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Abstract

This paper addresses the problem of defining a formal tool to compare the expressive power of
different concurrent logic languages. We refine the basic notion of embedding [13] by adding
some “reasonable” conditions, specific for concurrent frameworks. The new notion, called
modular embedding, is used to define a preorder among these languages, representing the
different degree of their expressivity. We show that this preorder is not trivial (i.e. it does
not collapse into one equivalence class) by proving that Flat CP cannot be embedded into
Flat GHC, and that Flat GHC cannot be embedded into a language without communication
primitives in the guards, whilst the converses hold.
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Introduction

1.1 Motivations

From a mathematical point of view, all programming languages are equivalent, since all of them
can compute the same class of functions. Yet, it is common to compare languages on the basis of

their “expressive power”, as opposite to the “computing power”.

Unfortunately, it is rather difficult to give a general formalization of the notion of expressivity,
since the scope of its application is very broad: it can refer to data structures, to control capabilities,
to communication and synchronization mechanisms etc. This formalization }ecomes intuitively
more feasible when restricting to specific classes of similar languages, the differences being limited

to some particular feature.
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This paper represents a first step towards the development of a formal method of comparison
between concurrent logic languages. We consider a class of logic languages based on the same
data structures (a parametric underlying constraint system) and on the same choice and parallel
operators. The differences are relative to the way in which a process can be controlled by the
environment. More precisely, we consider a guarded choice operator, and, by varying what a
guard can cousist of, we model different kinds of interaction (synchronization) of a process with
ils environment.

Actually, we think that this method of comparison, and the results we present, is independent
from the particular programming style (logic, imperative...), it rather relates to the kind of syn-
chronization primitives allowed in the guards of concurrent languages. Therefore we believe that
it can be extended to other concurrent paradigms, like the class of CSP dialects.

1.2 The framework

We consider a class of Flat Concurrent Logic Languages based on a constraint system [10, 11, 12].
This class will be denoted by ClLg, where CL stands for Concurrent Logic and G is a parameter
which denotes the set of communication primitives that can occur in the guards. We consider the
following possibilities: G =0, G = A, or G = AU T, where

A = {ask(9) | ¥ is a constraint}
ask being a primitive that checks if the store implies a certain constrain, and block otherwise, and
T = {tell(9) | ¥ is a constraint}.

tell being a primitive that adds a constraint to the store, if consistent, and fail otherwise.

This class can be seen as a particular instance of the cc paradigm [11], and it includes a
large number of concurrent logic languages. For instance, when the constraint system is the set
of equations on the Herbrand universe, CL 4 corresponds to Eventual Herbrand [11] and to Flat
GHC in its earlier version [14]; CL 4ur corresponds to Atomic Herbrand [11], to ccH [7] and to the
language of [8], that is a refined version of Flat CP [13].

1.3 The method

A mnatural way to compare the expressive power of two languages is to see whether all programs
written in one language can be “easily” and “equivalently” translated into the other one, where
equivalent is intended in the sense of the same observable behaviour. This notion has recently
become popular under the name of embedding. The basic definition of embedding, given by Shapiro
[13], is the following. Consider two languages, L and L’. Let Prog; and Prog;, be the sets of
programs in I and L', respectively. Assume given the observation criteria O : Prog; — Obs and
@' : Prog;, — Obs', where Obs, Obs' are some suitable domains. Then L embeds L' if there exists
a mapping C (compiler) from Prog;, to Prog;, and a mapping D (decoder) from Obs to Obs’ such
that for every program W in L' we have

D(OJC(W)]) = O'[W]

In other words, the diagram of figure 1 commutes.

This notion however is too weak (as Shapiro himself remarked) since the above equation is
satisfied by any language Turing-complete. In fact, if O is “powerful enough” and no restrictions
are imposed on C and D, we can just take a C such that O o C does not identify more programs
than O and then define D as the function such that the diagram of figure 1 commutes.

In order to use the notion of embedding as a tool for comparison of (concurrent) languages
we have therefore to add some restrictions. We do this by requiring C and D to satisfy certain
properties that, to our opinion, are rather “reasonable” in a concurrent framework.

A first remark is the following. In a concurrent language, where indeterminism play an impor-
tant role, the domain of the observables (Obs) is in general a powerset (i.e. the elements O of Obs
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Figure 1: basic embedding.

are sets). In fact, each element must represent the various possible outcomes of a computation.
Moreover, each outcome will be observed independently from the other possible ones. Therefore
it is reasonable to require D to be defined elementwise on the sets that are contained in Obs.
Formally:

P1 VO € Obs. D(0) = {Dalo) | 0 € O}

for some appropriate De;.

Yet, this restriction doesn’t increase significantly the discriminating power of the notion of
embedding. In fact, we can always define C in such a way that O[C(W)] has a cardinality bigger
than O'[W] and each element encodes the program W. Then it is sufficient to define a function
Dei parametric on W, such that (for D satisfying P1) the diagram of figure 1 commutes. We will
develop formally this argument in section 4.

Another observation is the following. When compiling a concurrent process, it might be not
possible to have all the informations about the processes that will be present in the environment at
run time. Therefore it is reasonable to require the “separate compilation” of the parallel processes,
or, in vther words, the compositionality of the compiler with respect to the parallel operator.

