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The Bayesian approach to image processing based on Markov random fields is adapted to
image analysis problems such as object recognition and edge detection. -Here the input is a
grey-scale or binary image and the desired output is a graphical pattern in continuous space,
such as a list of geometric objects or a line drawing. The natural prior models are Markov
point processes and random patterns from stochastic geometry and spatial statistics. We
develop analogues of Besag’s ICM algorithm and the Geman-Geman simulated annealing
algorithm and present relationships with existing techniques like the Hough transform and
the erosion operator in mathematical morphology. The methods are demonstrated on a
simple example.
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1 Introduction

Grenander [19, 20, 21], Geman and Geman [16, 17] and Besag [8] showed that many image
analysis tasks can be reformulated as problems of statistical parameter estimation. Maximum
likelihood and Bayesian approaches then suggest iterative algorithms, which are usable and
efficient if the underlying stochastic model has a Markov dependence structure. Examples are
the application of the E-M algorithm to tomographic reconstruction [46], stochastic annealing
and ICM algorithms for segmentation, classification, edge detection and de-blurring 7, 8, 16],
and deformable template annealing methods for shape recognition [22, 31, 40].

In this paper we develop a similar approach to feature detection and object recognition,
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where a scene composed of overlapping objects is observed in the presence of blur and noise,
and the task is to determine the number of objects and locate them. Thus the input is a
digital image, and the desired output is a graphical pattern in continuous space, such as a
line drawing, list of filled polygons or circles, or a three-dimensional wire frame model. The
objects to be recognized are assumed to be representable by a small number of continuous
real-valued parameters that determine size, shape and location. The number of objects,
their position, orientation and spatial relations are not fixed in advance, and the objects
may overlap. Applications might include robot vision, document reading, automated chip
inspection, region-of-interest selection in medical imaging [9], astronomy [31, 40] and the
microscopy of simple structures in material science.

Our approach to object recognition, described in section 2 below, follows the general
Bayesian scheme conceived by Grenander [19, 20, 21], Geman and Geman [17, 16] and Besag
[8]. A special feature is that the ‘true’ image z is a list of geometrical objects in continuous
space, instead of a digital image. The natural prior probability models for z come from
stochastic geometry and spatial statistics [13, 38, 48]. The role played by Markov random
fields in stochastic annealing is taken over by Markov random patterns [3, 39).

The deformable template models of Grenander and Keenan [22] and Ripley et al. (31,
40)] effectively describe a single object composed of jointed pieces, with Markov stochastic
interactions controlling the angles and lengths of the joints. In our approach the objects
have a fixed shape or belong to a simple class of shapes, and the Markov model describes the
relative spatial positioning of objects (for example, it controls the probability of overlap).

Results of the paper include two new algorithms for object recognition based on iterative
conditional maximum likelihood (similar to Besag’s ICM) and on stochastic annealing. These
are demonstrated on a tame example, but have not yet been tried on real images. Instead,
the present paper concentrates on gaining a mathematical understanding. Thus we show that
the popular Hough transform [4, 9, 12, 14, 26, 27, 29, 45| is a special case of a likelihood ratio
technique (lemmas 4, 8 and 9). The erosion operator of mathematical morphology [43, 44] is
the MLE for a specific noise model (cf. lemma 3). We also give examples (lemma 6) to argue
that pre-processing the grey level image before searching for objects is simply equivalent to
assuming another model for the image noise.

Our stochastic annealing algorithm bears an interesting resemblance to the ‘blackboard’
techniques popular in computer vision, in which a tentative reconstruction of the scene is
formed by iteratively adding and deleting component objects. In our algorithm this is done
stochastically implementing a spatial birth-and-death process [3, 30, 34, 36).

In the next section we establish some notation and describe existing methods for recogni-
tion of simple objects. The likelihood approach is developed in section 3, with some iterative
algorithms in section 4. The Bayesian approach is then introduced in section 5. An analogue
of simulated annealing is developed in section 6. Finally section 7 compares the behaviour of
the different algorithms using quantitative error measures.




2 Notation and background

2.1 General notation

We follow the general formalism described in [8, 16]. Assume the observed image y depends
on the ‘true’ image z through a known probability distribution. Then the objective is to
estimate the unknown z given observations of y. In the likelihood approach (e.g. [46] ), it is
assumed that z is fixed (though unknown) and that the probability distribution of y has a
density f(y|z) that depends only on z. This density describes the ‘forward problem’ of image
formation including both the stochastic noise inherent in observing y and the deterministic
influence of z on y. Given observation of y, the relationship is reversed so that f (ylz) is
regarded as the ‘likelihood’ of = being the true image. The mazimum likelihood estimator of
z is

& = argmax, f(ylz). (1)
Strictly this is the ‘maximum likelihood equation’ since the maximum need not exist nor be
unique in general.

In the Bayesian approach [8, 16, 31, 22], z is assumed to have been generated at random
from a prior probability distribution with density p(z). This can be interpreted as expressing
prior information about the image, e.g. that a certain configuration is impossible, or that
smooth images are more likely than irregular ones. Then the posterior probability distribution
for z after observing data y is found by Bayes’ theorem,

p(zly) < f(ylz)p(z)

and the mazimum a posteriori (MAP) estimator of z is

¥ = argmax,p(z|y) _
= argmax,f(y|z)p(z). (2)

Because of the latter expression, p(z) can be regarded as a smoothing penalty attached to
the optimization of f, and Z can be described as a penalized maximum likelihood estimator.

