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Abstract 
We present a robust method of estimating the effective strength of singularities (the effective 
Holder exponent) locally at an arbitrary resolution. The method is motivated by the multi­
plicative cascade paradigm, and implemented on the hierarchy of singularities revealed with 
the wavelet transform modulus maxima (WTMM) tree. In addition, we illustrate the direct 
estimation of the scaling spectrum of the effective singularity strength, and we link it to the 
established partition function-based multifractal formalism. We motivate both the local and 
the global multifractal analysis by showing examples of computer-generated and real-life time 
series. 

1. INTRODUCTION 

The WTMM-based multifractal formalism devel­
oped by Arneodo et al. in the early 1990s1•2 has 
almost reached the status of a standard. It has 
been extensively used to test many natural phenom­
ena and has contributed to substantial progress in 
each domain in which it has been applied.3- 6 Nev­
ertheless, the respective partition function-based 
methodology is intrinsically statistical in nature. 
It provides only global estimates of scaling (of the 
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moments of relevant quantity). While this is often 
a required property, there are cases when local 
information about scaling provides more relevant 
information than the global spectrum. This is par­
ticularly true for time series where scaling prop­
erties are non-stationary, whether it be due to 
intrinsic changes in the signal scaling character­
istics or even boundary effects. In addition to 
this, the weighted singularity selection provided by 
the moments in the partition function method also 
leads to the smoothing of the obtained singularity 
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spectra. This can hide interesting and relevant in­
formation in the shape of the spectrum. This infor­
mation can be accessed when the spectrum of the 
singular structures is evaluated directly from the 
histograms of the singularity strength. In a tradi­
tional setting, the estimation of both local singular­
ity strengths and their spectra has the problem of 
being very unstable and prone to gross numerical 
errors. 

However, with the help of the wavelet trans­
form multiscale decomposition, we are able to pro­
vide stable procedures for both the local exponent 
and its global spectrum. In particular, we address 
the problem of the estimation of the local scaling 
exponent through the paradigm of the multiplica­
tive cascade. We reveal the hierarchy of the scal­
ing branches of the cascade with the WTMM tree, 
which has proven to be an excellent tool for the 
purpose.2'7 Contrary to the intrinsically unstable 
local slope of the maxima lines, this estimate is 
robust and provides a stable, effective singularity 
strength, local in scale and position - the effective 
Holder exponent estimate.8 From this, we make an 
attempt to derive the multifractal spectra directly 
from log-histogram scaling evaluation, linking the 
local analysis with the global multifractal spectra 
approach. Almost as stable as the global scaling 
estimates from the partition function method, the 
direct histogram of the effective singularity strength 
provides considerably more information about the 
relative density of local scaling exponents, and it 
may prove to be an interesting alternative in mul­
tifractal spectra estimation. 

The structure of the paper is as follows. In Sec. 2, 
we focus on the relevant aspects of the wavelet 
transformation (WT), in particular the ability to 
characterize scale-free behavior through the Holder 
exponent. Together with the hierarchical scale-wise 
decomposition provided by the wavelet transform, 
this will enable us to reveal the scaling properties 
of the tree of the multiplicative cascading process. 
In Sec. 3, we introduce a technical model enabling 
us to estimate the scale-free characteristic (the 
effective Holder exponent) for the branches of such 
a process. In Sec. 4, we use the derived effective 
Holder exponent for the local temporal description 
of the time series characteristics at a given resolu­
tion (scale). This is followed by an analysis of distri­
butions of local h and the (scaling) evolution of the 
log-histogram and its relation to the standard par­
tition function-based multifractal formalism. We 
motivate both the local and multifractal analysis by 

showing examples of generated and real-life time se­
ries. Section 5 closes the paper with conclusions and 
suggestions for future developments. 

2. CONTINUOUS WAVELET 
TRANSFORM AND ITS 
MAXIMA USED TO REVEAL 
THE STRUCTURE OF THE 
TIME SERIES 

The recently introduced WT9,10 provides a way of 
analyzing the local behavior of functions. In this, 
it fundamentally differs from global transforms like 
the Fourier Transformation. In addition to locality, 
it possesses the often very desirable ability of fil­
tering the polynomial behavior to some pre-defined 
degree. Therefore, correct characterization of time 
series is possible, in particular, in the presence of 
non-stationarities like global or local trends or bi­
ases. One of the main aspects of the WT which is 
of great advantage for our purpose is the ability to 
reveal the hierarchy of (singular) features, including 
the scaling behavior. 2 

Conceptually, the WT is a convolution product 
of the time series with the scaled and translated 
kernel - the wavelet 'l/J(x), usually a nth deriva­
tive of a smoothing kernel B(x). Usually, in the 
absence of other criteria, the preferred choice is the 
kernel which is well-localized both in frequency and 
position. In this report, we chose the Gaussian 
B(x) = exp(-x2 /2) as the smoothing kernel, which 
has optimal localization in both domains. 

