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When applying the method of lines to partial differential equations and using explicit
methods for the time integration, the time step is usually severely restricted by stability
conditions. In this paper, we focus on the Burgers equation and we try to relax the time
step condition by applying fractional step (or operator splitting) methods based on Runge-
Kutta methods. Furthermore, we consider parallel versions with increased order of

accuracy.
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1. Introduction
We shall be concerned with the initial-value problem for systems of first-order differential
equations of the form

k
A1)y = ye) = 21 £i(t, y(1)),
]=

where the Jacobian matrices of the functions fj have different types of eigenvalue spectra. Such
systems can arise if the method of lines is applied to time-dependent partial differential equations
(PDEs). In particular, we shall consider the extensively studied Burgers equation

du d2u du
(1.2) 517:85)(7_113;’

which is of convection-diffusion type. This equation, first discussed by Burgers [2], models, in first
approximation, the phenomenon of turbulence and can also be considered as a simplified form of the
Navier-Stokes equations (see e.g. [1]).

The spatial discretization of (1.2) gives rise to systems of the form (1.1) with k=2 and where f1
and f, correspond to the convection and diffusion terms, respectively. Systems of this type require
integration methods with large stability regions, preferably A-stable methods. However, in the case
where (1.1) originates from two- or three-dimensional partial differential equations, the use of A-
stable methods, which are necessarily implicit, leads to a huge linear algebra problem associated with
the solution of the implicit relations, and consequently, to increased computational complexity. On
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other hand, when using explicit methods, stability will dictate the time step, which is usually much
smaller than the accuracy of the numerical approximation requires. If the diffusion term in a
convection-diffusion problem is negligible (i.e., the spectrum of the Jacobian matrix of/dy is purely
imaginary), then in the class of explicit Runge-Kutta (RK) methods, methods are available with a
relatively large imaginary stability boundary, that are suitable for integrating (hyperbolic) convection
equations. However, if diffusion enters, then such hyperbolic time integrators may impose severe
time step restrictions, because of their relatively small real stability boundaries.

In this paper, we study fractional step methods based on explicit RK methods (FRK methods)
which are suitable for the time integration of convection-diffusion equations. They are related to the
fractional step (or operator splitting) methods of e.g. Yanenko [10], Marchuk [6] and Swayne [8].
Usually, methods based on fractional steps are only of first order. We investigate whether the order
of FRK methods can be increased, without loosing stability, by forming linear combinations of
various approximations that are computed concurrently. ’

The analysis will be presented for the general form (1.1) but in the numerical experiments
(Section 4) we return to the special case of the Burgers équation (1.2).

2. FRK methods
Consider the initial-value problem

2.1 y® =1, y®), ytn)=Yn, thSt<tpy1:=tp+ h,-

and the RK methods generated by the Butcher arrays

or equivalently
(2.2") Yn+1 = Yn + h®@j(£, etp+cjh, yn), j‘= 1, ..,k

where @;j is the increment function of the RK method. Ignoring tensor products, this function is
defined by

(2.2") Di(f, etp+cjh, yn) = bij(etn+cjh, Y), Y =ype+hAjf(ety+cih, Y).
By expanding the increment function @; we obtain

(2.3) ®j(f, et+cjh, y) = biTe £(t, y) + bjTej h g(t, y) + bjTAje h J(t, y) £(t, y) + O(h2),
where

g6 = FEN. T6y = 0.



For the order p of the RK methods (2.2) we have that (cf. [4]):
2.4) p=1if bjTe =1; p=2if,in addition, bjTCj = bjTAje =1/2.

We define FRK methods employing k fractional steps for the k terms occurring in (1.1) by the
formula

(2.5) yO =yp;  yO =y0-D + h@j(f, etpteih, yd-D), j=1,..,k yne1=y®

(briefly, k-term FRK method). Given the increment functions @;j (i.e., the arrays Aj and bj), we can
specify various FRK methods by prescribing the vectors {c;}. We shall consider three types of FRK
methods:

Table 2.1. FRK methods (2.5)

Method Vectors ¢;
Back step method: cj = Aje, j=1,..,k
Zero step method: c1:=Aje, ¢ji=e, j=2,..,k
Forward step method: cj:=(G-De+Aj j=1,..,k

Notice that the first fractional step in the three families of FRK methods is identical. Furthermore, if
the righthand side functions in (1.1) do not explicitly depend on t, then these methods collaps to one
and the same method.

