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The basic polling system is a system of multiple queues, aitended to by a single server in a cyclic order.
Polling systems arise naturally in the modelling of many communication, computer and production networks
where several users compete for access to a common resource. Such applications also give rise to several
variants of the basic polling system, like periodic polling; here the server visits the queues in a fixed order
specified by a polling table in which each queue occurs at least once.

The theory of polling systems is going through a period of feverish activity. The purpose of this paper is
to stimulate the discussion on what are the really important problems, both from a theoretical and an
applied point of view. It is argued that optimization of polling systems is one of those problems. Part of the
paper is devoted to the analysis of a polling optimization problem, viz., the determination of that polling
table in a periodic polling model that minimizes a certain weighted sum of the mean waiting times.
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1. INTRODUCTION

In computer-communication networks one frequently encounters a situation where several users com-
pete for access to a common transmission channel. Conflict-free access protocols successively allow
each user access; the transmission right is often granted in a cyclic order, cyclic resource allocation
either arising naturally or being considered "fair”.

A well-suited model for the performance of such multiple-access protocols is a multiple-queue
single-server model in which the server moves from queue to queue in a cyclic order. The latter
model is called the basic polling model. Generalizations to non-cyclic visit orders of the queues by the
server, and to multiple servers, are also usually denoted as polling models. The characteristic feature
of polling models is that the server is moving between queues (which possibly requires switchover
times), implying that the priority of the queues is dynamically (e.g., cyclically) changing. This sharply
contrasts with classic static priority queueing models, and resembles Synchronous Time Division Mul-
tiplexing (STDM) models. The main difference with STDM is that in STDM each queue is attended
to by the server for a fixed period of time, regardless of whether or not there are customers in that
queue to be served.

Recently two surveys on applications of polling models to computer-communication networks have
appeared (Grillo [24], Takagi [34]). Outside communications, polling models also arise naturally in
many situations where several users compete for access to a common resource; examples abound in
computer, production and road traffic networks.

The polling literature has grown explosively over the last few years. In the most recent update [33]
of his series of surveys “Queueing analysis of polling models”, Takagi lists 455 references, of which
337 have appeared in the last decade and 242 in the last five years. In part, questions raised by excit-
ing new application areas (e.g., token passing networks) have contributed to this rapid growth. Also,
interesting new queueing theoretic problems have arisen which stimulated research in various direc-
tions. In such a period of feverish activity in a small and specialized research area, it is important to
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reflect now and then on what has been accomplished so far, and in which direction the research has
been (or should be) moving. The temptation to fill one of the many small gaps in the rapidly growing
polling edifice, while contributing to the coherence of the theory, may distract one from the really
important problems in polling. The purpose of this paper is to stimulate the discussion on what are
those problems - both from a theoretical and an applied point of view. We discuss five polling issues
that we feel worthy of special attention:

(A) polling systems with multiple servers;

(B) non-Poisson arrivals;

(C) reservation mechanisms and global policies;

(D) fairness;

(E) optimization of polling systems.

The paper is organized as follows. In Section 2 we reflect on the enormous variety of polling
models, and on the complexity of their exact analysis. Only few references are given; detailed refer-
ences (o the various polling variants can be found in [33]. The five important polling issues (A)-(E)
mentioned above are discussed in Section 3. In Section 4 we consider a polling optimization problem
- with several fairness-related aspects - in some detail. It concerns the determination of the polling
table in a non-cyclic (‘periodic’) polling model that minimizes a certain weighted sum of the mean
waiting times. We present a mean waiting time approximation for periodic polling models; this
approximation is sufficiently simple to allow explicit minimization of the weighted sum of the mean
waiting times w.r.t. occurrence frequencies of the queues in the polling table. We close the paper with
a further discussion of fairness, based on that mean waiting time approximation.

2. POLLING MODELS AND THEIR ANALYSIS

Range of models

Assume a single server S visits N queues Q, ..., Qy in cyclic order. Usually the buffer size of each
queue is assumed unbounded; in some studies unit buffers are considered. Each of the queues has its
own arrival and service request processes; these processes are usually assumed to be independent sto-
chastic processes, but there are also examples in which it is more realistic to assume that the arrival
processes at the various queues are correlated. The time it takes S to switch from one queue to the
next is usually considered to be a stochastic variable, independent of the arrival processes, service
times and other switchover times; again, exceptions do occur - like dependence of the switchover time
on whether the visited queue is empty or not. Motivated by token ring applications, it is nowadays
mostly assumed that an idle server keeps moving along the empty queues; in early polling studies an
empty server usually did not move until somewhere a customer arrived.