The scaling and translation actions are per­
formed by two parameters; the scale parameter s 
"adapts" the width of the wavelet kernel to the 
microscopic resolution required, thus changing its 
frequency contents, and the location of the analyz­
ing wavelet is determined by the parameter b: 

Wf(s, b) = - dx f(x)'!j; -1100 (x -b) 
s -00 s 

(1) 

where s, b ER and s > 0 for the continuous version 
(CWT). 

In Fig. 1, we show the wavelet transform of a 
random walk sample decomposed with the Mexican 
hat wavelet - the second derivative of the Gaussian 
kernel. From the definition, the transform retains 
all of the temporal locality properties - the posi­
tion axis is in the forefront of the 3D plot. The 
standard way of presenting the CWT is using the 
logarithmic scale, therefore the scale axis pointing 
"into the depths" of the plot is log(s). The third 



Fig. 1 Continuous Wavelet Transform representation of 
the random walk (Brownian process) time series. The 
wavelet used is the Mexican hat - the second derivative 
of the Gaussian kernel. The coordinate axes are: position 
x, scale in logarithm log(s), and the value of the transform 
W(s, x). 

vertical axis denotes the magnitude of the transform 
W(s, b). 

The 3D plot shows how the wavelet transform 
reveals more and more detail while going towards 
smaller scales, i.e. towards smaller log(s) values. 
Therefore, the wavelet transform is sometimes 
referred to as the "mathematical microscope" ,2 

due to its ability to focus on weak transients and 
singularities in the time series. The wavelet used 
determines the optics of the microscope; its magni­
fication is varied by the scale factor s. 

2.1 Assessing Singular Behavior 
with the Wavelet Transformation 

Quite frequently it is the singularities, the rapid 
changes, discontinuities and frequency transients, 
and not the smooth, regular behavior which are 
interesting in the time series. Let us, therefore, 
demonstrate the wavelet's excellent suitability to 
address singular aspects of the analyzed time se­
ries in a local fashion. The singularity strength is 
often characterized by the Holder exponent. 

If there exists a polynomial Pn of degree n < h, 
such that 

[f(x)-Pn(x-xo)[:::; C[x-xo[\ (2) 

the supremum of all h, such that the above rela-
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tion holds, is termed the Holder exponent h(x0 ) E 
(n, n + 1) of the singularity at xo. Pn can often be 
associated with the Taylor expansion of f around 
xo, but Eq. 2 is valid even if such an expansion does 
not exist. 13 The Holder exponent is therefore a func­
tion defined for each point of f, and it describes the 
local regularity of the function (or distribution) f. 

Let us take the wavelet transform W(n) f of the 
function f in x = xo with the wavelet of at least n 
vanishing moments, i.e. orthogonal to polynomials 
up to degree n: 

j +oo 
_

00 
xm'ljJ(x)dx = 0 Vm, 0 :=:; m < n. 

For the sake of illustration, let us assume that the 
function f can be characterized by Holder exponent 
h(xo) in xo, and f can be locally described as: 

f(x)x0 =Co+ c1(x - xo) + · · · + en(x - xo)n 

+ C[x - xo[h(xo) . 

Its wavelet transform w(n) f with the wavelet 
with at least n vanishing moments now becomes: 

w(n) f(s, xo) = ~ J C[x - Xo[h(xo)'l/J ( x ~ Xo) dx 

= C[s[h(xo) J [x'[h(xo)'ljJ(x')dx'. 

Therefore, we have the following power law propor­
tionality for the wavelet transform of the (Holder) 
singularity off (xo): 

w(n) J(s, xo) ,..__, [s[h(xo). 

Note: One should bear in mind that the above re­
lation is an approximate case for which exact theo­
rems exist. 11 In particular, we will restrict the scope 
of this paper to cusp singularities for which the 
local and pointwise Holder exponents are equal. 12 

Thus we will not take into consideration the chirp or 
"oscillating" singularities [e.g. x°' sin(l/x,e)] requir­
ing two exponents. 13,14 Nevertheless, it is sufficient 
for our purpose to state that the continuous wavelet 
transform can be used for characterizing the cusp 
singularities in the time series even if masked by the 
polynomial bias. 

It can be shown 15 that for cusp singularities, the 
location of the singularity can be detected, and the 
related exponent can be recovered from the scaling 
of the Wavelet Transform, along the so-called max­
ima line, converging towards the singularity. This 



166 Z. R. Struzik 

f(x) Wf(log(s)) 
1.2 ,----,----..---r---r---..,.---.----,----.-. 

f(x)-

0.8 

0.6 

0.4 

0.2 

o~-__._-~--~-~-~--~-~-~ 

2 

0 

-2 

-4 

-6 

-8 

-10 

h=O, H(3072) 

/ 
minima o 

maxima "'" 
·X .... 