The Back step method successively integrates the 'fractional’ equations

y'(t) = fj(t9 Y(t))’ ] =1,..,k

from t, to th4+1 using the preceding result as initial value. A disadvantage of these Back step methods
arises if the equation (1.1) explicitly contains the time variable t. In such cases, they may suffer a
drop of accuracy. This is caused by a possible lack of consistency of the solution values and the
time-dependent terms in the equation. If all time-dependent terms can be collected into the first
function f1, then there is, in general, no loss of accuracy. This can be explained by observing that in
such cases the t-dependency only plays a role in the first fractional step where y(1) is computed.
Since in this first step, integration is performed from t; until t,4 starting with the initial value yp, no
reduction of accuracy is to be expected. However, if not all t-dependent terms can be stored in f; (for
instance, if the boundary conditions depend on t), then the second and following fractional steps
integrate again and again from tp until tp,1 with initial values y(0) that are consistent at t;41, where
they should be consistent at t,. '

The second and next fractional steps of the Zero step method sets the time variable in the
righthand side evaluations employed by the RK methods equal to ty4+1 which results in rather
unconventional RK methods. However, the advantage is that possible time-dependent terms
occurring in these steps are tuned to the initial value y0).



The Forward step method integrates from ty to tp4k using different righthand side functions in
each subinterval of length h. The advantage of this Forward step method lies in the fact that all
inconsistencies of t and y values are avoided. A disadvantage of this approach is that, in the step
from t, to tn41, time-dependent terms are evaluated beyond the point tp41.

2.1. Accuracy of two-term FRK methods

We consider the accuracy of FRK methods in more details for k=2, as is the case for the
Burgers equation (1.2). First, we observe that second-order accuracy of the FRK method requires
that yp41 satisfies the condition

(2.6) Yo+l = Yn + hf + %h2 [g + Jof1 + J1fp + J1f1 + Jofp] + O(h3),

where all functions are evaluated at t=t, and y=yp (in order to abbreviate the formulas, the arguments
of the functions f, fj, g, gj, J and Jj will be omitted if they equal (tn,yn))-
For k=2, the FRK method (2.5) reduces to the simple scheme

2.7) yne1 = ¥ + h®y(fp, etp+eoh, yD),  y(1) = yy + h®y(f1, etp+crh, yn).

From (2.3) we deduce for (2.7)

yO =yn+biTehf; + b1Te; h2 g1 + biTAre h2 J; f1 + O(h3),
yner1 =YD +byTe hfa(tn, yO) +baTez h2 ga(tn, y) + by TAze h2 Jp(tn, yD) fo(tn, (D) + O(h3)
=yn+ biTe hf; + b1Teg h2 g1+ bi1TA1e h2 Jif;
+ boTe hfy + byTe by Te h2 Jof; + byTey h2 g+ brTAse h2I5fp + O(h3).

Assuming that the generating RK methods are at least first-order accurate (i.e., biTe=byTe=1), we
may write
VYn+1 =Yn + hf + h2 [biTey g1 + boTep go +Jof1 + biTAe Jif1 + boTAge Jofp] + O(h3).

Using (2.6) we obtain for the local error

2.8) 1(h)= -%-hz[(Zbchl - g1 + (2byTes - g + (2b1TA e - DIif; + (2byTAge - 1)Jofs

+Jof1 - I1fa] + O(h3).
Thus, we can formulate:

Theorem 2.1. Let the generating RK methods be at least first-order accurate, i.e.,
(2.92) biTe =byTe=1.

Then the FRK method (2.7) has order one and its local error is given by (2.8). 0
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We conclude that in general second-order accuracy is not possible, irrespective the orders of the
generating RK methods. However, if we impose the additional conditions

(2.9b) c1=Are, 2biTAje=2byTAze=1,

then the local error of (2.7) is given by
2.8) () = 2h2[@bsTes - gy + Jafy - Jifz] + Oh3),

so that we achieve second-order accuracy in problems where

g2=0, Jof1 =Iifa.

In our experiments with Burgers' equation, it turned out that this error is rather small, so that in most
cases a second-order behaviour was shown. This can be explained by observing that the magnitude
of the term fj and its Jacobian Jj corresponding to the diffusion term is considerably larger than for
the convection term. Hence, by removing the term J1f; from (2.8) reduces the local error sufficiently
to get a second-order behaviour, in spite of the cross terms J1f and Jof; (see the Subsections 4.3.1
and 4.3.2 for a numerical illustration).