Analogously, it is useful to compile a process in a compositional way with respect to the possible
indeterministic choices, so to offer the possibility to add other alternatives after the compilation
is made. These properties can be formulated as follows (from now on, we will refer to processes
A, B,...instead of programs):

P2 C(A|l B)=C(4)||C(B) and C(A+ B)=C(A)+C(B)

for every pair of processes A and B in L'. (Here ||, ||', +, and +/ represent the parallel operators
and the indeterministic choice operators in L and L' respectively.)

This condition can be generalized by requiring C to be compositional with respect to a generic
set Op of operators of L', and the compositionality to be expressed in terms of contexts. Formally

C(op(A1,- - -, An)) = cop[C(A1),---,C(An)]

for every n-ary op € Op, and for every A,..., Ay, in L'. (Here Cop[ ] Tepresents an n-ary context
in L.)

The generalization can be motivated by the fact that it is natural to compare the expressivity
of two languages upon the capability of one language to express the operators of the other one.
Furthermore, it allows to deal with the case of concurrent languages which, for instance, do not have
an explicit parallel operator, like Pool [1], where a more powerful mechanism (process creation) is
present instead. However, in this paper we will only require the compositionality with respect to
the parallel and the choice operators.



A final point is that the embedding must preserve the behaviour of the original process with
respect to deadlock (and/or failure) and success. Intuitively, a system non deadlock-free cannot
be considered equivalent to a system deadlock-free. Therefore we require the termination mode of
the target language not to be affected by the decoder (termination invariance). In other words, a
deadlock [failure] in O[C(A)] must correspond to a deadlock [failure] in O'[A], and a success must
correspond to a success. Formally

P3 VO € Obs.Yo € 0. tm'(Dei(0)) = tm(o)

where tm and tm' extract the information concerning the termination mode from the observables
of I, and L' respectively.

An embedding is called modular if it satisfies the three properties P1, P2 and P3 above. In
the following we will omit the word modular when its presence is clear from the context.

1.4 Technical results

We show that the definition of modular embedding “makes sense” by proving that CLy cannot
embed CL4 (Flat GHC) and that CL 4 cannot embed CL4ur (Flat CP) (separation results). As
far as we now, this was never formally proved before, also not for other restrictions on the notion
of embedding.

1.5 The technique

In general, it is easy to prove directly that L embeds L' by showing how to translate all the
operators of L' into L (for instance, it is easy to show that Flat CP can embed Flat GHC). A
direct approach is however not feasible to prove that L doesn’t embed L'. In fact, in principle we
should check that the equation above does not hold for every possible compiler C and decoder D
(satisfying the requirements P1,P2 and P3 above).

A solution is to work at the level of semantics, instead of the syntactical one. Our technique
is quite general and can be explained in an abstract way as follows. We consider a compositional
semantics M : Prog; — P (where P is some appropriate semantical domain encoding the ter-
mination mode), which is correct and termination invariant with respect to the observables, i.e.
there exists a termination invariant abstraction R : P — Obs such that the diagram of figure 2
_ commutes. Then we prove that the image of M (M(Prog)) satisfies a certain property =, that
cannot be satisfied by any semantical domain for L', when compositionality and termination in-
variance are required. Finally, we reason by contradiction: consider M’ = MoC, and R' = DoR.
We have that M’ is compositional (since M and C are compositional) and that R’ is termination
invariant (since R and D are termination invariant). Therefore we obtain a compositional, correct
and termination invariant semantics for L', whose image satisfies 7. The situation is illustrated by
the commutative diagram in figure 3, obtained by composing the diagrams of figure 1 and 2.

Prog,,

Obs

Figure 2: a compositional and correct semantics M.

More specifically, we use the compositional operational semantics developed in [3, 4, 5] (for a
similar class of languages). This model is rather simple, therefore it is suitable for the investigation



/

Progy, Obs'
MI RI

C P D
M R

Prog;, o Obs

Figure 3: the compositional and correct semantics M’.

on the properties of the different languages of this class. We prove that the semantics of CL 4 [CLg]
satisfies a certain closure property that in general is not satisfied by CL4ur [CL4]. This closure
property gives rise to an observable distinction that cannot be hidden by the decoder, when P1,P2
and P3 are required.

1.6 Related works

Bougé [2] has presented similar separation results for three CSP-dialects which closely correspond
to the languages we study: CSP with (input and) output guards, CSP with input guards, and CSP
with no communication primitives in the guards. The method he uses is based on showing that,
given some communication graph, one dialect admits symmetric solutions to the election problem,
whilst another dialect doesn’t. These solutions are required to satisfy certain conditions about
termination, and this is rather similar to what we do by requiring termination invariance. In order
to generalize this approach so to obtain separation results (i.e. general statements concerning the
non-embeddability), Bougé requires the compiler to translate parallel processes into parallel ones
and, additionally, to preserve the topology of the network, namely the structure of the communi-
cation graph. This last restriction would be too strong for concurrent logic languages, and also
difficult to formulate, since the communication network evolves dynamically in the logic paradigm.

Concerning the field of logic languages, Shapiro [13] has defined the notion of natural embedding
(between logic programs), that suggests a method of comparison based on the complexity of the

compiler. This notion consists of the basic definition plus the following restriction on the decoder
D:

VW € Progy, Np € Predw. D(O[C(W)]}p) = OlC(W)]}

(where Predw is the set of predicates in W) i.e., D, restricted to observables of atoms corresponding
to the original atoms of W, is the identity. This prevents the simulation of the variables of the
source language with constants of the target language. In other terms the embedding must absord
the basic execution mechanism of logic languages, the unification. This restriction cannot veasily
be compared with the ones we give, actually we think that they are rather orthogonal.