: -12 ~-__,_-~--~------~-,__ _ __,_ _ __.__~ 

0 500 1 OOO 1500 2000 2500 3000 3500 4000 1 2 3 4 6 7 9 
x log(s) 

(a) (b) 

Fig. 2 (a) The test signal consisting of the Dirac pulse D(1024), the change in slope - integrated Heaviside step 1(2048), 
and the Heaviside step H(3072). (b) The log-log plot of the maxima, together with their respective logarithmic derivatives, 
corresponding to all three singularities: D(1024), 1(2048) and H(3072). Lines of theoretical slope a.re also indicated; these a.re 
-x for D(1024), x for 1(2048) and a constant for H(3072). The wavelet used is the Mexican hat. 

is a line where the wavelet transform reaches local 
maximum (with respect to the position coordinate). 
Connecting such local maxima within the continu­
ous wavelet transform "landscape" gives rise to the 
entire tree of maxima lines. As shown in the follow­
ing subsection, it appears that restricting oneself to 
the collection of such maxima lines provides a par­
ticularly useful representation of the entire CWT. 

Let us consider the following set of examples of 
simple singular structures, see Fig. 2(a); a single 
Dirac pulse at D(1024), the saw tooth consisting 
of an integrated Heaviside step function at 1(2048), 
and the Heaviside step function for 8(3072+), where 
+ denotes the right-hand limit. The Holder expo­
nent of a Dirac pulse is -1 by definition. For cusp 
singularities, the process of integration and differ­
entiation respectively adds and subtracts one from 
the exponent. We, therefore, have h = 0 for the 
right-sided step function 8(3072+) and h = 1 for 
the integrated step 1(2048). 

These values can also be verified in the scal­
ing of the corresponding maxima lines. We ob­
tain the (logarithmic) slopes of the maxima values 
very closely following the correct values of these 
exponents [see Fig. 2(b)]. This, of course, sug­
gests the possibility of the estimation of the Holder 
exponent of cusp singularities from the slope of 
the maxima lines approaching these singularities. 

An important limitation is, however, the require­
ment for the singularities to be isolated for this 
procedure to work. Note that the scaling of the 
maxima lines becomes stable in the log-log plot 
in Fig. 2(b ), only below some critical scale Scrit, 
below which the singularities effectively become 
isolated for the analyzing wavelet. Indeed, the 
distance between the singular features in the test 
time series in Fig. 2(a) equals 1024, which is in the 
order of three standard deviations of the analyzing 
wavelet at log(scrit) = 5.83 = log(1024/3). This 
example largely simplifies the issue since the sin­
gular structures are of the same size, resulting in 
one characteristic scale at which they appear in the 
wavelet transform. Also, generally, the scaling of 
the maxima lines for other than the presented sim­
ple examples will not follow a straight line even for 
isolated singularities. Still, the rate of decrease of 
(the supremum of) the related wavelet transform 
maximum will be consistent, thus allowing the esti­
mation of h. 

2.2 Wavelet Transform Modulus 
Maxima Representation 

The continuous wavelet transform described in 
Eq. 1 is an extremely redundant representation, 



much too costly for most practical applications. 
This is the reason why other, less redundant 
representations, are frequently used. Of course, 
in going from high to low redundancy (or even 
orthogonality), certain (additional) design criteria 
are necessary. For our purpose of analysis of the lo­
cal features of time series, one critical requirement 
is the translation shift invariance of the representa­
tion; nothing other than the boundary coefficients 
of the representation should change, if the time 
series is translated by some D..x. 

A useful representation satisfying this require­
ment and of much less redundancy than the CWT 
is the representation making use of the local max­
ima of the WT as suggested in the previous sec­
tion. Such maxima interconnected along scales form 
the so-called Wavelet Transform Modulus Maxima 
(WTMM) representation, see Fig. 3, first intro­
duced by Mallat. 16 In addition to translation in­
variance, the WTMM also possesses the ability to 
characterize fully the local singular behavior of time 
series, as illustrated in the previous subsection. 

Moreover, the wavelet transform and its WTMM 
representation can also be shown to be invari­
ant with respect to the rescaling/renormalization 
operation.2•7•14•17 This property makes it an ideal 
tool for revealing the renormalization structure of 
the (hypothetical) multiplicative process underly­
ing the analyzed time series. 

Suppose we have the time series f invariant with 
respect to some renormalization operation R: 

f=Rf. 

The wavelet transform of f will, for a certain class 
of R, in particular for multiplicative cascades, show 
the invariance with respect to an operator r +-+ 
n-1. This can be recovered from the invariance of 
the wavelet transform of F: 

W(f) =TW(f) 

and in particular from the invariance of (the 
hierarchy of) the WTMM tree.7•17 

2.3 Multifractal Formalism on 
the WTMM 'free 

The WTMM tree has been used for defining the 
partition function-based multifractal formalism.2 It 
uses the moments q of the measure distributed on 
the WTMM tree to obtain the dependence of the 
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scaling function T(q) on the moments q: 

Z(s, q),...., sr(q). 

The Z(s, q) is the partition function of the qth mo­
ment of the measure distributed over the wavelet 
transform maxima at the scale s considered: 

Z(s, q) = L.: ( Wfi.vi(s))q (3) 
n(s) 

where O(s) = {wi(s)} is the set of all maxima Wi(s) 
at the scales, satisfying the constraint on their local 
logarithmic derivative in scale.18 (The local slope 
bound used throughout this paper is lhl ~ 2.) 