It is assumed in this paper that when § visits a queue, say Q;, he serves its customers in order of
arrival. The service policy at this queue prescribes the further behaviour of S. A plethora of service
policies has been considered, ranging from I-limited (serve just one customer, if any) via gated (serve
only the customers present in Q; upon the arrival of S) to exhaustive (continue to serve Q; until it
becomes empty). It seems that there are two major classes of policies: the exhaustive-type policies and
the gated-type policies. In an exhaustive-type policy, all customers present upon the arrival of S at
the queue plus all those arriving during his visit are candidates for service. In a gated-type policy, only
the customers present upon the arrival of S at the queue are candidates for service. Whether a candi-
date is really served may depend on various deterministic or probabilistic rules. The 1-limited service
policy is a special deterministic example of both a gated—type and an exhaustive-type policy. It is
generalized by the plobabzlzstzcall) -limited policy of Leung [28], in which with probability @/ at most j
customers are served in a visit of Q;. This policy has a gated-type and exhaustive-type version. The
introduction of the probabilistically-limited policy and the division into exhaustive-type and gated-
type policies arc useful steps towards a much needed unification and classification of the various ser-
vice policies.

Instead of limitations on the number of customers to be served, as in Leung [28], one can also pose
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time limitations on the visit to a queue (or on the whole cycle). Such timer-limited policies have
received less attention than their practical interest, e.g. in FDDI, would justify. Coffman et al. [18]
present an interesting mathematical analysis of a 2-queue model with exponentially distributed visit
time limits.

Next to the large variety of service policies describing the behaviour of the server at a queue, there
are also several possibilities for the server movement between queues. The basic cyclic polling model
has been generalized in the following directions. (i) Probabilistic polling: the server visits the queues
according to a probabilistic routing mechanism (e.g., according to a Markov routing chain). (ii)
Periodic polling: the server visits the queues in a fixed order specified by a polling table in which each
queue occurs at least once. The latter generalization seems particularly interesting from an applied
point of view; some examples are provided by the token bus protocol in local area networks, and by
star polling at a computer with multidrop terminals (polling table [1,2,1,3,...,1,N]). In many multiple-
access protocols, it is possible to implement a scheme that allows some users more frequent right of
transmission than other users. This raises the need for rules to build a good polling table. Section 4
is devoted to this topic.

Mathematical analysis

Various combinations of service policies lead to an astounding range of mathematical complexity -
even in the case of independent Poisson arrival processes, to which we restrict ourself here. Models
with only purely gated and exhaustive policies can be exactly analysed in detail, for an arbitrary
number of queues. A 2-queue model with exhaustive service at Q; and 1-limited service at Q, is also
almost trivial to analyse (and with zero switchover times, it reduces to a model with two priority
classes and nonpreemptive priority for the first class). But a 2-queue model with gated service at Q;
and 1-limited service at Q, is yet unsolved! Determination of the joint queue length distribution here
seems to be a challenging mathematical problem, solution of which may also be of some practical
interest; Bisdikian [1] uses a minor modification of this model for representing a station in a DQDB
(Distributed Queue Dual Bus) network.

A 2-queue model with I-limited service at both queues can be completely analysed by using the
theory of Riemann-Hilbert boundary value problems of mathematical physics. This holds regardless
of whether there are switchover times or not, and of whether the service time distributions are
exponential or not. See [4] for a further discussion of the application of this technique to 2-queue
polling models. Unfortunately, extension of this theory to higher dimensions has not yet been possi-
ble, making it highly unlikely that in the near future a detailed exact analysis will be presented for
models with three or more queues with some limited service policy.

The observation that a detailed exact analysis of polling models is only possible in exceptional cases
has stimulated research into three directions: (i) (pseudo-)conservation laws, (ii) waiting time approxi-
mations, and (iii) numerical algorithms.