2.2 Assumptions specific to this paper

The observed image ¥ is digitized on a finite pixel lattice T' (‘image space’), and y; denotes
the observed pixel value at pixel ¢ € T. The values y; may be real, integer, binary or may
belong to any arbitrary set. If y is a binary image (y; = 0 or 1) we identify 1 with ‘white’
and 0 with ‘black’, and write

Y={teT:y =1} (3)

for the set of white pixels.

The objects to be recognized are assumed to be representable by a finite number of real
parameters that determine size, shape and location. Let U be the space of possible parameter
values (‘object space’), so that a single point u represents an object R(u) CT. For example,
discs of fixed radius r can be identified by their centre points, so U = R? would suit; discs of
variable radius can be identified by pairs (z,7) where r is the radius and z the centre point,




so U = R? x (0, 00); the location of an industrial robot can be specified by the position and
orientation of the body and the attitude of each joint. We shall assume U is either a bounded
open region of d-dimensional space R?® (‘continuous case’), or a finite set of points in R?
(‘discrete case’).

An object configuration is an unordered list of such objects,

z={z1,  ,zp}, z; €U, i=1,---,n, n>0.

Note that the length of the list is variable, and the empty list § is allowed. The objects may
be in any relation to each other.

In this paper we typically associate the list z with the ‘silhouette’ scene S(z) formed by
taking the union of all the objects in the list,

and the corresponding binary image

. 1 ifteS(z
S()(t)z{o else @

2.3 Existing methods

Object recognition techniques are surveyed in [5, 15, 33, 42]. They can be divided into
methods like region growing [50] which detect an object of unspecified shape and size by
characterising it as a region of homogeneous pixel intensity (etc.), and template matching
methods which compare the data image with a translated and rotated copy of a reference
shape and locate the optimal match [42]. Here we follow the template matching approach,
which in general involves

(a) computing a numerical criterion for the degree of match;
(b) optimizing (a);
(c) smoothing or post-processing the result of (b).

A standard criterion for (a) is the Hough transform [4, 9, 12, 14, 26, 27, 29, 45]. In our
notation, this is a function of the object parameter u defined by

Hy(w)= Y wy,uel (4)
teR(u)

where y is the data image. If y is binary, Hy(u) is the number of pixels inside object R(u)
that have value 1. In the optimization phase (b), objects are located typically by finding local
maxima of the matching criterion, or by accepting all template positions where the match
exceeds a threshold value: see [6, 49].




An alternative approach to (a)—(b) using mathematical morphology [43] is to perform an
erosion with respect to the template. For example if y is a binary image and Y is the set of
white pixels as in (3) define the generalized erosion of Y by

YoR = {u:R(u)CY}
= {u:y;=1forallte R(u)} (5)

i.e. accept only those positions u where every pixel in the template is white. This is a
generalized erosion operator, roughly as defined by Serra [43, 44]. On a discrete image
lattice, the erosion is the set of u points where the Hough transform achieves its maximum
possible value.

A third alternative to (a)—(b) is to match boundary edges, detected by a step-edge filter
[11, 47] and subsequently peak-detected and smoothed, or by first dividing the image into
regions of similar gradient orientation and then fitting one line in each region [10].

Post-processing or smoothing (c) is needed to remove impossible configurations (gaps in
edges, isolated points), and for stability. In the presence of noise, template methods tend to
reconstruct one object as a a cluster of many almost-identical objects. The number of objects
is thus overestimated, and the reconstruction is unstable. This is particularly difficult when
the objects themselves overlap.

Most smoothing methods involve (explicitly or implicitly) iterative optimization of a
smoothness criterion. Here the experience of edge detection is valuable: although deter-
ministic sequential edge-following techniques [23, 18] are quite successful, the effect of an
error at an early stage can be severe. This can be alleviated by allowing backup i.e. stepping
back to reconsider earlier decisions, but a better alternative is deterministic or stochastic
relaxation [41, 24, 16].




3 Likelihood approach

Here we present several examples of stochastic models f(y|z) and methods for solving the
ML equation (1).

Let V be the set of possible pixel values for the data image y; typically V is the real line,
or the integers 0 to 255, or the set {0,1}.

Definition 1 An independent noise model is a stochastic model for y given = which
assumes pizel values y; are stochastically independent given x, with joint probability density

(vlz) = [] 9(v:16(2)) (6)

teT

where {g(-|6) : 6 € ©} is a family of probability densities on V, indexed by a parameter 0 in
an arbitrary set ©, and the ‘signal’ 0(’)(t) s a function determined by x with values in ©.
Thus the distribution of y; depends on z only through 6(®)(t).

The signal is blur-free if

19 (t) = (s (1)) = { ARRARREY

i.e. if the distribution of y; depends only on whether t belongs to S(x). Then 6o,6, are called
the background and foreground parameters respectively.

This model states that the noise is statistically independent between pixels. Note that no
assertions are made about the way objects interact and that the model does not imply that
the pixel values are (unconditionally) independent.

If g(-) > 0 computation of the MLE is equivalent to maximizing the log-likelihood

L(z;y) = log f(ylz) = Y log g(:/6'(¢))
teT

which is a sum of error terms associated with individual pixels.
In the blur-free case the MLE cannot be unique, because 8(*)(t) depends on z only through
S(z); two solutions z with the same silhouette S(z) have the same likelihood.
Model 1: additive Gaussian white noise
The pixel distribution is Gaussian with mean p = 6(®)(¢) and fized standard deviation o:

9(yelp) = (2m0?)~Y2e=(we=m)?/(20%)

This is equivalent to adding i.i.d. Gaussian noise to the signal.