Intuitively, since the moment q has the ability to 
select a desired range of values: small for q < 0, 
or large for q > 0, the scaling function T(q) glob­
ally captures the distribution of the exponents h(x) 
- weak exponents are addressed with large nega­
tive q, while strong exponents are suppressed and 
effectively filtered out. For the large positive q, the 
opposite takes place (and strong exponents are ad­
dressed while weak exponents are effectively filtered 
out). 

This dependence may be linear, indicating that 
there is only one class of singular structures and re­
lated exponent, or it can have a slope non-linearly 
changing with q. In the latter case, the local 
tangent slope to r(q*) will give the correspond­
ing exponent, i.e. h(q*), with its related dimension 
marked on the ordinate axis C = D(h(q*)), where 
T(q*) = h(q*)q*+C. The set of values C, i.e. dimen­
sions D(h(q*)) for each value of h selected with q* 
is the so-called spectrum of the singularities D(h) 
of the fractal signal. Formally, the transformation 
from T(q) to D(h) is referred to as the Legendre 
transformation: 

dT(q) = h(q) 
dq 

D((h(q)) = qh(q) - T(q). 

Note that even though the method uses the max­
ima tree containing full local information about the 
singularities, this is lost at the very moment the 
partition function is computed. Therefore, there is 
no explicit local information present in the scaling 
estimates; T, h or D, and all these are global sta­
tistical estimates. This is also where the strength 
of the partition function method lies - global av­
erages are much more stable than local information 
and in some cases all that it is possible to obtain. 
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Fig. 3 WTMM representation of the time series and the bifurcations of the WTMM tree. Mexican hat wavelet. 
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Fig. 4 (a) It is impossible to evaluate the scaling exponent for an arbitrary maximum line participating in a complex process: 
a real-life example of a maximum line. (b) The local effective Holder exponent estimate takes the effective difference in the 
logarithm of the density of the process with respect to the logarithm of the scale difference gained along the process path. 

Indeed, it is generally not possible to obtain local 
estimates of the scaling behavior other than in the 
case of isolated singular structures from the WT. 
A typical example of the evolution of the maximum 
line along scale is shown in Fig. 4(a). It is not possi­
ble to evaluate the slope of the plot, not even on the 
selected range of scales. This is why we introduced8 

an approach circumventing this problem while re­
taining local information - a local effective Holder 
exponent in which we model the singularities as 

created in some kind of a collective process of a very 
generic class. 

3. ESTIMATION OF THE LOCAL, 
EFFECTIVE HOLDER 
EXPONENT USING THE 
MULTIPLICATIVE CASCADE 
MODEL 

We have shown in the previous section that the 
wavelet transform, and in particular its maxima 
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Fig. 5 (a) Distribution of WT values of ffim of H = 0.6 with and without local slope bounding in log-normal coordinates. 
(b) Bounded distribution in log-log scale. Bound lhl < 2, scales= 5. Sample length 16386. 

lines, can be used in evaluating the Holder expo­
nent in isolated singularities. In most real-life situ­
ations, however, the singularities in the time series 
are not isolated but densely packed. The logarith­
mic rate of increase or decay of the corresponding 
wavelet transform maximum line is usually not sta­
ble but fluctuates wildly, in addition often making 
estimation impossible due to divergence problems 
when the value of the WT along the maximum line 
approaches zero. 

As a remedy for the problem of diverging max­
ima values in log-log plots, we used the procedure 
of bounding the local Holder exponent18 to pre­
process the maxima. The crux of the method lies 
in the explicit calculation of the bounds for the 
(positive and negative) slope locally in scale. The 
parts of the maxima lines for which the slope ex­
ceeds the bounds imposed are simply not considered 
in the calculations. 18 For example, compare in Fig. 2 
the example of log-log slopes above the critical scale 
Bcrit, where the singularities can no longer be con­
sidered as isolated. In particular, note that the local 
slope near scale log( s) = 6 and log( s) = 7 reaches 
±oo. Such diverging slopes are thresholded and re­
moved by applying the bounding procedure. In this 
example and throughout this paper, we use !hi < 2 

bound on the local slope h of each maximum. The 
output of this procedure is, therefore, the set of 
non-diverging values of the maxima lines corre­
sponding to the singularities in the time series. 

In Fig. 5 above, we show the effect of the pro­
cedure on the distribution of the maxima values 
for a fixed scale s = 5, for a fractional Brownian 
motion (fBm) record with H = 0.6. The un­
bounded distribution has a Gaussian shape as 
expected, which shows as a parabola in the loga­
rithmic plot in Fig. 5(a). Bounding local slopes 
to !hi < 2 results in a rapid decay of small val­
ues of maxima towards the limit of 0 value, see 
the filled histogram, thus making negative moments 
well-defined.a In Fig. 5(b ), we verify in log-log co­
ordinates that the decay of the small values follows 
a power law. 