(i) (Pseudo-)conservation laws

In single-server multi-queue systems with a work-conserving service discipline at all queues, the total
amount of work V in the whole system equals the amount of work Vypcps in a system with the same
traffic characteristics but with a global FCFS service discipline:

V = Vecrs. 2.0)

Kleinrock (cf. [5,26]) has exploited this principle of work conservation to derive an exact expression
for a weighted sum of the mean waiting times EW,, at the queues of a single-server multi-queue sys-
tem. Under the conditions of independent Poisson arrival processes, and a non-preemptive service
discipline in which the server only uses information about the current state and the past of the queue-
ing process in making scheduling decisions, the following holds:

SAB9

N
EW, = p=l——.
2 oEW, =p 20=p)

n=1
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Here A, is the arrival rate at Q,, 8,, 8 denote the first and second moments of the service times,
and p,=\,B,, p=>p,. Kleinrock has called (2.2) a conservation law to indicate that a change in the
scheduling discipline (under the above restrictions) does not lead to a change in >0, EW,. The con-
ditions for (2.2) to hold are fulfilled for an ordinary cyclic polling system with Poisson arrivals. How-
ever, in a polling system with switchover times of the server between queues, the principle of work
conservation is violated in the sense that at a switchover the service process is interrupted although
work may still be present at some of the queues. In [5,6] it has been shown that, under rather weak
conditions, a simple extension of the work conservation principle holds, viz. a work decomposition
principle:

D
V = Vecrs T Y, (23)

Vrcrs and Y being independent. In this relation V is the steady-state amount of work in the system
with switchover times, Y is the steady-state amount of work in that system at an arbitrary switchover
epoch, and Vjcps is the steady-state amount of work in the corresponding system without switchover

D
times (hence a work conserving system). Here = denotes equality in distribution, and ‘the
corresponding system without switchover times’ indicates a single-server multi-queue system with
exactly the same arrival and service demand process as the system under consideration, but without
switchover times.

The work decomposition formula (2.3) is in particular valid for cyclic and even periodic polling sys-
tems. Similar to (2.2), formula (2.3) leads to the following exact expression for a weighted sum of the
mean waiting times in a polling system with switchover times:

) SAB0
— . n=1

,E, e, EW, =p 20=p) + EY. 24
This has been called a pseudoconservation law: a change in the visit order or service policy at a queue
generally does lead to a change in EY, and hence in the lefthand side of (2.4). EY can generally be
determined quite easily, for cyclic polling and even for periodic polling. Only one term sometimes
presents difficulties: the mean amount of work in a queue at the departure epoch of the server from
that queue. This term only depends on the service policy at that queue. For many service policies it
is trivial to determine this term (like for exhaustive service, in which it equals zero); in other cases it is
a yet unsolved problem. The cases of either exhaustive or gated service at all queues yield pseudocon-
servation laws first obtained by Ferguson and Aminetzah [21]. The pseudoconservation law for 1-
limited service was first discovered by Watson [35]; the contrast between the simplicity and beauty of
its expression and the complexity of its derivation triggered the research that led to the above-
described work decomposition result. The reader is referred to [5] for a lengthy discussion of the con-
cepts of work decomposition and pseudoconservation law.

(ii) Waiting time approximations

Pseudoconservation laws have recently been used in several papers to develop approximations for the
individual mean waiting times in polling systems. See [12,20,25]; further references and discussions
are given in Section 4 of [5]. Pseudoconservation laws are also being used to test approximations and
simulations.

(iii) Numerical algorithms

Blanc [2,3] and Leung [28] are developing interesting procedures that enable one in principle to deter-
mine polling performance measures with any required accuracy. Blanc uses a power-series algorithm
that can be applied to a large class of multi-queue systems with a multi-dimensional birth-and-death
process structure. It is based on power-series expansions of the state probabilities and moments of
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the joint queue length distributions as functions of the load of the system in light traffic. Leung pro-
poses an iterative numerical solution, based on discrete Fourier Transforms, for cyclic-service systems
with a probabilistically-limited service policy. An essential difficulty is that the computational com-
plexity of their procedures is quite large (memory and CPU time being exponential functions of the
number of queues) as a result of which a restriction to fairly small and simple models must be made;
still, considerable progress should be possible in the near future.