1.7 Plan of the paper

This paper is organized as follows. Next section introduces the class CLg and its standard seman-
tics, specified via a transition system. In section 3 this transition system is enriched so to derive
a compositional semantics based on linear sequences. In section 4 we present the basic notion of
embedding, and we shaw that it is not strong enough, by proving that CLy embeds every other
language of the class. In section 5 we introduce the new notion of modular embedding, and in



section 6 we prove that it separates CL4, CL4 (Flat GHC), and CL 4ur (Flat CP). Finally, in
section 7 we discuss the scope of this result.

2 The class Clg

In this section we present the class of languages CLg. Similar definitions can be found in [11, 12, 5].
The main difference with [12, 5] is that we do not deal here with an explicit hiding operator,
because the results we present do not depend upon it. We refer to [11] for a detailed introduction
to concurrent logic languages based on constraints.

2.1 The syntax

A constraint system is any system of partial information that supports the notions of consistency
and entailment. For the sake of simplicity we consider here constraint systems based on first-
order languages, however our results can be extended to more general settings. Let Var be a set
of variables with typical elements z,y,..., let Fun be a set of function symbols a,b,..., f,g,...,
and let Predc be a set of predicate symbols. Terms on Var and Fun will be denoted by ¢,u.. ..
Let ¥ = (Var, Fun, Predc). A constraint system T is a first-order theory in X. A set Con of
constraints, with typical elements 9,0 ..., is a subset of the formulas of I'. Given the constraints
9,791, and 92, we say that 9 is consistent if I’ |= 39, where 39 denotes the existential closure of
9, and that ¥, entails 93 if T’ |= 9J; = 9J;. Consistency and entailment are usually assumed to be
decidable. We consider a fixed T, so we will omit references to it.

We now describe the class CLg based on I'. The parameter G specifies the communication
primitives used in the guards. We restrict here to the following cases: G =0, G = A, or G = AUT,
where

A = {ask(d) | 9 € Con}
and
7T ={tell(9) |9 € Con}.

Let Predy, be a set of predicate symbols (procedure names), with typical elements p, q, 7, .. ., disjoint
from Predc. The set of processes Procg in CLg, with typical elements A, B, ..., is described by
the following grammar

A= ask(9) | tell(®) | A|| A| G| p(t) | W; A
Gui=g—A|G+G

W u=p(T) - A|W,W

The effect of the primitives ask(d) and tell(d) is defined with respect to a given store o, that
represents the constraint accumulated during the computation. The primitive ask() checks wether
7 is entailed by o, and blocks otherwise; tell(d) checks if 9 is consistent with o, and in that case it
adds 9, otherwise it fails. The symbol || represents the parallel operator. A guarded process g — A
first executes g (if possible) and then it behaves like A. The guard g belongs to G. For the sake of
uniformity, we assume g = tell(true) in the case G = @. The indeterministic choice is represented
by 4 and it is guarded, namely, + applies to guarded processes and selects those ones whose guard
is enabled. The process p(i) is a procedure call, where the sequence of terms represents the list of
actual parameters. Finally, W; A represents the process A in the scope of the set W of procedure
declarations, namely, objects of the form p(Z) :- A where & represents the list of formal parameters.
W is usually called program, and its elements clauses.



Given the list of actual parameters £, an instantiation of p(Z) :- A (w.r.t. f) is an object of the
form p(f) - A’, where A’ is obtained from A by simultaneously replacing every (occurrence of a)
formal parameter by its corresponding actual parameter, and by renaming all the other variables so
to avoid clashes with £. Given a program W we denote by Inst(W) the set of all the instantiations
of its clauses.

2.2 The operational model

The operational model of CLg is uniformly described by a transition system T = (Conf ,—W)-
The configurations Conf are pairs consisting of a process or a termination mode, and a store.
The termination modes a are the symbols ss, ff and dd, that denote success, failure and deadlock
respectively. A transition (4,0) —w (4,0’ ) must be read as follows: (4,0) can make a transition
step, (resulting in (A4’,¢’")), assuming that A is within the scope of the program W. We regard a
program as a set, i.e. the order in which clauses occur is not relevant, and the basic operation is
the set union. The rules of T are described in table 1.

We assume the presence of a renaming mechanism that takes care of using fresh variables each
time a clause is considered (in R5). For the sake of simplicity we do not describe this renaming
mechanism in T. The interested reader can find in [12, 3, 5] various formal approaches to this
problem.

The first four rules describe the way in which communication and synchronization is achieved
in this language. Rule R5 describes the replacement of a procedure call (in the scope of W) by
the body of the procedure definition (in W). A procedure call fails (R6) if undefined. Rule R7
verifies that the transitions made under the assumption of a program W are indeed within the
scope of W. Finally, R8-R12 are the usual rules for compound statements (note that parallelism
is described as interleaving).

The result of a terminating computation consists of the final store (up to logical equivalence),
together with the termination mode. This is formally represented by the notion of observables.

Definition 2.1 The observables of the class CLg are given by.the function O : Procg — Obs,
where Obs = P(Con x {ss, ff,dd}), defined as

O[A] = {(v,@) | (A, true) —7 (2,0)} e,

where the subscript < denotes the closure under logical equivalence, and —j denotes the transitive
closure of —¢.

In the above definition the subscript @ in —g represents the absence of any external program.