2.2, Stability of k-term FRK methods
We consider linear stability with respect to the test equation

k
2100  y® =2, Ty,
1

Theorem 2.2. Let the RK methods (2.2) have stability regions S;j. The FRK method (2.5) is stable
(at the point ty) with respect to the test equation (2.10) if, for j=1,....k, the matrices hJj share the
same eigensystem and if their eigenvalues lie in S;.

Proof. Applying the FRK methods to the linear test equation (2.10) leads to the recursion
2.11)  yO=yy; yO=RjhLyWD, j=1,..,k yne1 =y®,
where the R; denote the stability functions of the RK methods (2.2). Thus, we obtain

k

(2.12)  yae1 = ROJ1,e0hJdyn,  ROJIL.hJ0 = [ RjchTy) .
=1

Let the eigenvalues of hJj be in Sj. Since, by assumption, the matrices hJj have identical
eigensystems with eigenvalues within Sj, the matrices R;j(hJj) have eigenvalues within the unit circle.
Hence, the stability function R of the FRK method has its eigenvalues also within the unit circle. o



In practice, the above condition on the eigensystems of the Jacobian matrices Jj is applied to the
eigensystems of the Jacobian matrices of the functions fj. Such a condition is rather severe and can
only be satisfied in a local sense by applying a normal mode analysis based on the same set of
complex exponentials as eigenfunctions of the individual Jacobians ofj/dy. However, in many PDE
applications such a local analysis appears to be satisfactory, so that we may conclude that the
Theorems 2.1 and 2.2 justify the use of FRK methods as time integration methods for (1.1).

3. Parallel FRK methods

In this section, we discuss the possibility to employ parallel computers. A straightforward way
to use parallelism in a fractional step method is to concurrently apply appropriate RK methods to each
of the 'fractional differential equations' y'(t) = fj(t, y(t)), j=1,...,k and to form a linear combination
of these results, that is, to apply the method

k k

Yn+l = 21, ajy(i), y@ =yp + hj @j(fj, etn-Fthj, yn), j=1,..,k 21, aj=1.
= =

The sequential costs of this method correspond to the computational costs of the most expensive
increment function, provided that k processors are available. Moreover, the coefficients aj can be
selected such that we obtain a good load balancing of the computational jobs assigned to the various
processors. In this way, parallelism is used to reduce the costs of FRK methods. However, a serious
disadvantage of this cheap and simple approach is that the order of the resulting approximation yn+1
cannot be increased beyond one.

However, by parallel application of FRK methods, it is possible to exploit parallelism to
increase the order. This will be discussed for k=2 (as is the case for the Burgers equation):

It is possible to raise the order of FRK methods to p=2 by forming a linear combination of
approximations computed by two different FRK methods. Since, on a two-processor computer, the
corresponding FRK steps can be performed in parallel, the sequential costs are not increased.

In addition to the FRK method (2.7), we consider the FRK method

(3.1) up+1 = ud) + hd(fy, ety+doh, u)), ud =y, + h®y(f2, etg+dih, yp).
Proceeding as in the preceding section, we find that its local error is given by (cf. (2.8))
(3.2) t*(h) = %h2[(2b2Td1 - Dga + (2b1Td; - 1)gy + 2baTAge - DIaf2 + 2b1TA e - 1)I1fy

+ I1fp - Tof1 | + O(R3).

Hence, the local error of (yp+1 + up+1)/2 is given by

1
2tk + T4 = 2h2[(b1Te; + by Tda - gy + (bTea + boTd; - D

+(2b1TAre - 1)I1f; + 2baTAge - 1Iafz] + Oh3).



This leads to the theorem:

Theorem 3.1. Let the generating RK methods satisfy the conditions
(3.3) biTe = byTe =2b1TAje = 2byTAze = 1.
Then the parallel FRK method (yn+1 + up+1)/2 defined by {(2.7),(3.1)} is of second order if

(3.4) b1T[c; + d2] = bpT[e2 +d1] = 1. 10

Given the FRK method (2.7), this theorem can be used in choosing the vectors dj and d3 in the
FRK method (3.1) in order to obtain second-order accuracy. In Table 3.1, this is illustrated by
giving the vectors d; and d3 for the FRK method (3.1) in the cases where (2.7) is, respectively, the
Back step, Zero step or Forward step method of Table 2.1 with k=2.