Even with the diverging parts of the maxima re­
moved, generally it is still not possible to obtain 
local estimates of the scaling behavior other than 
in the case of isolated singular structures. Typi­
cally, see Fig. 4(a), the WT maxima values strongly 
fluctuate, with the local slope changing from point 
to point. While it is not possible to evaluate the 
slope of the plot, not even on the selected range of 
scales, the fluctuations actually carry information 

aNote that removing the diverging maxima parts is only necessary for the partition function method, not for the effective 
Holder exponent and the related direct spectra. Since we want to compare the two, we pre-process the data in the same way. 
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very relevant to the scaling properties of the process 
underlying the origin of the input time series.7 As 
mentioned above, the WT has the ability to cap­
ture the renormalization process (hypothetically) 
pertinent to the time series analyzed. The behav­
ior of the maxima lines closely follows both the hy­
pothetical production (multiplicative) rule and its 
branching process. Based on this, a local effec­
tive Holder exponent approach has been suggested8 

to provide a model-based approximation of the lo­
cal scaling exponent, i.e. singularity strength. The 
model used is exactly of the type which can be 
revealed by the WT - the multiplicative cas­
cade process, a straightforward generaliiation of the 
binomial multiplicative process. 

3.1 Multiplicative Cascade Model 

Let us take the well-known example of the 
Besicovitch measure on the Cantor set.19 The set 
of transformations Bi, i E {1, 2} describing the 
Besicovitch construction can be expressed as: 

with the normalization requirement: 

(4) 

Additionally, we put conditions ensuring non-

pi p2 

p1p2 p2p1 
p2p2 

p1p1 - - - - 50 

•• •• •• •• 40 

30 

20 

1111 I 
0 

(a) 

overlapping of the transformations: 

1 +bi 0 + b2 --<--
ci C2 

while all the respective values bi/c1, b2/c2, c11, c;-i 
are from the interval (0, 1). 

For equal ratios, P1 = P2 = 1/2 and c1 = c2 = 3 
with b1 = 0 and ~ = 2, we recover the middle­
third, homogeneous distribution of the measure on 
the Cantor set. We have the non-homogeneous, 
multifractal Besicovitch measure for non-equal Pi, 
see Fig. 6(a). Finally, for non-equal Pi, regardless 
of the normalization Eq. 4 and with c1 = c2 = 2 
with bi = 0 and b2 = 1, we have the multiplicative 
cascade on (0.1) interval, see Fig. 6(b). 

Each point of this cascade is uniquely character­
ized by the sequence of weights (s1, ... , sn) taking 
values from the (binary) set {1, 2}, and acting suc­
cessively along a unique process branch leading to 
this point. Suppose that we denote the density of 
the cascade at the generation level Fi ( i running 
from 0 to max) by ,,.(.Fi), we then have 

!'i:(Fmax) =Psi,···, Psnl'i:(Fo) = Plomaxl'i:(Fo) 

and the local exponent is related to the product 
pFmax of these weights· Po • 

log(PFmax) 
hFo _ Fo 

Fmax - log((l/2)max) - log((l/2)0) · 

multiplicative cascade p1=0.3 p2=0.7 -

(b) 

Fig. 6 (a) The Besicovitch measure on the Cantor set, generations Fo through F3 and the generation Fs. The distribution 
of weights is p1 = 0.4 and p2 = 0.6. The standard middle third Cantor division is retained. (b) Similar construction but on 
0.1 support instead of the Cantor set, leading to multiplicative cascade. p1 = 0.3 and P2 = 0.7, generation F13. 



In any experimental situation, the weights p; are 
not known and hi has to be estimated. This can 
be simply done using the fact that for the multi­
plicative cascade process of the kind just described, 
the effective product of the weighting factors is re­
flected in the difference of logarithmic values of the 
densities at Fo and Fma.x along the process branch: 

hFo = log(K(Frnax)) - log(K(Fo)) 
Fmax log( {1/2)rnax) - log( (1/2)0 ) • 

The densities along the process branch can be es­
timated with the wavelet transform, using its re­
markable ability to reveal the entire process tree of 
a multiplicative process. 7 It can be shown that the 
densities "'(Fi) can be estimated from the value of 
the wavelet transform along the maxima lines corre­
sponding to the given process branch. The estimate 
of the effective Holder exponent becomes: 

h,sh; = log(Wfi.;pb(SLo))- log(Wfo;pb(Shi)) 
s1o log(s10) - log(shi) 

where Wfi.;pb( s) is the value of the wavelet trans­
form at the scale s, along the maximum line Wpb 

corresponding to the given process branch. Scale 
Slo corresponds with generation Fmax, while Shi cor­
responds with generation F0 , see Fig. 4(b). 