3 A compositional semantics for CLg

In this section we enrich the model of the previous section so to obtain a semantics compositional
with respect to the parallel and the choice operators. The model we present here is essentially a
simplified version of the ones developed in [3, 4, 5] for similar languages, and actually the semantics
we obtain is compositional also with respect to other operators, but this is not of our interest in
this paper. For a more detailed presentation of this section we refer to [5].

The behaviour of a process is described as a sequence of interactions with its environment
(the other parallel processes). Interactions are modeled as assume/tell constraints. An assume
constraint is an assumption about the constraint provided by the environment, whereas a tell
constraint is produced by the goal itself.

Definition 3.1
e The set of assume constraints is Cong = {34 | 9 € Con}.

e The set of tell constraint is Conp = {97 | ¥ € Con}.



Table 1: The Transition System T

R1  (ask(9),0) —w (ss,0) iflEo=9

R2  (ask(8),0) —w (dd,0) iffto=d

R3  (tell(d),0) —w (ss,0 AD) if = 3(0 A D)

R4 (tell(8),0) —w (fF,0) it b 3o A D)

R5  (p(f),0) —w (4,0) if p(£) - A € Inst(W)
R6  (p(d),0) —w (ff,0) if p(E) - ... & Inst(W)
pr (A0) —wuw (4,0 | (@,0)

(W;A,0) —w (W;A",0") | {a,0")

(9,0) —w (ss,0") | {@,0) .
RS (g——)A,G) __VLW <A,0'I)I(a,0') lfaE{ff,dd}

(A,0) —w (4',0") | (s5,0")
(Al B,o) —w (A" || B,o') | (B, o)
(Bl A,0) —w (B || A',0") | (B,0')
(A+B,0) —w (A',0') | (ss,0')
(B+A,0) —w (A',d') | (ss,0”)

R9

<A7G> A (ddra) (B)U) s (aaa)
(Al B,o) —w (a,0)
(Bl A,0) —w (a,0)
(A+B,c) —w (dd, o)
(B+A4,0) —w (dd, o)

R10 if a € {ff,dd}

<A7U) —w (ff:a)
(Al B,o) —w (ff,0)
(Bl A0} —w (ff,0)

R11

(A, 0) —w (ff,0) (B,o) —w (ff,0)
(A+B,0) —w (ff,0)
(B+A,0) —w (ff,0)

R12




e The set of assume/tell constraints, with typical element 9%, is Con a1 = Cong U Conr.

The compositional semantics is based on a transition system TC = (Conf®,—§,). A first dif-
ference from T is that the store is represented by a finite sequence c of assume/tell constraints
(c € Con%p). The store defined by such a sequence is the conjunction of all constraints, ignoring
the assume/tell mode.

Definition 3.2 The function store : Con’ypy — Con is defined as follows:
o store(\) = true
o store(9t.c) = 9 A store(c)

where \ denotes the empty sequence.

The notations for the entailment and consistency extend naturally to sequences: Ec=>9
stands for |= store(c) = 9, and |= 3(c A ) stands for k= 3(store(c) AF).

Table 2 describes the rules for TC. For the sake of convenience, we drop the superscript C in
the transition relation.

The last rule C13 models (an assumption on) a transition made by the environment. All the
other rules essentially mimic the ones of the transition system T

We define now a compositional semantics M based on the transition system TC. The mean-
ing of a process will be defined as the sets of sequences of assume/tell constraints, ended by the
termination mode, corresponding to all the possible computations. We are interested only in de-
scribing finite computations. However, in order to describe failure compositionally, we must assign
a non-empty semantics also to non-terminating programs. This is done by adding an “artificial”
termination mode, L, that represents an “unfinished” computation.

We denote the set of sequences as Seq = Con’yp.{ss,ff,dd, L}, the typical element will be
represented by s.

In the sequel, P will denote the powerset operation. The semantical domain of M, P(Seq),
will be denoted by P.

Definition 3.3 The semantics M : Procg — P is defined as
M‘[A]] = {c.a I (Ar A) __’6 ((X, C)} U {C‘ —LI (A’A) .—_)a (Alvc)}

Next we show that M is correct and compositional.

3.1 Correctness of M

A semantics is correct if there exists a mapping that allows to obtain the observables of a process
starting from its denotation. This mapping is usually not injective, i.e. its application forgets
some of the informations encoded in the semantical domain. For this reason it is called abstraction
operator.

To show the correctness of M, let’s first consider which are the informations (encoded by M)
that are not observable. By definition, given a process, O produces the results of the computations
that are

¢ terminating, and
e carried out by the process itself, i.e. without the help of any environment.

The sequences in M that terminate with the symbol L and/or contain assumptions (constraints
labeled by assume mode) do not correspond to any observable computation, and therefore must
be eliminated. The results can be extracted from the remaining sequences by considering the final
store associated with them, and then closing under logical equivalence.

This notion of abstraction is formalized by the following operator R.



Table 2: The Transition System 7€

C1

C2

C3

C4

C5

Ceé

cT7

(61]

C9

C10

C11

C12

C13

(ask(d),c) —sw (ss, c.trueT)
(ask(9),c) —w (dd, c)
(tell(9),c) —w (ss,c.97T)
(tell(9),c) —w (fF,c)
(p(8),c) —w (A, c.trueT)
(p(8),c) —w (ff,c)

(A,¢) —wow (4, ¢) | {a,¢')
(Wx ch> —w <W$ Al) CI> I (alcl)

(g7c) s (SS,CI) I (a7c)
(g - A,C) —w (Arcl) | (a’c>

(A,¢) —w (A", e97T) | (ss,c.9T).