3. SOME POLLING TOPICS FOR FURTHER RESEARCH

In this section we discuss a number of global polling issues that we consider to be important from
either a theoretical or an applied point of view. Of course the view presented here is a biased one, of
someone who has little direct involvement with the application area; but ITC 13 seems a suitable
forum to open a discussion on what are the really important polling problems lying ahead. To avoid
repetition, we have not deemed it necessary to discuss again some topics that were designated in Sec-
tion 2 as interesting theoretical developments (numerical procedures, pseudoconservation laws). We
start with brief remarks on polling systems with multiple servers, on non-Poisson arrival processes and
on reservation mechanisms and global policies. Some of the points raised there are influenced by the
development of Broadband ISDN. The extremely high speeds in B-ISDN and projected high-speed
local area networks ask for simple slotted transmission mechanisms (like in ATM = Asynchronous
Transfer Mode). Accordingly, discrete-time polling systems will receive more attention. Furthermore,
as there are far more slots in a high-speed local area network than in a low-speed local area network
with the same configuration, there will be a need for polling models with not just one server (or a
few), but several thousands of servers. This brings us to the first topic on our list.

A. Polling models with multiple servers

So far, hardly any exact results on polling models with multiple servers have been obtained. Such
polling models appear not only in the performance analysis of slotted ring systems but also, as
observed in Takagi [33, p. 299], in the modelling of token ring networks with multiple channels, mul-
tiprocessor computers, multiple machine repairmen and multiple elevators. It would be most interest-
ing to study the concepts of work conservation, work decomposition and (pseudo)conservation laws
for multi-server multi-queue systems. In the case of a very large number of servers, an asymptotic
waiting time analysis may yield useful results. Browne et al. [16,17] present an interesting discussion
of a vacation queue with an infinite number of servers. The servers work in parallel and serve custo-
mers in stages. The customers being served in a stage are those present at the beginning of that stage.
When no customers are present at the end of a stage, the servers take a vacation. Determination of
the steady-state distribution of the number of customers served during a stage requires the solution of
a Fredholm integral equation of the second kind. The results have bearing upon a polling model with
an infinite number of servers that always operate together.

B. Non-Poisson arrivals

The assumption of Poisson arrivals is not always realistic; e.g, in B-ISDN some traffic sources will
present traffic of a very bursty character, and in an ATM environment there is also the possibility of
dependent interarrival times since messages at a higher layer usually create several ATM blocks.
Extensions of single Poisson arrivals in polling models to compound Poisson arrivals (with correlated
batch sizes) have been studied in a number of papers; see Takagi [33, p. 290] for some references. In
discrete-time models also some non-Poisson arrival processes have been taken into consideration. The
numerical procedures of Blanc [2,3] and Leung [28] seem to offer possibilities for allowing more gen-
eral arrival processes. It would be interesting to try and extend the concepts of work decomposition
and pseudoconservation law to the case of general interarrival time distributions.

C. Reservation mechanisms and global policies
Future metropolitan area networks and high-speed local area networks will provide capacities beyond
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one Gigabit per second and geographical coverage of hundreds of kilometers. Such networks require
access schemes that are simple, flexible in handling heterogeneous traffic, and sufficiently efficient to
provide high throughput and small access delay (Nassehi [31]). Token access schemes satisfy these
requirements for present-size local area networks, but for larger networks the token propagation time
will seriously affect performance. Some recently proposed access schemes use a reservation mechan-
ism. The Distributed Queue Dual Bus access scheme DQDB uses a reservation approach for slotted
unidirectional bus systems [32]. Each user can reserve only one slot. This scheme can achieve an
aggregate throughput near the bus capacity. In [31] another reservation access scheme is proposed:
Cyclic Reservation Multiple Access (CRMA). It is also based on a slotted unidirectional bus struc-
ture, and uses cyclic reservation access to provide throughput efficiency. The cyclic reservation struc-
ture is realized by the headend periodically issuing reserve commands.

So far, very few performance studies of these interesting reservation mechanisms have been pub-
lished. See Potter and Zukerman [32] for an analysis of a discrete shared processor model for DQDB.
In [11] an exact analysis is presented of a simple queueing model that catches some essential features
of CRMA. In this model, a collector moves along the queues gathering customers in a batch and
bringing them to a server who serves arriving batches in FIFO order. We expect reservation mechan-
isms as used in DQDB and CRMA, with additional refinements including priorities and backpressure
cancellation [31], to give rise to interesting queueing theoretic models that are closely related to pol-
ling models.