Model 2: additive double exponential noise

The pixel distribution is double exponential with mean y = 0(”)(t) and dispersion parameter
A fixed:

9(yelw) = (22)"re Mk,




Model 3: binary image, salt-and-pepper noise

Here we convert the silhouette S(z) to a binary image and introduce noise by randomly
flipping each pixel value with probability p independently of other pixels. Thus V' = {0,1},

g(w|0) = ¥ (1 — 9)(1-%)
and

. 1—p ifteS(z
9()(t)={2’ ’ else @

with 0 < p < 1 fixed.

Model 4: binary case, pepper noise

This is similar to model 3 except that only background pixels are flipped,

w 1 ifteS(z
g()(t)={p lse (z)

Lemma 1 The MLE in Model 1 is the solution of the least squares regression of y on the
class of functions {6@)(t) : z = {z1,...,Zn},z: € U,n > 0}. In model 2 the MLE is the
solution of a least absolute deviation regression on the same class.

This is clear since both are ‘location models’ of the form

f(ylz) =TT h (v - 69(1))

teT

.and the log-likelihood is (model 1)

Lziy) = -2 log(2no?) — 55 T (- 69)
teT

and (model 2 )

L(z;y) = —log2A = A |y — 6@)(t)].
teT

The result is not practically useful because of the combinatorial and geometric complexity of
the functions 8(*)(t). We return to this problem further below.

Lemma 2 For model 3 with 0 < p < 1/2, the MLE is
£ = argmin,g|S(z) A Y|

where A denotes the symmetric set difference (‘ezclusive-or’).




Proof: The density is
fln)= II p>(-p» I p#(1-p@t2)
teS(z) teT\S(z)
so that
L(z;y) = |S(z)\Y|logp+|S(z) NY|log(1l - p)
+Y \ S(z)|logp + (IT| — [Y U S(z)|) log(1 - p)

= ITllog(1 - p) +|S(z) A Ylog 17—

and for p < 1/2 the coeflicient of |S(z) A Y| is negative. O

The next result shows a connection between maximum likelihood and mathematical mor-
phology.

Lemma 3 A mazimum likelihood estimator for model § 1is

tmaz = YOR
= {ueU:R(u)CY}

the generalized erosion defined in (5). This is the largest solution of the ML equations; the
other solutions are the subsets x C Tmax with the same silhouette,

Proof: The density is nonzero only if S(z) C Y and in this case equals

fley= JI »*@Q-p)C-w.

teT\S(z)
The log-likelihood is then
L(z;y) = Y, [wlogp+ (1-y)log(l-p)]
teT\S(z)
= Y\ S(@)llogp + (IT\ S(2)| - |Y \ S(z)]) log(1 — p)
= [Tllog(1 - p) +|Ylog 2 ~ |S(a)|logp

where | - | denotes number of pixels. Hence the ML equations are
z= argmax x:S(z)QY'S(m)l

and the result follows. O




4 Tterative maximization of likelihood

As we saw in the previous section, it is sometimes impossible to compute the maximum
likelihood estimator explicitly. Iterative maximization techniques can then be used to find
the MLE. The simplest form of iterative adjustment is to add or delete objects. We would
thus add an object u € U to the list z, yielding x U u, if the log likelihood ratio '

flylzU )
L(zUwy) — L(z;y) =log —F———
(@Uuiy) - Liziy) = log = 7o
is sufficiently large; and we would delete one of the existing objects z; € z to yield z \ z; if
f(ylz \ z:)
L(z T, -L T, =log 2~ _~
(z\ zi;y) — L(z;y) = log (i)

is sufficiently large. Two iterative algorithms suggest themselves.

Algorithm 1 (Coordinatewise optimization)
Assuming that the parameter space is finite, order the points u € U in a visitation schedule
{ul,"'9uM}-

step 0 : Initialize z© = @ or some other sensible initial state;

step k=1,2,...:
Visit every u € U sequentially, and add or remove u; if the likelihood ratio is sufficiently
large. Forj=1,...,M and m=j+ (k—1)M,

g™ Uu; if u; @ 2™ and L(z(™ Uujy) - L(z™;y) > w
g™t = M\ ifu; € 2™ and L(z(™ \ uj;y) — L(z™;y) > w
z(m else

where w > 0 is a chosen threshold value (in this section we take w = 0).

Algorithm 2 (steepest ascent)
step 0: initialize z(® = 0 or some other sensible initial state;
steps k=1,2,...:

Given z*), compute

a= max {L(:E(k) \ zi;y) — L(w(k); y)}

z;€x(k

and

b = sup {L(z(k) Uu;y) - L(z®; y)} .
uelU

Assume that these mazima are attained by objects z} and u* respectively. If max{a, b} <
w, then stop. Otherwise, if b > a, add the corresponding object:

kD) = (k) oy
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while if a > b, delete the corresponding objeét:

x(k+1) = z(k) \.'E:
Again w > 0 is some chosen threshold value.

Clearly these algorithms increase the likelihood at each step, f(y|z**1D) > f(y|z®)). As
there are only a finite number of possible configurations, convergence of f (y|:c(’°)) is guaran-
teed and (if w = 0) we reach a local maximum of the likelihood function. At worst there is
cycling between images of equal likelihood. However the algorithm does not necessarily yield
the global maximum likelihood solution, and the local maximum obtained will depend on the
initial configuration z(®. For the initial configuration we should therefore choose a sensible
state, such as the empty list @, or the set of local maxima of

f(yl{u})

f(ylo)

The log likelihood ratios in Algorithms 1 and 2 can be interpreted as the differences in
‘goodness-of-fit’ attained by altering the list z. The following result shows that these are
related to the Hough transform.