(Al B,c) —w (A" || B,e.0T) | (B,c.97)
(Bl A,c) —w (B A',c.07T) | (B, c.97)
(A+B,c) —w (A',c.9T) | (ss,c.9T)
(B+A,c) —sw (A", c.97) | (ss,c.97)

(A7C) — (ddr c) (B,C) ' <axc)
(A ” B,C) —w (a,c)
(B ” A7C) —Ww (a,c)
(A+B,c) —w (dd,c)
(B+A,c) —w (dd,c)

(A, c) —w (f,c)
(A ” B,C) W (ﬁrc>
(Bl A,e) —w (f,c)

(A,C) A <ﬁ7c) (B,C) ——w (ﬁyc>
(A+B,c) —w (ff,c)
(B+A,c) —w (ff,c)

(A,c) | (ss,c) —w (4,c.94) | (ss,c.94)

ifl=c= 9
ifffc=>9
if = 3(cAd)
if je3(cAD)
if p(2) - A € Inst(W)

if p(f) - ... & Inst(W)

if a € {f,dd)

if a € {ff,dd}

if E3(cAI)

10




Definition 3.4
e The partial operator Result : Seq — Con X {ss, fF,dd} is defined as

Result(c.c) = (store(c),) if c contains only tell constraints, and & #1

e The operator R : P — Obs is given by

R(S) = | J{Result(c)}e

cES

Note that R preserves the termination mode. Next lemma is useful to prove the correctness of

M.
Lemma 3.5 The rules C1-C12 of TC mimic the rules R1-R12 of T, in the sense that if
(4,0) —w (4',¢)
is a Ci transition step in TC, then
(A, store(c)) —w (A', store(c"))
is a Ri transition step in T'.
Proof Immediate by case analysis of the rules in TC. ]

Theorem 3.6 (Correctness of M) The observables O can be obtained by R-abstraction from
M, namely O = R o M.

Proof Let A be a process and let c.a € M[A] such that c contains only tell constraints and
a #.1. Then there is a derivation in TC of the form

(4,)) = (Ao,c0) —0 ---(Ai,ci) —0 ... {An,cn) = (o,0)

such that a € {ss, ff,dd} and the rule C13 is never used.
By lemma 3.5, there exists in T a derivation

(A, true) = (Ao, store(co)) —¢ - - (Ai, store(c:)) —0 - - (An, store(cn)) = (a, store(c)).
Therefore (store(c),a) € O[A]. O

3.2 Compositionality of M

To show the compositionality of M we define the semantic operators || and +, corresponding to
the parallel and to the choice operators of the language.

The operator ||, first introduced in [9], allows to combine sequences of assume/tell constraints
that are equal at each point, apart from the modes, so modeling the interaction of a process with
its environment. It is similar to the (more popular) interleaving operator, the difference is that it
applies to sequences containing already all the informations concerning the way in which processes
interleave (the assumptions specify “where” and “what”). Hence the application of || amounts to
verify that the assumptions made by one process are indeed validated by the other process (i.e. it
tells or assumes the same constraints). In the positive case, the elements of the resulting sequence
are labeled by tell whenever they are labeled by tell in at least one of the two sequences, by assume
otherwise (a constraint is produced by a pair of parallel processes whenever it is produced by at
least one of the two).

Concerning the definition of +, we observe that the execution of a guard is made visible by
telling a constraint. Therefore, + must select a sequence starting with a tell constraint (if any). In
case both sequences start with an assumption, then it must be the same constraint (so modeling
an assumption made by the whole process), and, in the positive case, the choice is postponed. The
application of + delivers different sequences, since there is the possibility that both sequences start
with a tell, corresponding to the possibility that both guards are enabled.

11



Definition 3.7

e The partial operators on sequences n : Seq x Seq — Seq and + : Seq x Seq — P are defined
as

— 81 :{-32 = 52:}'-51

- (ﬂT.Sl)—T-Sz = 19T.$1

(94.51)F(94.59) = 94.(51F52)

- 5 ﬂsz = 52“-91
(ﬂA.sl)ﬂ(ﬂ’.Sz) =9 (s1 ﬂ""?)

- ssﬂa=a

|

ﬁ'~ ﬂ‘ - SS";—Q =SS
B ”il - - fffa=«a
— dd||dd = dd — ddidd = dd
-4l i=L ~1il1=1

e The operators on sets of sequences ﬂ, +: P x P — P are defined by:
S]ﬂSz = {slﬂ52 ' s1 €851 A s9 € Sz}
51:{‘52 = U{Sl'i-.s‘g I 51 € 51 A S9 € 52}

Theorem 3.8 (Compositionality of M)
1)) M[ A1 || A2] = M[A:][M[4;]
+) M[A1+A2] = M[A1]+M[A4:]

Proof Consider the transition system 7" © obtained from TC by transforming the rule C9 into the
following one

(A, c) —w (A,cIT) | (ss,e.9T) (B,c) —w (B,c.94)
(Al B,c) —w (A" || B,c.9T) | (B, c.97T)
(Bl A,c) —w (B|| A',c.97) | (B,c.dT)
(A+B,c) —w (A',cIT) | (ss,c.97T)
(B+A,c) —w (A, c9T) | (ss,c.9T)

c9’

We have that 7€ is equivalent to 7€, namely the transitions generated by T'® coincide with
the ones generated by TC. In fact, the premise (B,c) —w (B,c.94) in C9' is always validated
by an application of C13, since the other premise (4,c) —w (A’,c.9T) | (ss,c.9T) ensures that
= 3(c A9). The rest follows by easy induction on the length of the sequences. O

In the following examples, we assume the constraint system to support the usual equality theory
on the Herbrand universe.