In DQDB and CRMA some performance measures of the stations are dependent on the position of
the stations on the bus. In [11] a new service policy for cyclic polling is introduced and analysed
which also has a cyclic reservation mechanism, and has the feature of position dependence of the sta-
tions. It is called Globally Gated (GG). GG uses a time stamp mechanism for its cyclic reservation:
the server moves cyclically along the queues, and uses the instant of cycle beginning as reference
point. When he reaches a queue, he serves there all customers present at the cycle beginning. This
strategy can be implemented by marking all customers with a time stamp denoting their arrival time.
GG resembles the purely gated policy, and leads to a simpler mathematical model in which exact
expressions for the waiting time distributions at all queues can be obtained [11].

D. Fairness

Most people consider the 1-limited service policy in cyclic polling models as a fair policy, because at
cach cycle each queue has the chance of having exactly one customer served. The gated service policy
has another fairness property: each customer has to wait only one cycle before being taken into ser-
vice. The Globally Gated policy mentioned under C has similar properties as the gated policy, and
also has yet another fairness property: all customers arriving in the n-th cycle are served before all
customers arriving in the (n +1)-th cycle. An unfair aspect of Globally Gated is that the position of
the queues has an effect on the mean waiting times. This unfairness can be removed by first putting
the global gate at O, at the next cycle putting it at Q,, etc. [M. Zukerman, private communication].
Variants like this form the subject of a future study. See Yechiali [36] for an ‘elevator-type’ variant of
GG that leads to identical mean waiting times at all queues.

As opposed to 1-limited service, exhaustive service is considered to be unfair because one heavy-
traffic queue can dominate the system, keeping the server occupied for a very long time. Fairness
considerations may lead one to implement the extremely inefficient 1-limited policy instead of the
exhaustive policy, the most efficient policy [30] in the sense that the workload at any time ¢ in a sys-
tem with exhaustive service is at most equal to the workload at ¢ under any other policy. But is
cxhaustive service really so much less fair than i-limited service? And how fair are the gated and GG
policies? To answer these questions, one needs a criterion for fairness in multiple-queue systems. We
are not aware of any generally accepted criterion for fairness, although many designers and research-
ers consider fairness an important performance issue. One useful criterion might be the percentage
with which the largest mean waiting time exceeds the smallest mean waiting time, or equivalently, the
ratio FR between the largest and smallest mean waiting times.

Periodic polling, instead of cyclic polling, might be used to reduce the fairness ratio FR. In Section
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4 we use Tough mean waiting time approximations for a mixture of exhaustive, gated and 1-limited
service policies, for (i) estimating FR in cyclic polling systems, and (ii) choosing a polling table for
which FR is below a certain predetermined level.

Finally we’d like to refer to Greenberg and Madras [23] for a quite different discussion of fairness
in multiple-queue systems. They state that head-of-the-line processor sharing provides an appealing
paradigm for the fair sharing of a server. According to this discipline, the customer at the head of
each non-empty queue is served in processor sharing fashion. In [19] a new queueing discipline is
introduced, termed fair queueing, which attempts to emulate head-of-the-line processor sharing but
never preempts a service. Greenberg and Madras [23] analyse two variants of the fair queueing dis-
cipline, and show that these variants indeed strongly resemble head-of-the-line processor sharing.

E. Optimization of polling systems

The ultimate goal of performance modelling and analysis is performance improvement and optimiza-
tion. The extensive research on cyclic-service systems has been useful for performance evaluation, but
it has only partly led to an ability to control the systems under consideration and to affect their
design. Modern developments in computer and communication technology enable the use of more
sophisticated scheduling disciplines, while the need to control complex networks makes the use of
such disciplines imperative. Recently a few studies have appeared which open up possibilities for
optimization (see Levy and Sidi [29] for some references); much more research seems needed here.

In Section 4 we shall touch upon some static optimization problems regarding the routing of a sin-
gle server in a periodic polling system (in which the route of the server is ‘once and for all’ deter-
mined, before operation). We refer to Yechiali [36] for a discussion and references on (semi-)dynamic
server routing (during operation); see also [13], [14], and the recent report [15] which considers the
optimal semi-dynamic routing of two servers which together move from queue to queue.

Next to server routing one may also regulate the length of the visit period of S at a queue. E.g.,, one
can try to choose a time limit for visit periods in such a way that a certain function is optimized
under given constraints. In the case of probabilistic policies, like Leung's [28] probabilistically-limited
policy, one can even try to choose the limit probabilities optimally.

It obviously makes sense to combine consideration of service policies and server routing strategies.
For example, instead of including a queue several times in the polling table and serving 1-limited, it
may be better to visit it only once and provide exhaustive service.