Lemma 4 For any blur-free independent noise model (Definition 1) with g(-|-) > 0, the log
likelihood ratio depends only on pizels inside the added object R(u):

L(zUu;y) — L(z;y) = Z h(y:, 60, 61) (7)
teR(u)\S(z)

where
9(y:61)

9(y:/60)

is the difference in ‘goodness of fit’ at pizel t. In particular the log likelihood ratio of a single
object u against an empty scene O is

L({u}ly) - L@ly) = > h(yt,60,61). (8)

tER(u)

h(y:, 60, 61) = log

The proof is trivial since s(®“)(t) # s(®)(t) only for t € R(u) \ S(z).

The right hand side of (8) is a sum of pixel contributions over the object R(u), analogous
to the Hough transform Hy(t) in (4). The more general expression (7) is a generalization of
the Hough transform that calls for summation only inside the mask T\ S(z).

Lemma 5 Consider any blur-free independent noise model (Definition 1), where the density
g is a one-parameter exponential family

9(1:10) = exp{A(8) + B(y:) + C(8) - D(y:)}
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Here A, B are arbitrary real-valued functions and C,D are arbitrary real-valued or vector-
valued functions (- denoting inner product). Then

LizUuy) - L(z;y) = (C(B1)-CB))- Y  D(w)
teR(u)\S(x)

+ (A(61) — A(60)) | R(u) \ S(=)|
where | - | denotes number of pizels.

This is again trivial: for an exponential family

9(y1/61)
& 9(y:l60)

and summation over R(u) \ S(z) gives the result.
Thus the algorithms 1 and 2 will add an object u when the average value of a function of
ys over the masked object R(u) \ S(z) exceeds a threshold:

= A(6;) — A(6p) + (C(61) — C(60)) - D(y:)

Mean (2, R(u) \ S(z)) > A(6o) — A(61)

where
z = (C(61) — C(6o)) - D(yt)
and
Mean(z, V) = —1— Z 2
=7

is the average of z; over pixel subset V.
In particular for model 1

L(mUu;y)—L(z;y)=u1—_§ﬂ{ Z y,—&;ﬂlR(u)\S(xﬂ}

o teR(w)\S(z)

since for the Gaussian density with o fixed we have A(u) = —!/2log2mo?—p?/(20%), B(y:) =

—y2/(20%), C(u) = p/o? and D(y;) = y:. That is, the algorithm will add an object when the

average y value over the masked object R(u) \ S(z) exceeds the average intensity (uo+p1)/2.
Similarly, for model 3 with p fixed,

L(z Uu;y) — L(z;y) = -2 log =2 { > yt—%lR(U)\S(z)l}-

1 =P | tertans)

since A(p) = log(1—p), B(y:) =0, C(p) = log(p/(1 —p)), D(y:) = y:. That is, the algorithm
adds an object when the average fraction of white pixels in the masked region R(u) \ S(z)
exceeds one half.

Note that the double exponential distribution does not form an exponential family, but
we still have a similar result.
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Lemma 6 For model 2

L(zUu;y) — L(z;y) = 2)\ { E clip(yt, po, 1) — ‘i}ﬂiR(U) \ S($)|}

teR(u)\S(z)
where
a ifs<a
clip(s,a,b)=¢ s ifa<s<b
b ifs>b
Proof: Observe that (with a < b)
|s=bl—]s—a] = 1{s<a}(b—a)+1{a<s<b}a+b—2s)+1{s>b}(a—b)

a+b—2s+1{s < a}(—2a+ 2s) + 1{s > b}(—2b + 2s)
= a+b—2clip(s,a,b)

and continue as before. O

This case is interesting because it shows that the use of a certain type of pre-processing,
namely clipping, before applying the Hough transform, is equivalent to assuming a double
exponential model for the un-processed data.

Figure 1 shows a tame example in which a pattern of discs of fixed radius has been ob-
served after addition of Gaussian noise. Figures 2 and 3 show the reconstructions obtained
respectively by the coordinatewise optimization and steepest ascent algorithm, taking thresh-
old value w = 0. Note that the coordinatewise algorithm performs reasonably well in regions
with isolated objects, but fails when the discs overlap each other (figure 2). The pixels were
scanned in row major order and the initial configuration empty.

When using the steepest ascent algorithm, it is important to stop short of convergence.
Typically, when all the objects that are really present have been detected, the method keeps
adding spurious ones. Usually, provided that the data is not too noisy, the increase in likeli-
hood drops when the ‘best’ reconstruction is reached. Figure 3a shows the best reconstruction
for our example and the final one is given in figure 3b.
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5 The Bayesian approach

Maximum likelihood solutions z tend to contain clusters of almost identical objects. This
phenomenon is undesirable if the number of objects is an important consideration, or if it is
known that objects cannot overlap, or if the number of objects is effectively fixed (say, if it is
unlikely that there is more than one object). Further, the use of a ‘hard’ threshold criterion
implies that likelihood ratio procedures are sensitive to changes in the data, and that the
results of coordinatewise optimization may depend on the scan order in the object space.

Analogous to the introduction of Markov random fields as prior models or roughness
penalties for the true image in segmentation problems [8, 16], we too introduce a prior model
to solve this instability problem. Since z is no longer a discretized image but a variable-length
list z = {z1,...,Zn} of parameter points in a continuous space, the natural stochastic models
come from stochastic geometry and spatial statistics. The prior probability p(z) for image =
will now be a probability density with respect to the Poisson process [3, 13, 36, 48]. Suitable
choices for p(z) will be discussed further below.

The posterior probability density for z given observation of image y is formally identical
to that in section 2.1, p(z|y) « f(y|z)p(z) and the maximum a posteriori (MAP) estimator
is again defined by (2). However (2) is now an optimization over variable-length lists = of
parameter points in continuous space.