Example 3.9 Consider the program

Wi = {pi(=z,y) :- ask(z = a) — tell(y = b)}
and consider the process Ay = Wi;pi(z,y). We have

MIIAI]] = { (E = a)A,t'l"ueT,(y = b)T.tT‘ueA_sS , (:l: _ b)A.H Cdd, ... }

O[Ai] = {(true,dd)}.

Consider now the program

Wa = {p2(z,y) - tell(z = a) — ask(y = b)}

12



and consider the process Ay = Wa;p2(z,y). We have

M[4] = { (z=a)Ttruet(y= b)AtrueTss, (z=0bAfF, (z= a)fdd, ... }
Of4s] = {(z=gq,dd)}

Let now consider the compound processes Ay || A2 and A1+A;. We have

M4 || A2] = M[A]IM[A:]

= { (z=a)Ttruel.(y =b)TtrueTss, (z=b)AF, ... }
Of41 || 42] = {{z=aAy=b),ss)}
M[A1+42] = M[A]FM[A]

= { (z=a)Ttruet(y = b)AtrueTss, (z=a)Tdd, ... }
O[A1+4:] = {(z=a,dd)}.

4 Basic embedding

In this section we discuss the notion of embedding proposed by Shapiro in [13]. We rephrase his
notion in order to deal with processes rather than with programs.

Definition 4.1 (Embedding (Shapiro, [13])) Let L, L’ be two (concurrent) languages, let Procy,
Procy: be the respective sets of processes, and let O : Procy, — Obs, @' : Procyy — Obs’ be their
observation criteria. The language L embeds L' iff there ezists a compiler C : Procy — Procy,, and
a decoder D : Obs — Obs’ such that, for every A € Procy:, the following equation holds

D(O[C(A)]) = O'[4] (1)
or, in other words, the diagram of figure 1 in section 1.3 (where Prog is replaced by Proc) commutes.

We will denote by L' < L the existence of an embedding from L' into L. It is immediate to see
that < is a preorder relation, in fact the reflexivity is given by the possibility of defining C and D
as the identity, and the transitivity is guarantied by the commutativity of the diagram in figure 4
(obtained by doubling and composing the commutative diagram of figure 1).

Remark 4.2 If L' C L then L' < L. Therefore, CLg < CL4 < CLaur. Note that the notion of
observables (cfr. def. 2.1) is defined in the same way for all the languages of this class.

Also the reverse relation holds, i.e. all languages of the class CLg are equivalent. In fact, as
observed by Shapiro himself, definition 4.1 is “too weak”: the above equation is satisfied by any
pair of Turing-complete languages.

Our goal is to refine the notion of embedding so to capture the distinctions between concurrent
logic languages. This will be done by requiring C and D to satisfy certain properties, specific for
concurrency.

As discussed in section 1.3, it is reasonable to force D to be defined elementwise. Therefore the
first requirement is the existence of a partial mapping Der : Obs — Obs such that

P1 VO € 0bs. D(0) = {Da({o,)) | {o,a) € O}
However, this restriction is not strong enough:

Theorem 4.3 If the underlying constraint system contains at least one non-constant symbol, then
all languages of the class CLg can be embedded into CLg (with a decoder satisfying P1 ).
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Proc—2+ ops”

C D’
PT‘OCL'_‘OI__" Obs'
C D

Procy, 9] Obs

Figure 4: transitivity of <.

Proof We assume (without loss of generality) that the constraint system supports the usual equal-
ity theory on the Herbrand universe. Let [ ] : Procg — Termr be some injective representation
(Godelization) of the processes in CLg as terms in T'.

Define the compiler C : Procg — CLy as follows.

C(A) = Wy;pa(z,y)
where

Wa={ pa(z,y) - tell(true) — tell(y = [A])
-+
tell(true) — (tell(z = f(z')) || pa(’,9)) }-

It is easy to see that
OWa;pale,y)] 2 {(z = fi(z) Ay =[A4],ss) | i >0}

where fi(z) is the term obtained by applying ¢ times the constructor f to z.
Consider an enumeration {(0;, a;) of the elements of O[A] and define D,; as the partial mapping

Del((m = fi(z) ANy= rA],SS)) = (U,’,Ol,').
We obtain

D(O[C(A)]) D(O[Wa;pa(z,9)])

{Da((o,@) | (o,a) € O[Wa;pa(z,y)]}
{Da((z = fi(z) Ay = [A],ss)) | i >0}
{{o5,04) | i >0}

O[4]

5 Modular embedding

In this section we further refine the notion of embedding. Beside P1, we require the compiler and
the decoder to satisfy the properties discussed in section 1.3, namely the compositionality with
respect to || and +, and the preservation of the termination mode (termination invariance).

For the languages of the class CLg these properties can be formally described as follows:

P2 VA, B € Procg. C(A || B) =C(A) || C(B) and C(A+B) = C(A)+C(B)
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P3 VoVa.39. De({o,a)) = (J,a)

Note that P3 implies that D, is total.

The requirement P2 on the compiler is actually more restrictive than simple compositionality
w.r.t. + and || (as explained in the introduction), and it can be justified as follows. Since the
languages we study are one the extension of the other, and the differences between them consist
of the kind of the guard g in the guarded statement g — A, we can phrase the problem of the
expressive power of these languages as the question:

can a guard operator g — in L' be expressed in terms of the operators of L?

