41), as well as
(A.30) and (A.42) to the last one, it is straightforward to reduce (A.41) for m > 1 to

!
N [Zm+c(0) = Tm—14¢(0)] [Amc| [Am—14c| =

-1
B (ep)™ X (VA 30 g () MY (Ve W24 ] = [Aca] 1224]) +
7=1
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) ) m—1 ) -
g(m+ ) NI VA | Amorgel + D 90+ €) MBr (ep)™ T Am 1| x
=0
(A¥erl 1Rl = [[Acoa] +[Yera[} A1) - (A.43)

Step 3: Proof of (A.19)
We are now in position to prove (A.19). For ¢ = 1, it is seen from (A.34) and (A.43) that (A.19)

is true.
For ¢ > 2, it follows from (A.34) and (A.43) that the relation

c—1
~ _ N (=18
3 0 A (Weral W] = et 1ZE41) = 2 3 0) E2 R e yg, ()
j=1 j=1 (-1
has to be proved in order to establish (A.19).
For ¢ = 2, this relation reads
V1| [Wi| — [A1]1Z1] = =X u|Aol,
which is true since [Yi| = p, |[Ao| =1, [A1] = a+ A, [W}| =a and |Z}| = p
Now suppose that (A.44) holds for some fixed ¢, ¢ > 2. Then,
¢ .
XY 9(5) G pEIT A 1] = A g(e) ep|Ac-]
j=1
c—1
+ Aew Y g N (Aol 122 — [Yerr| WE4) (A.45)
7j=1

On the other hand, using the recursions (A.21), (A.22), (A.38) and (A.39), it follows that

zg YN (18] 122] = 1Yol W) = A= (o) (cms Aol — er|Yel) +

c—1
New Y2 g(G) N7 (1Ae-1] 122 4] = [Yeur| W4]) . (A.46)

j=1
Finally, by using (A.23) with k£ = c, it is seen that (A.45) and (A.46) are equivalent, so that (A.44)
holds for c instead of ¢ — 1, which concludes the proof. O
The notation introduced in the proof of Lemma 4.3 will be used in the remainder of this appendix.

PROOF(of Lemma 4.4). By using (A.25) and the identity Z,m4c(m + ¢+ 1) = B1 Tmac(m + ), it
follows that the condition C,, m > 0, can be expressed as

+
lﬂl m+c ] 1| m+c

gm+14¢) < — z H i (A.47)

Jj=1 i=j

mc|
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On the other hand, it is easily seen from the definition of the matrices Am+c, Ym+c and Apqc that
form >0 ‘ '

Amsel = (3 + %) IAmesiel + (% - %) Won-sel,  (A49)

which implies, together with (A.21) and (A.22), that for m > 1
| Amacl = A1 | Am—14c + B IAm 1+¢l- (A.49)

Repeated applications of (A.49) give for m > 1

s = (%) 1+ 2 j’g (&)™ sl (A.50)

Note that (A.50) trivially holds for m = 0.
With (A.50) it is easily seen that (A.47) reduces to

gm+1+c¢) [(%)m |Ac| + A1 ’%C (%‘%)mﬂ—j |Aj—1lj|

j=c+1
( ) m+c
< Mf Z“Wrc Te m( ) |Aj—1lgG) + M B D (ew)™ 77 A1l g(s),  (A51)
Jj=1 J - j=c+1
for m > 0.
Because « is such that :
U< B <1, (A.52)
and generally (see (2.3))
glm+1+c¢) < Y™+ g(4), (A.53)
for j > ¢, it follows that
m+c cp m+c—j m+c . .
glm+1+c) 3 (B‘) A1l < B D (ew)™ 77 Al 9(d)- (A.54)
j=ct+1 ‘M1 j=c+1
Further, (A.52) and (A.53) implies that
im 47—,
mToo in

so that there must exist an M (that clearly depends on a); 0 < M < 400, such that for all m > M,
1<j<q

g—@*—f—*ﬁmww e Ec—l—;,l 1190)- (A.55)
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By combining (A.51), (A.54) and (A.55), we finally see that C,, is satisfied for all m > M.
The proof is concluded by observing that such an M also exists for o = 0, since 8; = 1 if & = 0,
cf. Section 4, and since lim,, 10, g(m) = 0. O

LEMMA A.1 Let ¢ > 2 and define

c . )
Am+1(b0, CO) = Mm+C—l(a + A’ b07 cO)a Zf m Z 1,

co, if m = 0;

C . > .
Vm+1(b0,CO) = Mm+c—1(a» b07 CO), ’Lfm 2 1’

{ bo, if m=0;

j M (ag,,a+ ), ifl1<j<c-—2

W] = c—2 ) U ) = = )
j M?_y(ag, pre—1, pie-1), if1<j<c—2

ZJ a = c—2 y He—15 Mc ] = = )
=-1(%) { fre—1, ifj=c—1.