For example, in model 1 with prior p(z), the MAP equations require minimizing

% > (we- 6’(")(t))z — log p(z);

teT

for model 2

A [y — 6 (t)| - logp(e);
teT

and for model 3 ,

|S(z) AY|log 1 ;p — log p(z).

For model 4 , the MAP equations require maximizing

log p(z) — |S(z)|log p

subject to the constraint S(z) C Y. Thus it is generally not possible to solve the MAP
equations directly. We shall use iterative algorithms similar to those developed in section 4.

Algorithm 3 (continuous ICM) Apply Algorithms 1 or 2 with f(y|z) replaced by the pos-
terior probability p(z|y). Thus we iteratively add object u to list x iff

flylz Uu)p(z Uu)
f(ylz)p(z)

The convergence properties of Algorithms 1 and 2 remain valid for this new objective
function. An alternative description of Algorithm 3 is that the static threshold value used in

> 1.
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the likelihood ratio algorithms is replaced by one that depends on the current reconstruction
and on a smoothing parameter.

Algorithm 3 is analogous to Besag’s ICM algorithm [8]. In the discrete case, consider
labelling each u; € U with value

v = 1 ifujex
77 ) 0 else

The ICM approach would be to visit each object sequentially and update its label in the light
of current estimates for the other objects: when the labelling is 9, the label of the current
object u; is updated to

k = argmax P (v; = kly, (9:)iz;) -

But this is clearly equivalent to comparing

F(yl2 \ uj)p(& \ uj)
against
F@l(@\wy) Uui)p((2\ uj) Uuy)
where £ is the current object list; and this is Algorithm 3.
Now we turn to the choice of p(z). The appropriate analogues of Markov random fields are
nearest-neighbour Markov point processes [3], generalizations of the Markov point processes

of Ripley and Kelly [39]. Their essential property, that replaces the local interaction property
of Markov random fields (8, 16], is that p(z U u)/p(z) depends only on local information.

Definition 2 A Markov overlapping object process is a stochastic point process on U
having a probability density p(z) with respect to the standard Poisson process on U, such that

p(zUwu) > 0= p(z) > 0;
and whenever p(z) > 0,
p(z U u)
p(z)
depends only on u and on those x; € x that overlap u, R(z;) N R(u) # 0.

The following result is the analogue of the Hammersley-Clifford theorem, characterising
the structure of interactions (see [3, 39]).

Lemma 7 A stochastic point process on U 1is a Markov overlapping object process iff its
density is of the form

n
p(e)=al]a@) [[e@.z) ]  ez,z)...
=1 i#j W5,k distinct
where o > 0 is a constant (normalizing the density) and gx : U X --- x U — [0,00) are

measurable functions such that p(-) is integrable, and such that qi(zi,, -, zs,) # 1 implies
that all z;; are pairwise overlapping.
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Here gx(u1,. .., ux) can be regarded as a measure of interaction between objects ui, . .., U.
Values of gi(-) less than 1 indicate ‘repulsion’, i.e. a tendency for this configuration to be
avoided; values equal to 1 indicate an absence of interaction; values greater than 1 indicate
‘clustering’ or a tendency for this configuration to be favoured. Equivalently, one may say
the process imposes an additive penalty log g (u) for the presence of each object u, a penalty
log g(u,v) for the conflict between each pair of objects u,v, and so on.

Prior Model 1: Strauss process

This is a generalization of the Strauss point process [3, 13, 39, 48], defined by constant
penalties

qa(u) = B
g (u,v) = {7 if R(u) N R(v) # 0
1

1 otherwise
() =

where 8 > 0 and 0 < v < 1. The density is thus

p(z) = 0@y 9)

where n(z) denotes number of objects in z and r(z) the number of pairs of overlapping
objects.

Interaction between objects is controlled by . If ¥ < 1, there is repulsion between objects;
indeed, if v = 0, no objects are permitted to overlap. If v = 1 we get a Poisson process of
intensity 3. For v > 1 the process is undefined since the density is not integrable.

The Strauss process is a Markov overlapping object process, since

for k > 3,

log p(;c(;))u) = log B8 + r(z,u)logy (10)
where
r(z,u) = r(zUu)—r(z)

= number of z; € z such that R(z;) N R(u) # 0

Prior Model 2: area interaction process

This has density
p(z) = aﬁﬂ(r)(gls(x)l (11)

with parameters 8 > 0, § > 1 and where a > 0 is the normalizing constant. As usual n(z) is
the number of objects in list z and |S(z)| is the number of pixels in the silhouette. For §>1
this density is bounded above and below (since |S(z)| is bounded) and is thus integrable.
The process is Markov since
PEUY) _ glR\SE)
p(z)
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depends only on those z; which overlap u. The density can be written as a product of
interaction terms using the inclusion/exclusion formula

15(z)| = Xn: |R(z:)l = 3 IR(@) N R(z)|+ Y. |R(z:) N R(zj) N R(zx)| - ...
=1

i#j 3,5,k distinct

If the Strauss model is used as the prior, the parameter v controls the tradeoff between
goodness-of-fit to the data and ‘complexity’ of the solution z. Assume 8 = 1. For vy =1
the MAP estimator is just the maximum likelihood estimator; while when v = 0 the MAP
estimator maximizes the likelihood subject to the constraint that no two objects overlap.

Lemma 8 For any blur-free independent noise model (Definition 1) with g(:|-) > 0, and the
Strauss process prior, the log posterior likelithood ratio depends only on data pizels inside the
added object R(u) and on the number of existing objects overlapping u:

f(ylz Y u)p(zUw) =logf + Z h(yt, 00,61) + r(z,u) log~.

lo
& fylo)p(@) teR(w)\S(=)

In particular, the log posterior likelihood ratio of a single object u against an empty scene (

1S
F{uhp{u}) _
FlDp0) - oeh Tt te%(:u) h(y1, 60,61)

which shows that thresholding the Hough transform of y at a fixed level is equivalent to
performing for each possible object u a likelihood ratio test for {u} against @ with a Poisson
prior model (i.e. taking no interaction between objects).