Finally we’'d like to remark that the very heterogeneous characteristics of the various traffic types in
B-ISDN will give rise to hybrid switching systems that support both circuit switching and packet
switching. The existing systems FDDI and DQDB have such a hybrid character; part of the (server)
capacity is reserved for isochronous channels (circuit switching, uniframe technique). The assignment
of this capacity may lead to interesting optimization problems.

4. STATIC OPTIMIZATION OF POLLING SYSTEMS: VISIT FREQUENCIES

Consider the following polling model. A single server, S, serves N infinite-capacity queues (stations)
01, .. .,Qy, switching from queue to queue. Customers arrive at all queues according to independent
Poisson processes. The arrival intensity at Q; is A;, i=1,..,N. Customers arriving at Q; are called
class-i customers. The service times of class-i customers are independent, identically distributed sto-
chastic variables. Their distribution B;(.) has first moment 8; and second moment B®, i=1,.,N.
The offered traffic load, p;, at Q; is defined as p; := A;8;, i =1,...,N, and the total offered load, p, as

p:= 2?’_1 p;. The service policy at each queue is 1-limited. With a visit to Q; we associate a switch
time (swa_p-in or swap-out time) S; with mean s; and second moment s@; the switchover times are
mutually independent, and also independent of the arrival and service time processes. It is assumed
that all involved stochastic processes (of waiting times, queue lengths, etc.) possess an equilibrium dis-
tribution. S visits the queues according to a periodic - not necessarily cyclic - polling scheme. As
observed in Section 2, periodic polling systems represent the behaviour of token bus protocols in local
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area networks; see, e.g., the Manufacturing Automation Protocol (MAP) which is becoming the stan-
dard for communication in automated manufacturing. Suppose we still have the freedom to choose
the polling table. Our goal is to determine that polling table that solves the following problem:

N N
Min Y CGEX; = 3 CNEW, 4.1

i=1 i=1

Here C;=0 is a weight factor associated with Q;, (e.g., the cost associated with waiting one unit of
time at Q;), £X; is the mean number of customers in Q; and EW, is the mean waiting time of an
arbitrary class-i customer. The choice of C; gives us freedom to attach, in a sense, priorities to partic-
ular queues. This choice may also reflect some fairness criterion. For C;=1, i =1,..,N the problem
amounts to minimizing the average mean waiting time of an arbitrary customer in the system; for
C;=pB;, i =1,...,N the problem amounts to minimizing the mean workload in the system, cf. [8,9].

REMARK 4.1
[8] and [9] consider the minimization of >0, EW; (hence C;=§;) for the case of exhaustive and gated
service policies. This amounts to minimization of the workload in the system; and for those policies,
an explicit expression for X p;,EW; is given by the pseudoconservation law [7], which is a great help
for solving the minimization problem. Actually, there and here we do not try to find the absolute
minimum, reasoning that as long as no restriction on the table size is put, one can generally improve
upon some obtained value of the sum by taking a bigger table with slightly different visit frequencies.
Instead, in [8,9] we have developed a method for finding ‘good’ visit frequencies. Subsequently we
have determined a table size for which such frequencies (almost) can be realized; finally we have
developed a procedure for generating a table with given size and visit frequencies, in which the visits
to each particular queue are spread out evenly. For example, in a 3-queue case for which we found
the visit frequencies 0.52, 0.32 and 0.16, we approximated the visit frequencies by 1/2, 1/3 and 1/6,
and we took the following table of size 6: [1,2,1,3,1,2].

The visit frequencies ff* and f5**, which we have derived for exhaustive and gated service policies,
are [9]:

b = NVP:’(I_P:')/S:' , @2)

>V Pj(1 —pj)/sj

Jj=1

V pi(1+p;)/s;
EN Vei(1+p)/s

j=1

ﬁuled — ( 4. 3)

Numerical tests show that the proposed rules perform extremely well.

In tackling problem (4.1) with not all C; equal to B; we no longer can use the pseudoconservation
law. We now look for an approximation for EW; that is sufficiently simple to allow explicit solution
of (4.1), and yet is reasonably accurate. Details and numerical examples will be presented in [10]; here
we sketch the approach.