In other words, whether a guard operator g — in L' can be translated into a context cg[]in L
such that for every process A in L' we have

D(O[A]) = O[4]

where A’ is obtained by replacing every occurrence of a guard operator g — by ¢y ]. This amounts
to require the existence of a translation that only transforms the guard operators, and it is invariant
with respect to + and ||. Such a translation can be seen as a particular case of a compiler that
satisfies P2.

Definition 5.1 Let L, L' be two languages of the class CLg. There ezists a modular embedding
(or, simply, embedding) from L' into L if equation (1) (in definition 4.1 ) holds, with C and D
satisfying P1, P2, and P3 above. The associated preorder relation will still be denoted by <.

Of course, also for this notion of embedding, we have CLg < CL4 < CL4ur. In the next
section, we will show that this ordering is strict.

6 Separation results

In this section we prove CLiur £ CL4 £ CLg. In the proofs we make use of the following
properties, which follow immediately from the definition of M and O.

Proposition 6.1
1. If c.s € M[A], then c. Le M[A].
2. If c1.cp.a € M[A] and c € Con*, and |=3(c1 AcAcy) and o # dd, then c1.c.c.a € M[A].
3. If c.ss € M[G1], then c.ss € M[G1+G2]-
4. If (o1,s5) € O[A1] and (o3,s5) € O[4;] and |=I(01 Ao2), then (o1 Aoz, ss) € O[A; || A.].

6.1 CLaur £ CL4

In this section we prove that CL 4ur £ CL 4. As explained in section 1.5, the essence of the proof
is based on the following property 74, that is satisfied by the semantics of Proc4, and not by
the one of Proc4u7. The property m 4 says that a process in Procg that is ready to produce a
constraint 9 will fail if the environment first produces a constraint inconsistent with 9. This is due
to the absence of tell in the guards: a process cannot make a choice based on the consistency of
constraints to be told.

Proposition 6.2 The semantics of Proc4 satisfies the following closure property:

w4) For each A € Procy
if c.ol.s € M[A] and |=3(cAo2) and [ 3I(c Aoy Aoy), then c.os .fFf € M[A]

15



Proof Let A,c,01,s,09 be such that the premises of the proposition hold. We observe that, since
k= 3(cAoz) and ¥ I(c A o1 Adz), o1 # true holds. Therefore of must be generated by an
application of one of the rules C9 and C3 in table 2. In case C3 is applied, then A is of the form

tell(o1). In case that C9 is applied, then A must be of the form A; || Az, since the processes of

the form A;+As in Proc4 cannot contain tell(sy) in the guard (and therefore of could not be

generated). Moreover, the A; (say, A1) that occur in the premise of C9 must, for the same reason,
be either of the form tell(cy) or B;+Bs. Applying recursively this reasoning, we deduce that A is
of the form (...(tell(1) || -..) || --.), and that the transition step is caused by an application of
C3 to tell(01), and propagated to A by a number of applications of C9.

Consider now the computation in which this transition step is replaced by an application of
the rule C13, with assumption 4. We have that, as a next step, C4 can be applied to tell(o1),
so obtaining a failure, which is propagated to A by a number of applications of C11. 0

We reason now by contradiction, so we assume the existence of an embedding from CL 4y7 to
CL 4.

Lemma 6.3 Assume CLur < CLy4. Then C satisfies the following property:

If A; = tell(9;) — tell(true) fori=1,2, and [ 3I() Ads),

then there exist 01,09 such that (0;,ss) € O[C(A:)] fori=1,2, and f=3I(o1 Aoy).
Proof Let 9;, A; be such that the premises of the property hold. It is easy to see that

O[A:] = {(¥:,ss)} fori=1,2, (2)
and '

O[ A || Az] = {(91, ) , (92, 1)} 3)
As a consequence of (2), by P1, there exists 01,09, a1, ag such that

(0i,0:) € O[C(A;)] and Dea({o:, ) = (¥i,88) fori=1,2.
Furthermore, by P3,

a1 = ag = ss.
Assume now, by contradiction, that = 3(61 A 02). By proposition 6.1(4) we have

(01 Aoz, s8) € O[C(A1) || C(A2)] = (by P2) O[C(A: || 42)]
By P3, we then obtain

Dei({o1 A g,s5)) = (...,ss) € O[4 || A2],
that contradicts (3). O

Theorem 6.4 CL 4,7 £ CL4

Proof Assume, by contradiction, that CL 4u7 < CL 4 holds. Let 9;, A; be defined as in lemma 6.3.
Let A = A; + A;. By lemma 6.3 and by proposition 6.1(3) we have that there exist 01,02 such
that

(0i,s8) € O[C(A1) +C(A2)] = (by P2) O[C(A)] fori=1,2, and } 3(o1 A0d2).
Since © = RoM, we have that there exist 51, so € M[C(A)]N(Cony x {ss}) such that j& 3(s; Asz).