Algorithm 3 is illustrated in figure 4 for the example of the previous section, using coor-
dinatewise optimization. Again, the pixels were scanned in row major order and the initial
configuration was empty.

log

Lemma 9 For a blur-free independent noise model (Definition 1) with g(:|-) > 0, and the
area-interaction prior (11), the log posterior likelihood ratio is

flylzUup(zUu) _ b a8t R
o8 f(ylz)p(z) logﬁ+tER(UX)iS(a:) (B0 64) + | R(1) \ S(z) log

For a single object u against an empty scene 0,

tog £ P({)) _

TR0y = 088+ 2 hlunbo,61) +|R(u)]log

teR(u)

which shows that linear modifications of the Hough transform are equivalent to imposing an
area-interaction prior model.
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6 Stochastic annealing

An alternative method to approximate the MAP estimator is simulated annealing (17, 16].
For every H > 0 define the probability distribution px(-|y) by

pu(zly) o« {f(ylz)p(z)}/*.

As H — 0, this converges to a uniform distribution on the set of maxima of the posterior
distribution (at least when U is discrete). If we could simulate from each distribution pH(:),
we could generate a sequence of approximations to the MAP estimator. This is almost
possible, in that for each H we can construct a Markov process with equilibrium distribution
pr(|y). The stochastic annealing algorithm simulates these processes consecutively with H
gradually dropping to zero.

In the case of discrete Markov random fields [8, 17, 16] the required Markov process is
the Metropolis algorithm, Gibbs sampler or a similar state-flipping mechanism (25, 32, 37].
In the case of a Markov point process it is a spatial birth-and-death process (3, 34, 39]. In our
context this is a continuous time, pure jump Markov process with states in the space of all
finite object configurations z, with the property that the only transitions are the birth of a
new object (a transition from z to zUw) or the death of an existing one (transition from z to
z\ u). The process is said to have birth rate B(z, F') and death rate D(z,u), for measurable
F C U and u € U, when it can be described as follows:

e given the state z at time t, the waiting time to the first transition after time t is
independent of the history of the process and exponentially distributed with parameter
D(z) + B(x), where

D(m) = Za:ie:z: D(SL‘ \ Ti, xi)
B(z) = B(z,U).

e the next transition is a birth with probability B(z)/[D(z) + B(z)] and a death with
probability D(z)/[D(z) + B(z)).

e given that the next transition is a birth, the new point belongs to the measurable subset
F with probability B(z, F')/B(z).

s given that the next transition is a death, z; is deleted from z with probability
D(.’I) \ T, CB,)/D(.’E)

Under certain conditions discussed below (see [3, 34]) the birth and death rates uniquely
specify the process.

If B(z, ) is absolutely continuous with respect to the reference measure v on U, its Radon-
Nikodym density will be denoted by b(z,-). In our context, define a spatial birth-and-death
process on the object space U by its birth rate

IWeopl= ) 1/H i f(yla)p(z) > O

br(z,u) = { (f(f yiz)p(z ) (12)
0 if f(ylz)p(z) =0

for u € x and death rate
D(z\ u,u) =1 (13)
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The choice of constant death rate follows Ripley [35]. The total transition rate out of state
associated with deaths is then simply n(z), the number of elements in list z; the total birth
rate is

Bu(z) = / bu(z, u)dv(u).
U
Thus the total transition rate out of state z is n(z) + By(z).
Lemma 10 Let y and H be fired. Assume f(y|z) > 0 for all z. For eachn =0,1,... define

kn = sup Bpy(z).

n(z)=n

Assume either (a) that k, = 0 for all sufficiently large n > 0, or (b) that k, > 0 for alln >0
and both the following hold:

Z Ko "‘577.—1 <
el n:
> n!
D =
n=1 ,{/0 .. ﬂn

Then there exists a unique spatial birth-and-death process for which by(-) and D(-) as above
are the transition rates; this process has unique equilibrium distribution py(-|ly); and it con-
verges weakly to the equilibrium distribution from any initial state zo satisfying f(y|zo)p(zo) >
0.

This is just a restatement of Theorem 2.10 in [3] which is derived from Proposition 5.1
and Theorem 7.1 of [34]. The assumption f(y|z) > 0 is needed so that the class K = {z :
f(ylz)p(z) > 0} is hereditary: z € K implies z \ u € K. Therefore all states in K can be
reached from one another with positive probability. Moreover, starting in K, the process
never leaves it. We conclude that the birth-and-death process restricted to K is irreducible,
so any equilibrium distribution concentrated on K is necessarily unique.

Given that the spatial birth-death processes for each fixed H are well defined and converge
in distribution to the corresponding px(:|y), the method will be to run an ‘annealing schedule’
involving a combination of these processes with H | 0. For the moment we concentrate on
fixed H > 0.

Lemma 11 For any blur-free independent noise model with g(-|-) > 0, and a pairwise in-
teraction prior with ‘pure inhibition’ q(-) < 1, the associated spatial birth-and-death process
satisfies the conditions of Lemma 10.

Proof: Use the representation of log likelihood ratios in Lemma 4. Since T is finite, we
have upper and lower bounds on the goodness of fit, say |h(y:,60,61)| < a for all t. Hence

|L(z U y) — L(z;y)| < alR(u)| < a|T).
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For p(-) we have

B 11 a(u,z:)

p(x) T;€ET
I}

IA

so that

zTUU u 1/H
br(z,u) = (f(yl Uu)p(zU ))

flylz)  plx)
< exp((a|T| +1logB)/H)
= k (say).