Wf(log(s)) 
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For the estimation of h, we need Shi and 
Wf..vpb( shi ). We can, of course, pick any of the roots 
of the sub-trees of the entire maxima tree in or­
der to evaluate exponents of the partial process or 
sub-cascade. But for the entire sample available we 
must use the entire tree and for this purpose, we 
can only do as well as taking the sample length to 
correspond with Shi, i.e.: 

Shi = ssL = log(SampleLength) . 

Unfortunately, the wavelet transform coefficients at 
this scale are heavily distorted by finite size effects. 
This is why we estimate the value of Wfo;pb(sh;) 
using the mean h exponent (Fig. 7). 

3.2 Estimation of the Mean 
Holder Exponent 

For a multiplicative cascade process, a mean value 
of the cascade at the scale s can be defined as: 

M(s) = Z(s, 1) 
Z(s, 0) 

(5) 

where the Z(s, q) is the partition function, Eq. 3 of 
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Fig. 7 (a) The projection of the maxima lines of the WT along time. The mean value of the Holder exponent can be 
estimated from the log-log slope of the line shown. Also, the beginning of the cascade at the maximum scale Shi is indicated. 
(b) The maxin1a at the smallest scale considered are shown in the projection along time. The effective Holder exponent can 
be evaluated for each point of the maximum line at sio scale. Two extremal exponent values are indicated, for minimum and 
maximum slope. 
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the qth moment of the measure distributed over the 
wavelet transform maxima at the scale s considered. 
This mean gives the direct possibility of estimating 
the mean value of the local Holder exponent as a 
linear fit to M: 

log(M(s)) = h logs+ C. (6) 

We will not, however, use Definition 5 since we 
want the Holder exponent to be the local version 
of the Hurst exponent. This compatibility is easily 
achieved when we take the second moment in the 
partition function to define the mean h': 

M'(s) = 
Z(s, 2) 
Z(s, 0). 

Therefore, we estimate our mean Holder exponent 
h' from Eq. 6 substituting M with M'. The esti­
mate of the local Holder exponent, from now on to 
be denoted h(xo, s) or just h, now becomes: 

JissL ~ log( Wft.slo)) - (h' log s + C) 
810 - log(sto) - log(ssL) 

4. EMPLOYING THE EFFECTIVE 
HOLDER EXPONENT IN 
LOCAL AND GLOBAL 
SPECTRA ESTIMATION 

An estimated local h(x0 , s) can be depicted in the 
temporal fashion, for example with a background 
color, as we have done in Fig. 8. The first ex­
ample time series is a computer-generated sample 
of fractional Brownian motion with H = 0.6. It 
shows almost monochromatic behavior; centered at 
H = 0.6 the color green is dominant. There are, 
however, several instances of darker green and light 
blue, indicating locally smooth components. 

The second example time series is a record of the 
S&P 500 index from the time period [1984-1988]. 
There are significant fluctuations in color in this 
picture, with the green color centered at H = 0.5, 
indicating both smoother and rougher components. 
In particular, one can observe an extremal red value 
at the '87 crash coordinate, followed by very rough 
behavior (a rather obvious fact, but to the best of 
our knowledge not reported to date in the rapidly 
growing coverage of this time series record). 20 

The third example is a real-life biological time 
series and comes from aphids. This is the temporal 
record of electrical resistance, a "penetratiogram", 

reflecting the penetration of the tongue of the aphid 
through the plant cell wall. We attempt to charac­
terize the different regions of the time series, visible 
as a number of hierarchical "pits" of certain depths 
within the signal. With green focused at the mean 
Hurst exponent H = 0.5, the result quite convinc­
ingly shows the patchy difference in characterization 
of the pits at (two) different levels of pit hierarchy. 
Stripes of a different color spectrum indicate a high 
level of non-stationarity of h distribution. Note that 
the obvious amplitude difference does not influence 
the color in the plot due to the fact that constant 
offset is filtered out by the wavelet used - the color 
is due to a genuine difference in the local scaling 
exponent. 

The last example shows a record of heartbeat in­
tervals recorded from a healthy human heart. Con­
trary to the two previous examples which show a 
high degree of localization (or non-stationarity) of 
the exponent strength, this plot shows an intri­
cate structure of interwoven singularities at var­
ious strengths. This behavior has been recently 
reported6 to correspond with the multifractal be­
~avior of the heartbeat. The green is centered at 
h = 0.1. 

Note that these examples are only meant for il­
lustration purposes. A detailed discussion of the 
implications of the local h analysis applied will 
appear elsewhere. 

4.1 Log-Histograms of the 
Effective Holder Exponent 

Let us for now, instead of selecting one h,(s) value 
band across scales and analyzing its scaling, group 
the estimated local scale-wise h(xo, s) into his­
tograms for each scale value, using bin size e cen­
tered at h. 

We will analyze histograms of h, taking the 
logarithm of the measure in each histogram bin. 
This conserves the monotonicity of the original 
histogram, but allows us to compare the log­
histograms with the spectrum of singularities D ( h). 
There is a direct correspondence between our log­
histograms and the D(h) through the scaling of the 
measure µ, ( s) in the bin of size e of the histogram. 
Estimation of the rate of growth of this measure, 
would in fact be an identical procedure to the eval­
uation of the scaling estimate for each e wide band 
of h, as discussed in the previous subsection. 