Table 3.1. Vectors ¢j and d; yielding second-order parallel FRK methods {(2.7),(3.1)}

Method c1 c2 di d2
Parallel Back step Are Aje Aje Are
Parallel Zero step Are e 0 Ale
Parallel Forward step Aie Aje +e Aje-e Aie

As explained in Section 2, the Forward step method has the advantage that inconsistencies of
intermediate values of t and y are avoided in the case of time-dependent righthand side functions.
However, in the case of the parallel Forward step method specified in Table 3.1, this advantage is
lost in the computation of up4+1. By choosing

(3.5) di=Aze, dy=Aje+e,
consistency of intermediate values of t and y is retained, but the order drops to p=1. In order to

obtain again second-order accuracy, let us consider the local truncation error corresponding to (3.5).
Assuming that condition (3.3) is satisfied, we have

>+ 0 = 3h2[g1 + 2] + O@3).

Hence, by adding to this parallel FRK approximation (yp+1 + un+1)/2 the correction - h2[g; + g21/2,
we restore the second-order accuracy. This correction term can be obtained by computing

h[£(tn, yn) - fta + 3h, yn)] == 3h2g(tn, yn) + Oh3) =-2h2[ g1 + ga] + Oh3).
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Thus, the parallel Forward step method with correction term reads
yl'l+1 = y(l) + h(DZ(fZa etn'*‘AZEh + eh’ y(l))’ y(l) = Yn + hd)l(flv etn“‘Aleh, Yn),

(3.6) ups1 = uD + h®(f1, etp+Areh + eh, uD),  uld =y, + h®y(f, ety+Azeh, yp),
Y*n+1 = %‘[le + un+1] + h[f(tn, yn) — f(ta + %h, Yn)]-

It furnishes a second-order approximation y*p41 without causing inconsistencies of intermediate
values of t and y.

Finally, we remark that under the conditions of Theorem 2.2 the stability function of the parallel
methods discussed above is identical with that of the generating FRK method.

4. Numerical experiments

4.1. Burgers' equation

We tested the performance of the FRK methods by integrating the initial-value problem for the
well known Burgers equation

“4.1) %%— g —uT+s(xt) 0<x,t<1,

where € is a small parameter. Initial values, Dirichlet boundary conditions and the source function

s(x,t) follow from the exact solution specified below:

Problem I u(x,t) = exp(-x2) sin2(2nt) non-vanishing spatial error
Problem II u(x,t) = (x - 1/2)2 sin2(2wt) vanishing spatial error
0.1e-A + 0.5¢-B + e-C -
Problem III ,0) = h
oblem u(x,t) At oB1oC vanishing source term
A = X - 0.5 +4.95t . B = X - 0.5+ 0.75t . Ci= X - 0.375
20e 4e 2e

These problems were semidiscretized on a uniform grid with mesh size Ax using standard

symmetric second-order differences. The resulting system of N=(Ax)-1-1 ODEs can be represented in
the form:

y'®) = f(t, y) := fi(ty) + f2(t,y),
f1(ty) := B )2 (Dy +vp +VR) +0s(t), fa(ty) :==- 1 53 Y (Cy-vL+VR) + (1-0)s(0),

@2  vp=(u0y,0,..,0T, vg:=(0,..,0,u@,))T, s :=(sGAx,1)),



21 0 1
1 21 O -1 01 O
D:= , C:= » Y :=diag(y).
O 1 21 O -1 01
1 -2 -10

4.2. Generating RK methods
For the generating RK methods we choose the standard fourth-order RK method (RK4) and the
second-order Runge-Kutta-Chebyshev method (RKC2) proposed in [5] (see also [9]).

4.2.1. The RK4 method. RK4 requires four stages per step and is suitable for integrating convection
equations because, within the class of explicit methods, it possesses an almost optimal (scaled)
imaginary stability boundary. In the case of (4.2) with €=0, this leads to the maximum stable time
step

_ Bimag _ Bimag Ax . -
(432)  heony = S0ty - Tyale Bimag =2V2 ,

where p(dfa/dy) denotes the spectral radius of df2/dy. Hence, in terms of evaluations of f3, the
overall costs to integrate the unit interval are about

4 Lalyle
(43b)  Npi= =~ =pl=

where y denotes the averaged value of y;, in the integration interval.
In order to illustrate that introducing diffusion (€#0) causes that the use of RK4 may be highly
inefficient, let us apply RK4 to (4.2) with €0. It is convenient to introduce the parameter

€
@4 a= Ry

Now, a stable integration with RK4 requires the step size to satisfy

B _ B Ax
POIAY)  llylle V1 + 16¢2

(4.5) heonv-diff < B = 2.6,

where 3 denotes the stability boundary of RK4 for general eigenvalue spectra in the left halfplane.