Thus &k, < kv(U) and it is easy to check that the two conditions of Lemma 10 hold. O

From now on, we assume that the object space is finite, say U = {u1,...,upm}. The total
birth rate is then simply
Bu(z) = ) br(z, u;)v(u;)-
J

To simulate the birth-death process, note that the sequence of states of the process after
each transition is a (discrete-time) Markov chain which however does not have the same
equilibrium distribution as the continuous-time process. The (continuous) time spent in each
state is exponentially distributed with a mean sojourn time depending on the current state.
It is necessary to simulate these sojourn times as well.

The process can be represented as a sequence (X (’“),T(k)), k=1,2,... of random vari-
ables, where X (¥) are the successive states and T%) is the sojourn time in state X(*). The
sojourn time T is exponentially distributed with mean 1/(n(z) + By (z)), independent of
other sojourn times and of past states. The next state transition is a death with probability
n(z)/(n(z) + Br(z)), obtained by deleting one of the existing points with equal probability;
otherwise the transition is a birth generated by choosing one of the points u; ¢ X (k) with
probability

bu(z,uj)
B ()
and adding u; to the state. This representation is implemented directly by the following
algorithm.

Algorithm 4 An initial state 2 is given.
For each k=0,1,2,---

e Compute n =n(z™®)) and B = BH(z(’“));

e Generate an exponentially distributed waiting time by setting k) .= %53—‘/ where V is
a random variable uniformly distributed on (0,1);

e with probability n/(n + B), generate a death zk+1) .= (k) \ z by deleting one of the
points of z®) at random with equal probability;
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e otherwise generate a birth z(*t1) .= z®)Uuy by choosing a point uj € U with probability
P{J =j} =bu(z®,u;)/B.

All random steps are to be independent of each other and of the state of the process. To
simulate from the equilibrium distribution, the process is run for a ‘large’ time period C, and
we take (5) where

k
K =min{k=0,1,2,...| Y t¥ > C}.

1=0

Since the birth rate by (z,u) is an exponential function of the Hough transform, it tends to
have sharp peaks as a function of u when H is small or when z is far from the MAP solution.
There is then a high probability that the next transition will add a new object u at one of
the locations that is close to maximal for by (z, u).
This implies that rejection sampling methods are not a workable alternative to Algo-
rithm 4, since the waiting times would be very long. Calculation of By (z) seems unavoidable.
To avoid numerical instability or overflow one could first compute

c(z,u) = logby(z,u) = H™' (L(m Uu;y) — L(z;y) + log 2%(_;)“_))
for each u = uj, to find
m(z) = maxcy(z, u]')
j

then to compute

Bi(z) = ™ Y explen(z, ) — m(@)] v(w;)

where the exponential term lies between 0 and 1. The conditional probability of a birth at
u; is computable from the same summands,

Bata = oPlen(@ u;) = m(a)} exp{m(z) - log Ba(2)}

The reconstruction obtained using Algorithm 4 on the data of figure 1 is displayed in figure 5.
Here the temperature decreases at a geometrical rate.
For very small H the following would be more efficient.

Algorithm 5 Let € > 0 be given. For each k =0,1,2,...
¢ Compute n = n(z¥) and for each u; compute c; =logby (z®,u;);
e Find m(z®) = max; c;;
o Take v = v(H,z¥) >0 so large that

v(U) exp{m(z) - v} < ¢
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e Rank all the values c; for m(z®) —v <¢; < m(z®) to give a list of values m(z®) =
mi>mg>...>mp > m(z(")) — v, and compute the ‘multiplicities’

ke = v({uj : cj = me});

o Approzimate By (z®) by
L
B = Zkgem‘;
=1

e Proceed as in Algorithm 4, except that to generate a birth, the procedure is to choose one
of the values £ = 1,..., L with probability kee™ /B; then one of the ky points u; such
that c; = my is chosen with respective probabilities v(u;)/ki yielding gkt+l) = :z:(’cg Uuj.

The choice of v is arranged so that B is an approximation to By (z) with error at most €:

0< By(z)-B= Z ev(uj) < v(U)exp{m(z) — v} <e.

c;<m(z)—v

For very small H, when z®) is not close to the MAP solution, Algorithm 5 amounts
to choosing at random one of the u; that maximizes the conditional posterior likelihood
ratio cg(x,u). Thisis in a sense comparable to the behaviour of Algorithm 3 (steepest ascent
version) but we note that this description ceases to hold as the solution approaches optimality.




22

7 Performance evaluation

7.1 Complexity

When comparing the progress of different algorithms as plotted below, note that one ‘step’
of each algorithm corresponds to one scan through the discretised parameter space. The
number of ‘transitions’ (additions or deletions of objects) per scan may vary: steepest ascent
and stochastic annealing generate one transition per scan, while coordinatewise optimization
yields a variable number of transitions (depending on the data and the scanning order).

Every scan (in each of the three algorithms) requires O(M) computations, where M is
the number of parameter points. Thus ‘steps’ are roughly equivalent to total computer time,
although this ignores the possibility of paralleli\sm: steepest ascent and stochastic annealing
could be implemented in parallel computation, but coordinatewise optimization is inherently
sequential.

7.2 Typical behaviour

We have tested Algorithms 1,2,3 and 4 on simulated data and measured the performance
quantitatively using Pratt’s figure of merit [1] and the Ay metric [2] for binary images.