There is, however, a substantial amount of in­
formation in the log-histogram at a particular scale 
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Fig. 8 Example time series with local Hurat exponent indicated in color. From top to bottom: fBm with H = 0.6, a record 
of S&P 500 index, penetratiogram of aphids, and the last is the record of healthy heart interbeat intervals. The background 
color indicates the Holder exponent locally, centered at the Hurst exponent at green, color goes towards blue for higher h and 
towards red for lower h. Local slope bounds for all the plots lhl :S: 2. 

which can be analyzed without performing the scal­
ing analysis. The log-histogram shows the rela­
tive probability density of the Holder exponent per 
scale. Assuming that the scaling of log-histogram 
is linear in log-log scale, the shape of the log­
histogram remains invariant across scales and con­
verges towards the shape of the D(h), except for 
"normalization" of the maximum of P(h), which 

corresponds with the scaling of the Oth moment 
in the partition function method. (Note that the 
scaling assumption can be verified both by analyz­
ing the scaling of the moments and by the scal­
ing of the h bin contents which will be done in 
the following subsection.) This is why in Fig. 9, 
we show the non-normalized histograms for differ­
ent scale values, and compare them to the Dm(h) 
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Fig. 9 Two seti; of h hii>tograms for rei>poctive scales log(s) '.'.:::: 3.9, log(s) '.'.:::: 1.6, in top first and center row. Below, in the 
bottom row, the Dm(h) spectrum obtained with the partition function method (moments -5 Sq S 5). Left column: for 4096 
samples of white noise. Center: 4096 samples of fractional Brownian motion with H = 0.6. Right: S&P 500 index, first 4096 
samples from Fig. 8. Local slope bounds for all the ploti; \hi S 2. 

spectrum obtained with the partition function 
method. 

For three example time series, we show in Fig. 9 
log-histograms of the exponent h at different scales. 
The time series considered are a white noise sample, 
a fractional Brownian motion with H = 0.6, and a 
record of the S&P index. Starting at the top, the 
row of histograms is ma.de for the scale log( s) :::::: 3.9, 
followed by histograms for log(s) :::::: 1.6. The upper 
histograms show considerable fragmentation. Sev­
eral modes become visible, and for all the scales 
above this scale, the fluctuations will dominate the 
distribution and consistent statistical behavior will 
become dispersed. On the contrary, while descend­
ing in scale, the bulk of consistent behavior con­
verges to one distribution. The consistent statisti­
cal behavior is also captured in the Dm(h) spectrum 
obtained with the partition function method shown 
in the bottom row of Fig. 9. 

Several aspects of the Dm(h) versus P(h) al­
ready discussed by others22- 24 are visible in the 

plots. The P(h) evidently contains more informa­
tion than Dm(h}, in particular, Dm(h) is a convex 
hull over the P(h). This is particularly visible in the 
second (and third) sample, where a pair of ex­
tremal h values, disconnected from the distribution, 
corrupts the Dm ( h) spectrum. It can be verified 
through analyzing the corresponding maxima that 
these values are the end of the sample artifacts and 
thus do not belong to the distribution. Such max­
ima can, of course, be removed prior to Dm(h) eval­
uation, but we kept them for the purpose of illus­
tration: the P(h) evidently shows that these values 
disconnect from the bulk of the distribution, while 
Dm(h) is inherently unable to do so. 

4.2 Scale-wise Evolution of the 
Effective HOider Exponent 

In addition to one scale plot showing the color 
spectrum of singular behavior, we can also see the 
scale position locations where the effective Holder 
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4.3 Direct Spectra from the 
(Bands of) the Effective 
Holder Exponent on the 
WTMMTree 

Calculation of direct spectra from the c bands of 
the HOlder exponent simply accounts for covering 
the entire range of the local effective Holder expo­
nents detected on the maxima tree. In Fig. 11, we 
show the entire D( h) spectra evaluated for the white 
noise sample of 16 k length and for the record of 
healthy human heartbeat intervals of equal length. 
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We used the band width of c = ±0.01. The width 
of the spectrum of white noise is non-zero, as is 
inevitable for the finite length sample; still the 
heartbeat sample clearly shows a considerably wider 
spectrum, confirming recently reported findings. 6 

Due to the fact that it relies on selecting a very 
narrow band of exponents, this procedure is, how­
ever, inherently sensitive to the choice of parameters 
such as the band width and the density of sampling 
of the scale axis. While the latter equally affects 
the partition function method, it does not pose any 
serious limitation since it can be increased at will, 
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Fig. 11 The multifractal spectrum calculated directly from the scaling of the histogram of the Holder exponent on the 
maxima tree. (a) For the white noise input signal. (b) For the heartbeat intervals record. Band width 0.01. 
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Fig. 12 (a) The direct multifractal spectrum shows reasonable stability with respect to varied band width e. Shown are 
overlapped cases e = 0.02, e = 0.01 and e = 0.005. (b) The direct multifractal spectrum of the fBm sample of H = 0.6 is 
not corrupted by the "outliers" - the end of the sample singularities, as is the standard partition function method spectrum 
included for comparison. 



only adding to computation costs. In the case of the 
band width E.. only inherent to the direct method. 
we would. however, need to be assured of some el­
ementary degree of stability. The experiments in­
dicate that the spectrum obtained remains stable 
for a wide <'hoice of E. without loss of quality. An 
example is shown in Fig. 12(a), where spectra are 
calculated with E. = 0.02. E. = 0.01 and E. = 0.005. 