Then,
1M}, 41| = W21 (a0)] | Amt1(bo, co)| + | Z2_1(a0)| |Vin1 (b0, o)l (A.56)

for1<j<c-1, m >0, and for any constants ag, by and cy.

PRrROOF. We use an induction argument. Assume that m = 0. Then, it is easily seen from definitions
(A.1) and (A.2) that (A.56) holds for j = 1,2,...,c— 1 and for arbitrary constants ag, by and cg.
Assume that (A.56) holds form =1,2,...,n, 7 =1,2,...,¢— 1 and for arbitrary constants ag, by
and cg. Let ag, bp and cp be fixed arbitrary constants and let j € {1,2,...,¢ — 1}. Then, cf. (A.1),

|M]c(a0,b0,c0)l = ol M3, (a0, 00+ N)| + pinte M7 ._1(ag, bo, bo)l,
= WLi(@0)] (colAn+1(e @+ N + nse [ Ans1 (b0, bo)]
+ 12L1(a0)] (o [Vasa (@, @+ M) + pnte [ Vot (bo, bo)1)
by the induction hypothesis. The proof is concluded by observing that

|Ans2(bo,co)l = colAnti(a,a+ )|+ pnte|Anti(bo, bo)l;
|Vn+2(b0, c) = ¢ Wn-&»l(a, a+ A)|+ pnye IVn+1(bO, bo)|,

from the definition of the matrices fimﬂ(-, -} and Vm+1(-, -). O



26

REFERENCES

[1] R. E. BARLOW AND F. PROSCHAN (1975). Statistical Theory of Reliability and Life Testing.
Holt, Rinehart and Winston, Inc., New York.

[2] K. L. CHUNG (1967). Markov Chains with Stationary Transition Probabilities. 2nd. Ed.,
Springer Verlag, New York.

[3] P. R. DE WAAL (1987). Performance analysis and optimal control of an M/M/1/k queueing
system with impatient customers, in Proc. Messung, Modellierung und Bewertung von Rechen-
systemen 4. GI/ITG-Fachtagung, pp. 28-40, U. Herzog and M. Paterok, Eds., Springer-Verlag,
Berlin.

[4] P. R. DE WAAL (1990). Overload Control of Telephone Ezchanges. PhD. thesis, CWI,
Amsterdam, 1990. :

[5] B. HAJEK (1984). Optimal control of two interacting service stations. IEEE Trans. Automat.
Contr., vol. AC-29, no. 6, pp. 491-498.

[6] D. P. HEYMAN AND M. J. SOBEL (1982). Stochastic Models in Operations Research, Vol IL.
McGraw-Hill, New York.

[7] S. G. JOHANSEN AND S. S. STIDHAM (1980). Control of arrivals to a stochastic input-output
system. Adv. Appl. Prob., vol. 12, pp. 972-999.

[8] W. Lin AND P: R. KUMAR (1984). Optimal control of a queueing system with two hetero-
geneous servers. IEEE Trans. Automat. Contr., vol. AC-29, no. 8, pp. 696-703.

[9] S. A. LipPMAN (1975). Applying a new device in the optimization of exponential queueing
systems. Operat. Res., vol. 23, no. 4, pp. 687-710.

[10] S. A. LipPMAN (1975). On dynamic programming with unbounded rewards. Management
Sci., vol. 21, no. 11, pp. 1225-233.

[11] D.-J. Ma AND A. M. MAKOWSKI (1987). Optimality results for a simple flow control problem,
in Proc. 26th Conf. on Decision Contr., pp. 1852-1857, Los Angeles.

[12] R. SERFOZO (1981). Optimal control of random walks, birth and death processes, and queues.
Adv. Appl. Prob., vol. 13, pp. 61-83.

[13] S. S. STiDHAM (1985). Optimal control of admission to a queueing system. IEEE Trans.
Automat. Contr., vol. AC-30, pp. 705-713.

[14] D. V. WIDDER (1941). The Laplace Transform. Princeton University Press, Princeton.