Starting point is a mean waiting time approximation for purely cyclic polling models, that has been
developed by Everitt [20] for exhaustive and gated service, by Boxma and Meister [12] for 1-limited
service, and by Groenendijk [25] for a mixture of those. For all three policies, the mean waiting time
EW,; is related to the mean residual time ERC; of a cycle of the server, starting and ending at Q;:

exhaustive: EW; = (1—p,)ERC;, 44
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gated: EW; = (1+p,)ERC,, (4.5)
I—p+p;
1—limited: EW; = ——-———;——ERC,-. 4.6)
1— p— A,' 251

j=1

Formulas (4.4) and (4.5) are respectively exact when the cycle starts with a departure of S from @,
respectively an arrival of S at Q;. Subsequently it is argued that ERC; is approximately the same
(ERC) for all queues, after which ERC is determined by substituting all EW; approximations in the
pseudoconservation law.

We can do something similar for the case of a polling table. Assume that Q; occurs »; times in a
table, i =1,..,N. In the following we assume that these visits are spread as evenly as possible.
Denoting by ERSC; the mean residual time of a subcycle for Q;, a subcycle being the interval
between two successive server visits to Q;, we propose the following approximation for EW;:

exhaustive: EW; = (1—p,)ERSC,, “.7

gated: EW, ~ (1 + p‘)ERSC,, (4_8)
I—p+p;

1—limited: EW; = ~ ERSC.. 49

1 —p—()\,/n,)ansj
j=1
The arguments leading to (4.7) and (4.8) are simple extensions of those leading to (4.4) and (4.5), (cf.
p- 209 of [5] for a discussion of those arguments). The 1-limited approximation (4.9) is derived as fol-
lows. A customer arriving at Q; has to wait a residual subcycle; when he meets X; customers in Q;
upon his arrival, he also has to wait X; subcycles SC;" - which differ from ordinary subcycles in the
sense that each of these subcycles contains a service at Q;:

EW; = ERSC; + EX;ESC;". (4.10)

Using the PASTA property (which implies that EX; equals the mean number of customers waiting in
Q; at an arbitrary epoch) and Little’s formula, we can write EX; = N;EW,. Similar to the 1-limited
cyclic polling approximation in [12], we use a traffic balance argument to write

N
j=1

yielding

N
Bi + X ms;j /'

ESC/" =~ =] ) 4.12
1=p+p; “.12)

Substitution in (4.10) leads to (4.9). Approximations (4.7), (4.8) and (4.9) can also be used for a pol-
ling table with a mixture of exhaustive, gated and 1-limited service policies.

We finally need a bold assumption to get rid of the unknown ERSC; in those approximations.
Noting that Q; has n; subcycles in a cycle, we assume that

ERSC; = —nA—EC, i=1,..,N, @.13)

1
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with 4 some unknown constant and EC the mean time to complete one cycle of the table; it is well-
known that

N
2 s
EC = El‘_—p. 4.19)

We expect the accuracy of approximation (4.13) to increase with decreasing randomness of the cycle.
In the case of low traffic, rather symmetric queues and 1-limited service (which has a relatively small
coefficient of variation of the visit period of a queue), (4.13) can be expected to lead to good resuits.

Let us now return to the minimization problem (4.1). Substitution of (4.13) and (4.7) into (4.1)
leads to the following minimization problem: Determine the numbers of visits n;, i =1,.., N in a table
that minimizes

N
> n;s;
N CAN(1—p) 5 Y
. (4.15)
Py n; 1-p
This is a homogeneous unconstrained minimization problem: if (n, - - - ,ny) yields a minimum, then
the same holds for (Knj, - - - ,Kny) for any K7<0. In the gated case, (4.8) leads to the same problem,

apart from the fact that 1—p; has to be changed into 1+ p;.

The visit frequencies that solve (4.1) for the approximate mean waiting times given by (4.7) and (4.8)
in the exhaustive and gated cases are now easily found to be

Ci}\i 1— i/S;
f = VGRS @16)

2 VCN(1—pp/s,
j=1
V CA(1+p;)/ s
ated —
foared = - i 4.17)
2 VEN(I+p)/s;

Jj=1

For C;=8;, these frequencies reduce to those given by (4.2) and (4.3).