Assuming that the evaluations of fj and {3 are equally expensive, it follows from (4.3) and (4.5) that
introducing nonzero values of € increases the computational effort by a factor = 2 \/(1 + 16q2). This

factor is already substantial for moderate values of the parameter q.
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4.2.2. The RKC2 method. RKC2 was constructed for integrating diffusion equations with
unrestricted step sizes. Stability is achieved by adapting the number of stages of the method. If it is
used for integrating the diffusion part of (4.2) with step h, then the number of stages is
approximately given by (cf. [5])

4.6a) m=12vVhp@f/dy) = 2‘4Axhe .

In terms of evaluations of f1 and by setting h=h¢ony, we deduce from (4.6a) and (4.3a) that the
overall costs are

(4 6b) N : m _ 2.4 V hconve ~14 € ”y“oo
. 1 = = 1. (Ax)3 )

" hconv hconvAX

Hence, the FRK based on RK4 and RKC2 using stepsizes given by hcony, requires N2 evaluations
of f» and N evaluations of f1. Notice that these are the minimal number of evaluations of {3 and fj in
order to obtain stability for the FRK method. Assuming that the evaluations of f; and f; are equally
expensive, it follows from (4.3) and (4.6) that introducing nonzero values of € and using FRK
instead of RK4 increases the computational effort by a factor (N1 + N3) / 2N2) = (1 + \/q )/2.A
comparison of this factor with the factor 2 V (1 + 16q2) derived above reveals that the use of
(RK4,RKC2)-based FRK methods is much cheaper than using RK4.

4.3. Numerical results

We shall test the performance of the FRK methods by integrating the initial-value problems
specified in Section 4.1. We applied a two-term FRK method with ®; defined by RKC2 and @3 by
RK4.

The computational effort associated with the methods is measured by the total numbers of f1-
and f-evaluations. Notice that the second-order RKC2 method uses at least 2 stages.

The accuracy of the numerical results is measured by the minimal number of correct decimal
digits of the components of the numerical solution at the end point t=1, i.e. by

cd := - logyo (Il global error at t=1 Il ).

4.3.1. Comparison of RK4 and FRK. In this subsection, we show that RK4 is an adequate method
for integrating strongly convection dominated equations, that is, the stability condition on the time
step is not more restrictive than the accuracy condition associated with the spatial discretization error.
However, we shall also show that the FRK methods solve convection-diffusion equations much
more efficiently than RK4 if the amount of diffusion increases. Choosing Problem I as a test problem
and using Ax=1/200 for the spatial discretization, we have a spatial accuracy of 5.3 correct decimal
digits. Table 4.1 lists the cd-values obtained by RK4 and the Zero step version of the FRK method.
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The corresponding numbers of f1- and fz-evaluations are added in brackets and an unstable
behaviour is indicated by *. This table illustrates that the time step of RK4 is dictated by accuracy for
€<10-3. For £210-2 the stability condition is much more restrictive than the accuracy conditions.
Instead, the FRK method remains stable for all € and all h-values from this table. As a consequence,
this method is able to produce solutions of realistic accuracy at the cost of a moderate computational
effort.

Table 4.1. cd-values for Problem I with Ax=1/200 and 6=1.

Method € h=1/80 h=1/160 h=1/320 h=1/640 h=1/5800
RK4 10-10 48 (320+320) 5.3 (640+640)

103 39 (320+320) 5.3 (640+640)

10-2 * *

5.3 (2560+2560)
10-1 * * * *

5.3 (23200+23200)
Zerostep 103 2.6 (240+320) 3.2 (320+640) 3.8 (640+1280) 4.4 (1280+2560)

102 2.8 (480+320) 3.4 (800+640) 3.9 (960+1280) 4.5 (1920+2560)

1001 3.1(1440+320) 3.6 (2080+640) 4.3 (2880+1280) 4.8 (4480+2560)

4.3.2. Mutual comparison of the FRK methods. On the basis of Problem II, we will compare the
FRK versions as specified in Table 2.1. In Table 4.2 the results of the various methods are given for
several values of 6. Notice that all errors are due merely to the time integration since this problem
does not give rise to a spatial discretization error. 'We may draw two conclusions from this table:
firstly, it seems recommendable to set 6 equal to 1 in the operator splitting (4.2), i.e., the complete
source term is added to f1; a second conclusion is that, for 6=1, the Zero step version is slightly

more accurate than the two other versions.