At the cost of slightly lower stability, we obtain 
the advantages of the direct spectrum calculation. 
The spectrum better captures local variations in the 
scaling of the h bands. where the partition function 
method provides only rough. "outline" information 
about the D(h) spectrum. In particular, the par­
tition function spectrum can be dramatically cor­
rupted by outliers (e.g. the end of the sample sin­
gularities, resulting from the linear trend present in 
the sample). The direct method seems to be much 
less prone to such behavior. An experimental ver­
ification of this is shown in Fig. 12. Both types of 
spectra are calculated for the 16 k record of slightly 
correlated fBm of H = 0.6. This sample contains 
some effective linear trend in it, which results in the 
''trivial" end of the sample singularities (see Fig. 9). 
The partition function method is inherently unable 
to distinguish these singularities, resulting in a wide 
spectrum which can easily be suspected of being 
multifractal in origin. On the contrary, the direct 
spectrum quickly falls away for singularities lower 
than H = 0.6. 
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4.4 Direct Spectra from the 
(Bands of) the Effective 
Holder Exponent on the 
Entire CWT 

We have alrnady mentioned that the procedure of 
direct estimation of D(h) is inherently unstable due 
to the selecting of a very narrow band of expo­
nents, and thus a small subset of the maxima. lines 
per scale level. This is the reason why it provides 
considerably less stable scaling estimates than the 
partition function method, which is actually at the 
other extreme, taking all the maxima as the sup­
port for the measure of which the moments are 
calculated. 

It seems possible to take a middle path in or­
der to calculate more stable scaling estimates of 
the D(h) in the direct way from the scaling of the 
''selected" maxima parts. This can be done by 
weighted selectiou,21 replacing the histogram box 
centered at h and of e width, with a smooth, say 
Gaussian, kernel of E. standard deviation, centered 
at h. We have attempted this in a slightly differ­
ent way, making use of the redundant information 
contained in the original CWT (as opposed to the 
WTMM used thus far). The comparison of the di­
rect spectra obtained with both WTMM and the 
CWT suggest that the CWT may contain some in­
formation lacking in the WTMM, this is especially 
evident in the smooth part of the spectrum. Indeed, 
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Fig. 13 (a) The multifractal spectrum calculated directly from the scaling of thee band of the Holder exponent on the entire 
CWT as compared with the same on the WTMM tree only. While the left part of the spectrum shows similar behavior, the 
right part, related to smooth behavior, departs largely from the WTMM case, possibly capturing some missing information. 
(b) CWT direct :spectra show very good stability with respect to varied band width e. Shown are overlapped cases e = 0.03, 
e = 0.015, f: = 0.006, <: = 0.003 and e = 0.0015. Note the smaller h range used, 
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the maxima lines primarily restrict the reprffit'nta­
tion to the strongest cusp singularities. potentially 
leaving out the intermediate. relatively smoother 
behavior. The CWT direct spectra show excellent 
stability with respect to the E band width vari­
ation. In Fig. 13. we went down to spectacular 
E = 0.0015 resolution and observed the main body 
of the spectrum conserved with only the background 
noise slowly increasing. 

5. CONCLUSIONS 

We have presented a method of estimating an effec­
tive Holder exponent locally for an arbitrary resolu­
tion. The method is motivated by the multiplicative 
cascade paradigm, and implemented on the hierar­
chy of the wavelet transform modulus maxima tree. 
Contrary to the intrinsically unstable local slope of 
the maxima lines, this estimate is robust and pro­
vides a stable, effective Holder exponent, local in 
scale and position. 

We have presented a number of real-life exam­
ples using this local exponent estimate. The color 
exponent panels included show the intricate scale­
free structure of the time series. The exact impli­
cations of this structure, of course depend on the 
application. 

In addition, we have illustrated the possibility 
of the direct estimation of the scaling spectrum of 
the effective Holder exponent and linked it to the 
established partition function multifractal formal­
ism. Almost as stable as the global scaling estimates 
from the partition functions method, the direct his­
togram of the effective Holder exponent provides 
considerably more information about the relative 
density of local scaling exponents, and may prove 
to be an interesting alternative in multifractal spec­
tra estimation. In particular, we have considered 
the direct estimation of the singularity spectra from 
the entire CWT. In addition, to improved stability, 
these spectra can possibly reveal more complete sin­
gularity contents in comparison with WTMM-based 
spectra. 
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