In the 1-limited case, substitution of (4.13) and (4.9) into (4.1) leads to the following minimization
problem: Determine the numbers of visits n;, i =1,...,N in a table that minimizes

N CAN(—ptp) 5
2

N
i=1 I1i(l—p)—)\i2 anj
j=1

4.18)

A simple calculation shows that the optimal visit numbers, up to a multiplicative constant, are
given by

N C‘-Ai 1'_ + i/Si
n ~ N + (1—=p— 2 Nesy) VeAd=ptp)

— N ’

J

@.19)

—
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Here p+3INsp = SA(Be+5,)<1, as otherwise the ergodicity condition of the system would be
violated. Scaling of the n; gives the visit frequencies fI~!m that sum up to one.

Formulas (4.16), (4.17) and (4.19) give simple engineering rules for determining visit frequencies in
a polling table. Preliminary numerical experiments indicate that this approach is very promising;
although the estimates of the mean waiting time ratios in a few cases (in particular with 1-limited ser-
vice) show quite large errors, the polling tables suggested by (4.16), (4.17) and (4.19) even then lead to
values of (4.1) that generally hardly differ from the optimal value. Extensive tests of the rules will be
presented in the forthcoming paper [10]. See [22] for a more detailed mean waiting time approxima-
tion for a polling table with two types of - completely symmetric - stations.

REMARK 4.2

If we add the constraint EC = 3 ngsi/(1—p) = C " to the unconstrained problem (4.1) for 1-limited
service, thus prescribing the mean cycle time of the polling table, then the following minimization
problem results:

N CA(1—p+p;)

Min -—;T (4.20)
i=1 i TN
N
2 anj
Sub E}‘—_p— =C". @21

The optimal solution of the homogeneous unconstrained problem can be scaled to satisfy (4.21). This
implies that the visit numbers given by (4.19), after a scaling with the factor C’, also solve the con-
strained minimization problem (4.20)-(4.21). Advantages of this approach arc the simple structure of
(4.20) and the close similarity with Kleinrock’s linear Capacity Assignment problem (Section 5.7 of
[26]), which enables one to translate Kleinrock’s [26] solution (5.26) immediately into (4.19). Similar
to Kleinrock’s solution interpretation, one can interpret (4.19): Station Q; should be visited at least
\,C" times during a cycle, as this is the mean number of arrivals during one cycle; the remaining
‘capacity’ is allocated according to a square root assignment. The latter assignment is very similar to
those obtained for exhaustive and gated service in (4.16) and (4.17).

REMARK 4.3
In the light traffic situation \;—0, i =1,...,N, the visit frequencies for each service policy reduce to

C,'}\,-/s,‘
fi = 5 (422)

Mz

Il

j=1
indeed, note that (4.7)-(4.9) now all reduce to the same approximation. On the other hand, in heavy

traffic (in particular when 1—p— > \;s; becomes small) the visit frequencies of the 1-limited queues
will be more or less linearly related to the arrival rates.

REMARK 4.4

In the derivation of (4.7)-(4.9) the assumption of Poisson arrivals plays a minor role. We conjecture
that the visit frequencies given by (4.16), (4.17) and (4.19) give acceptable results even for non-Poisson
arrival processes. This conjecture has not yet been investigated numerically. Results of Kruskal [27]
for a deterministic arrival (and service) process and exhaustive or gated service give the same visit
rules as (4.16) and (4.17), thus lending some support to our conjecture.

Let us finally return to the issue of fairness, and apply the fairness criterion FR, the ratio between
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the largest and smallest mean waiting times, to a polling model with exhaustive, gated and 1-limited
service policies. In the cyclic case we use the approximate mean waiting times for such a model,
given by (4.4)-(4.6) with ERC;=ERC. Assuming that the mean waiting time is largest for Q; and
smallest for Qy, the fairness ratios FR,y;, FRyuq and FR;_j are respectively given by:

1-p 1+p;
F. Re,\'h =~ l_PN ) gated =~ 1 +pN ) (4-23)
N
1—p—=Ay s;
1—p+p i=1
FRy-. =~

1—p+ N
pPT PN l—p—MZsj
=1

(In this case we should have p; <py for exhaustive service, and p; =py for gated service.) FRyy g Will
usually be the smallest of these ratios; it depends on the choice of parameters whether FR;_; is
smaller than FR,.

In the case of periodic polling, with the various visits to the same queue as evenly spread as possi-
ble, combination of the approximations (4.7)-(4.9) with (4.13) suggests simple rules to keep FR close
to one. E.g, if Q; has exhaustive service and Q; gated service, then one should take
niny = (1=p):(1+p;).
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