Table 4.2. cd-values for Problem II with Ax=1/200 and £=10-2.

FRK method 6 h=1/20  h=1/40 h=1/80 h=1/160 h=1/320

Back step 1
Zero step 1
Forward step 1

— N
w
W
w
e}

—
- \O \O A PhW oo N
NN

Pt pd
P Yo Wb
DWw

DN =t
~N O\ S O oo O N

Back step 0.5
Zero step 0.5
Forward step 0.5

bbb wwt
oo WwWWwN o

Back step 0
Zero step 0
Forward step O

DN NN s
LMnh 0o L

—~o0
—
—t et
DN
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4.3.3. Sequential versus Parallel FRK methods. It is of interest to compare the accuracies of the
sequential and parallel versions of the FRK methods (we recall that both versions have the same
sequential costs). When applied to the Problems I and II, the results produced by the parallel and
sequential FRK methods differ only marginally (the observed differences in the cd-values are at most
0.4 and in many cases much less). With respect to the order behaviour of the sequential versions, we
conclude from the Tables 4.1 and 4.2 a performance which indicates an order larger than the
theoretical order 1 (notice that a p-th order behaviour means an increase of the cd-value by
log10(2P)=0.3*p on halving the step size is). In particular, for the (sequential) Zero step method
applied to Problem I we observe a second-order behaviour, similar to the parallel version. For
Problem 1II, all sequential methods show approximately order 2 for 6=1, and for the smaller 8-values
the resulting order varies between 1 and 2.

There are however problems for which the parallel versions behave markedly more accurate than
the sequential counterparts. An example is Problem III. The solution of this test example, which has
also been discussed in [7] and [3], developes, for small values of €, a steep shock wave, which
moves across the spatial domain. Following [7] , we sét €=0.003 in our test. For this €-value, a plot
of the time evolution of the exact solution can be found in [7]. To present this particular solution with
reasonable accuracy on a uniform grid, we need an extremely fine spatial mesh. Therefore, we
choose Ax=1/800, resulting in a spatial accuracy of 2.9 correct digits.

Table 4.3 presents the results of the sequential and parallel FRK methods. There is no need to
distinguish between the various versions, since they produced the same accuracy. We remark that 6

is not relevant because, for this problem, the source term vanishes identically.

Table 4.3. cd-values for Problem III with Ax=1/800 and £=0.003.

Method h=1/320 h=1/640 h=1/1280 h=1/2560 h=1/5120
Sequential FRKversions 2.0 2.3 2.5 2.7 2.8
Parallel FRKversions 2.8 2.9

We see that the parallel variants yield approximately the maximally obtainable accuracy on this
spatial grid using the largest stable step size, whereas the sequential versions need much smaller step
sizes to let the time-integration error be negligible with respect to the spatial error.

Furthermore, we mention some results from [7], where this problem has been integrated using a
variable-step, variable-order linear multistep (LM) method (viz. the GEARB package). Extrapolating
their results obtained with 200 and 400 mesh points, this integrator would require (on a grid with
800 points) approximately 450 time steps if the implicit LM methods (i.e., BDF methods) are used
and approximately 12000 time steps if it uses the explicit LM methods (i.e., Adams predictor-
corrector pair). Since these methods require (in the avarage) at least 1.5 (full) f-evaluation per step, it
is clear that the parallel FRK methods solve this problem more efficiently. Especially, if we take into
account that the implicit LM method has a lot of additional work per step, like evaluating and
decomposing Jacobian matrices and solving linear systems.
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4.3.4. A further modification of the FRK methods. As we have seen in the experiments described in
the preceeding subsections, it is the convection term which limits the maximal stable step size of the
(RKC2,RK4)-based FRK method. The reason is, of course, the fixed (and rather small) stability
boundary of the RK4 method, whereas the RKC2 method has a dynamic stability boundary, simply
by adapting its number of stages to the step size required. In particular, all the aforementioned
experiments show that the maximal step size was determined by the RK4 method and RKC2 was
given the same step size. In many of the above tests, this resulted in a rather modest m-value (the
number of stages) for RKC2. This is a relatively inefficient use of the RKC2 since its stability
boundary (and hence its maximal stable step size) increases quadratically with m (cf. (4.6a)). Hence,
per stage, RKC2 is able to proceed the integration over a distance which is linear in m.