Consider a decomposition of s1, 59

— T !
51 =c1.95 .5,
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53 = cp. Y .8
such that

E3(c1Ac) and E3(ciAceAyr) and E3I(cAczAye) and I(ct Aca Ap1 Aa).
By proposition 6.1(1) we have

e 9T, Le MIC(A)],
therefore, by proposition 6.1(2)

c1.é.9T. Le M[C(A)]

holds, where & is obtained from ¢y by turning the tell modes into ask. Finally, by proposition 6.2,
we obtain

s & ¢ aud fF e M[C(A)].
Analogously, by proposition 6.1(1) we have
cahy. Le M[C(A)]

and, by proposition 6.1(2)
& & T Le M[C(A)]

holds, where é; is obtained from ¢; by turning the tell modes into ask. By definition of ﬂ, s can
be composed with s’ so obtaining

slls' = c1.c2.9T . € M[C(A)IMIC(A)] = (by theorem 3.8) M[C(A) || C(A)].
Since O = R o M, we have

(store(c1.co-9), ) € O[C(A) | C(A)] = (by P2) O[C(4 || A)]- (4)

Consider now the process A || A. It is easy to see that
O[A || A] = {(#1,ss) , (I2,59)}. (5)
Since D,; must preserve the termination mode (P3), (4) and (5) together generate a contradiction.
O

6.2 CL, £ CLg

In this section we prove that CL 4 £ CLg. Again, the essence of the proof is based on a property
(mg) satisfied by the semantics of Procg and not by the one of Proc4. This property says that
if a process can deadlock, then also the indeterministic choice between this process and another
one may deadlock. Intuitively, this holds in Procg (and not in Proc4) because of the absence
of communication primitives in the guards, that causes the choice to be independent from the
environment.

Proposition 6.5 The semantics of Procy satisfies the following closure property:

7g) For each G € Procy
if c.dd € M[G] then c.dd € M[G + G'].

Proof Tet G =g — A € Procy, and let c.dd € M[G]. Since g is of the form tell(true), c must
be of the form:

T

c= olA. .. .a,f.true <
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for some appropriate 0. ...0k. Furthermore, by definition of M
Le M[G']

holds, hence, by proposition 6.1(2):
of....of. Le M[G'].

Therefore, by compositionality of M, and by definition of + we obtain

c = of....oftrueT.d
= off....of.(trueT.c + 1)
= of.. . .oftrueTd Foft....of L
e M[G+M[G]

M[G+G'] (by theorem 3.8).

Theorem 6.6 CL4 £ CLy.

Proof Assume, by contradiction, that CL 4 < CLg holds. Consider the constraints 9;,9,,%93 such
that [£ 393 = 91, =93 = Y2, and let A1, A, A3 € Proc 4 be defined as follows:

Ay = ask(9;) — tell(true)
Ay = ask(9y) — tell(true)
Ag = tell(3).
It is easy to see that
O[A || As] = {(9s,dd)} (6)
and
O[(A1+A2) || As] = {(J3,s5)}. (7)
From (6) we have that there exists o such that
(7, dd) € O[C(4; || 43)] = (by P2) O[C(A1) || C(A3)].
Since @ = R o M, for appropriate c¢;.a; € M[C(A1)] and cz.c0 € M[C(A2)] we have
c1.01|cz.0p € Conk x {dd}.
By definition of ||, we have two cases:
case 1) a3 =dd, or
case 2) a; = ss, and oy = dd.
In both cases, we obtain
c1.01 € M[C(A1)+C(A2)]
(in case 1 it follows from proposition 6.5, in case 2 from proposition 6.1(3)). Therefore, we have
er.anfles.cn € MI(C(A1)+C(42)) Il C(As)] = (by P2)MIC((A1+42) || As)]-

This implies (o,dd) € O[C((A1+Az2) || A3)] that, together with (7), gives a contradiction (since
Dei must preserve the termination mode (P3)). a
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7 Interpretation of the results.

In the previous section we have seen that the three conditions required on C and D increase
drastically the separation power of definition 4.1. The basic definition of embedding is in fact a
variant of the classical notion of language simulation:

Definition 7.1 A language L' can be simulated by L iff there ezists an encoder £, from the inputs
of L' to the inputs of L, a compiler C from the programs of L' to the programs of L, and a decoder
D from the outputs of L to the outputs of L' such that, for every program P in L' and for every
input 3: D(C(P)(E())) = P().

Tt is well known that this definition is satisfied by any pair of languages Turing-complete.
In our opinion there are essentially two reasons why our definition of modular embedding is
stronger then definition 7.1:

e The requirement of termination invariance implies the possibility to observe also failure and
deadlock (beside success) and this gives more information about the internal structure of the
program 1. In other words, whilst the success set is completely characterized by the minimal
model (that is related to the extensional definition of a function) failure and deadlock require
to consider also other models. A program containing a loop can have the same minimal
model (and the same success set) of a program with no loops, but the other models (and
their failure sets) are different.

e The notion of indeterminism in concurrent languages is different from the notion of nondeter-
minism in sequential languages. In the theory of computation the nondeterministic languages
are seen just as mean to express in a compact way algorithms for search problems. In the
observables, only the successful outcomes are taken into account (all the paths that do not
solve the problem are eliminated). As a consequence, nondeterministic languages can be
easily implemented (via backtracking) into deterministic ones: The nondeterministic Turing
machine is equivalent to the deterministic one. This would not be possible when also failures
are relevant, that is the case of indeterministic languages.

8 Future work

We are currently investigating [6] the application of the notion of modular embedding to separate
other pairs of languages in the FCP family [13]. However, the way in which this notion is formulated
makes it suitable for any concurrent framework, and we believe that it can be fruitfully used also
for comparing the expressive power of concurrent languages out of the logical paradigm.

Another direction of research is the investigation of different conditions on the compiler and
the decoder, that bring to other notions of embedding.
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