Consider once again the model of discs of fixed radius, degraded by additive white Gaus-
sian noise. To see what happens to the reconstructions when iteration proceeds, we computed
the Ag distance and the figure of merit for the true image and the reconstruction at successive
iteration steps. Starting with an empty image, the results for noise of standard deviation 50
are given in figure 6. The pixels were scanned in row major order.

Note that coordinatewise optimization and steepest ascent behave in entirely different
ways. Coordinatewise optimization needs only a few scans through the image. In the first
step a lot of objects are added, clustered around the correct positions. In subsequent steps
these groups are thinned out. In contrast, steepest ascent requires at least as many scans as
there are objects in the image. One at a time, new objects are added, gradually improving the
reconstruction quality, until all objects are detected; then the reconstructions become worse.
This method however yields more accurate reconstructions than coordinatewise optimization
algorithms, especially in the non-Bayesian case.

Using other initial configurations does not change this pattern. Coordinatewise optimiza-
tion converges in a few steps; steepest ascent slowly improves the reconstruction by removing
incorrect objects and replacing them by the right ones. Indeed, the comparison is only more
favourable to the coordinatewise optimization algorithm if the initial pattern is poor. The
number of iteration steps required by this method is nearly insensitive to the initial state,
but steepest ascent needs to delete more and more spurious objects.

Figure 7 shows the reconstruction quality as a function of time for the simulated annealing
algorithm. The temperature decreases at a geometrical rate.

7.3 Initial state influence

In the previous section we discussed the initial state influence on typical behaviour. In
this section the influence on reconstruction quality will be analysed. To this purpose we
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computed the A, distance (tables 1 — 3) and Pratt’s figure of merit (tables 4 — 6) for the
final reconstructions obtained using our methods with several initial states. Note that both
similarity measures display roughly the same pattern.

Comparing these tables, we see that the achieved reconstruction quality fluctuates less for
algorithm 4 than for other methods. This is in agreement with the fact that the annealing
schedule converges to global maxima of the posterior distribution, regardless of the starting
configuration (cf. Lemma 10), while all other methods reach only a local maximum and
consequently do depend on the initial state.

Not surprisingly, the best reconstructions were obtained when initializing with the true
image, but a perfect match is not guaranteed. This reflects the fact that the truth is not
necessarily a solution of the MAP equations.

A widely used technique for choosing the initial state is to compute the Hough transform
and find its local minima in the foreground region. However, in noisy images this procedure
performs very badly. Even when used only as a first state in our algorithms, better recon-
structions could be obtained in most cases with an empty image as initial state. Again, if the
true objects are translated over a small distance and this is taken as the starting image, the
final reconstruction quality is poorer than when starting with an empty image. A possible
explanation is that any algorithm based on addition and deletion of objects will require extra
time to throw away incorrect estimates and replace them with better ones.

Therefore, as a rule of thumb, we would recommend using the empty list as a starting
state for the algorithms, unless additional information about the objects to be detected is
available. Even more so as steepest ascent will waste a lot of time throwing away incorrect
objects (see the remarks in subsection 7.2). Another advantage is that no preprocessing (e.g.
computing the Hough transform) of the data is required.

7.4 Noise influence

It is also of interest to investigate the influence of the noise variance. To do so we generated
ten independent realisations of model 1 for several values of 0. Reconstructions were obtained
using algorithm 1 and the coordinatewise version of algorithm 3. For each o the average re-
construction quality was calculated. The results are shown in figure 8. As could be expected,
the reconstructions become poorer when more and more noise is added. Note that if there
is little to no noise both algorithms yield a perfect reconstruction. Steepest ascent is less
sensitive to noise; we still obtained a perfect reconstruction for noise of standard deviation
as large as 40. A similar remark holds for simulated annealing.

7.5 Discussion

In this paper we have indicated how the Bayesian approach to image segmentation could be
adapted to recognize configurations of overlapping objects. Instead of using Markov random
fields, we chose prior models from the class of nearest-neighbour Markov processes. Objects
were defined to be neighbours iff their intersection is non-void. Several algorithms were
developed and evaluated using synthetic data. Their behaviour on real image data however
is a subject open to future research.
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Appendix A
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Figure 3A
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Figure 6A: Reconstruction quality as iteration proceeds
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Figure 6B: Reconstruction quality as iteration proceeds
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Figure 8A: Influence of noise variance on reconstruction quality
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Appendix B

Delta distance

Table 1
Initial pattern | Algorithm 1 | Algorithm 3
(coordinatewise)
empty .353 .239
true .161 072
shifted .255 .260
Hough extrema | .368 .216
Table 2
Initial pattern | Algorithm 2 | Algorithm 2 Algorithm 3 Algorithm 3
best at convergence | best at convergence
(steepest ascent) | (steepest ascent)
empty 072 .161 072 114
true .000 .161 .000 .072
shifted 234 234 .210 210
Hough extrema | .135 .198 .102 114
Table 3
Initial pattern | Algorithm 4
empty 1 144
true 114
shifted 114

Hough extrema | .144
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Figure of merit

Table 4
Initial pattern | Algorithm 1 | Algorithm 3
(coordinatewise)
empty .387 .831
true .755 .996
shifted .582 782
Hough extrema | .367 .849
Table 5
Initial pattern | Algorithm 2 | Algorithm 2 Algorithm 3 Algorithm 3
best at convergence | best at convergence
(steepest ascent) | (steepest ascent)
empty 1996 755 996 954
true 1.000 .755 1.000 .996
shifted 821 .704 907 .907
Hough extrema | .942 .683 992 .954
Table 6
Initial pattern | Algorithm 4
empty .904
true .954
shifted .954

Hough extrema | .904
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