Consequently, a more efficient use of the capabilities of RKC2 is to select a step size merely on
the basis of accuracy, and to adapt the number of stages in RKC2 to obtain stability. If this step h
happens to be too large for RK4, then it is divided by an integer, say M, such that h/M is a stable
step size for RK4 and this 'convection integrator' is applied M times to bridge the step h, taken by
RKC2. '

To be more precise, this FRK* method is defined by (cf. (2.7))

y(O = yp + h®;(f1, etg+e1h, yn),
, . . h . .
2.7y y@ =y0D + 5 @x(f, etatezjh, yO D), j=1,.. . M;
Yn+1 = Y(M),

where, again, @ and @ are associated with RKC2 and RK4, respectively.

The effect of using the FRK* method is that we can take larger steps than would have been
possible with the FRK methods. Notice, that the total number of f-evaluations over the whole
integration interval is the same for both methods, but the total number of f1-evaluations will be less
for FRK*. This is particularly advantageous if f] is expensive. Since we concluded from our
previous experiments that choosing 8=1 (i.e., adding a source term to f1) is recommendable, it is
very likely that fy is rather expensive indeed.

Usually, the accuracy will decrease, simply because we use a larger step size but this can be a
desirable situation in cases where the maximal stable step size in the FRK methods still yields too
much precision at the costs of considerable computational effort. In fact, we can say that the FRK*
method is an adaptive scheme which can treat any timestep.

We have repeated the experiments described in the Subsections 4.3.1 and 4.3.3, using the Zero
step version, that is ¢; = Aje and ¢2j = ¢, j=1,...M (cf. Table 2.1). Similar to the FRK methods,
we can also construct parallel, second-order FRK* methods by reversing the sequence of the @3-
and ®»-applications in (2.7"). Thus, this scheme reads
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u(O) = yn,
(3.1)  u® =uGD + H (2, etyrdrjh, ulD), j=1,..,M;
un+1 = uM + h @y(fy, ety+d2h, u®),

and, finally, a second-order approximation is obtained by setting y*p4+1 = (Yn+1 + un+1)/2. For the
Zero step variant, d1 j=0, j=1,...M and d2 = Aje.

We have applied this method to Problem I and used step sizes which are equal or larger than
those used in Subsection 4.3.1. Table 4.4 contains the results.

Table 4.4. cd-values for Problem I obtained with the sequential and parallel FRK* method,
Ax=1/200, €=0.1 and 6=1 ‘

h M  #fj-evaluations  # fr-evaluations Seq. Zero step Par. Zero step
1/80 1 18+80 320 3.1 3.1
1/40 2 25%40 320 2.5 2.5
1/20 4 36%20 320 1.9 1.9
1/10 8 5010 320 1.2 1.2

We see that if one is satisfied with a global error of 10-2 (i.e., cd=2), then a step size h = 1/20
can be used which is not possible in the FRK methods. As a consequence, the number of f;-
evaluations drops from 1440 to 720 (cf. Table 4.1). Furthermore, we observe for this problem,
similar to the FRK methods, that the parallel version does not improve the accuracy of the sequential
version since the latter also shows a second-order behaviour.

We also repeated the integration of Problem III. The results are collected in Table 4.5. Similar
to the situation for the FRK methods (see Subsection 4.3.3) we see that, for this problem, the
parallel version is superior to the sequential variant. Again, the FRK* method offers the possibility to
choose the step size on the basis of accuracy considerations without being restricted by stability.

Table 4.5. cd-values for Problem III obtained with the sequential and parallel FRK* method,
Ax=1/800 and €=0.003

h M  #fj-evaluations # fr-evaluations Seq. Zero step Par. Zero step
1/320 7%320 1280 2.0 2.8
1/160 9%160 1280 1.7

1
2 2.2
1/80 4 13+80 1280 1.1 1.3
1/40 8 18%40 1280 0.6 0.7
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