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Single-Machine Scheduling to Minimize a Function
of K Maximum Cost Criteria

J.A. Hoogeveen
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A number of jobs has to be scheduled on a single machine, which can handle no more than one job
at a time. Each job requires processing during a given positive uninterrupted time. For each job,
there are K arbitrary non-decreasing penalty functions. The quality of a schedule is measured by K
performance criteria, the kth one being given by the maximum value of the kth penalty function that
is attained by any job. The problem is to tind the set of Pareto optimal points with respect to these
performance criteria. We present an algorithm for this problem that is polynomial for fixed K. We
also show that these algorithms are still applicable if precedence constraints exist between the jobs
or if all penalty functions are non-increasing in the job completion times.
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1. INTRODUCTION

Since the introduction of scheduling theory in the 1950’s, most research has been concentrated
on single-criterion optimization. In real-life problems, however, multiple and usually conflicting
criteria play a role. There are two methods to cope with conflicting criteria. The first one is
hierarchical minimization. The performance criteria f, . . ., fX are indexed in order of decreas-
ing importance. First, f' is minimized. Next, f 2 is minimized subject to the constraint that the
schedule has minimal f! value. Then, f° is minimized subject to the constraint that the values
for f! and f2 are equal to the values determined in the previous step; and so on. The first results
on multicriteria scheduling (e.g., Smith, 1956) concern this approach. The second method is
simultaneous minimization. The criteria are aggregated into a single composite objective func-
tion P(f!, ..., fX), which is then minimized.

In this paper, we choose the second approach. We address the following single-machine mul-
ticriteria scheduling problem. A set of n independent jobs has to be scheduled on a single
machine, which can handle no more than one job at a time. The machine is assumed to be con-
tinuously available from time 0 onwards. Job J; (i = 1,...,n) requires processing during a
given positive uninterrupted time p;. A schedule o defines for each job J; its completion time
C;(0) such that the jobs do not overlap in their execution. The cost of completing J;
(i = 1,...,n)is measured by K penalty functions ﬂ‘ (k =1, ..., K); each of these penalty func-
tions is assumed to be non-decreasing in the job completion time. Given a schedule o, the
penalty functions induce K performance criteria fi, (o) (k=1,...,K), defined as
ﬂ‘nu(o) = maXj<j<n ﬂ‘ (C; (0)), respectively. Given a function P ‘RXSR, we wish to find a
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schedule o that minimizes P(f,lnax(a), cees jﬁax(o)). We additionally assume that P is non-
decreasing in each of its arguments. We denote this problem by 1| | P (fhax, - - - » fasax)-

Due to this additional assumption, we know that there is a Pareto optimal point with respect
to (fhax, - - -»/aax) in which P attains the optimum. A schedule ¢ corresponds to a Pareto
optimal point if there is no feasible schedule 7 with fla(m) < j"mx (o), fork =1,...,K, where
at least one of the inequalities is strict; in this case, we say that o is not dominated.

The organization of the paper is as follows. In Section 2, we recall Lawler’s algorithm (Lawler,
1973) for 1| prec | fmax, Where the acronym prec indicates that precedence constraints have been
specified; that is, for each job J; (i = ., n) there s a set of jobs that have to precedeJ; and a
set of jobs that have to succeed J; in any fca31blc schedule. Furthermore, we show that we can
solve 1|d; ,prec | fmax by adjusting Lawler’s algorithm appropriately, where d indicates that for
each job a deadline on the completion time has been specified. In Sectlon 3, we present an
O (n*) time algorithm to determine all Pareto optimal points for the two-criteria problem. In
Section 4, we analyze the three-criteria problem, and show how this analysis can be extended to
the K-criteria problem, for any fixed K = 4. Finally, in Section 5, we consider two problems that
are solved analogously. The first problem allows precedence constraints; the second one has
non-increasing penalty functions.

2.LAWLER’S ALGORITHM TO MINIMIZE MAXIMUM COST FOR ONE CRITERION

Lawler (1973) presented an O (n2) algorithm to solve 1|prec | fiax- The algorithm is based upon
the following observation. Let S denote the subset of jobs that may be processed last, let T
denote the sum of the processing times of all jobs, and let J; be a job in S such that
fi (T) = min; es {f; (T)}- Then there exists an optimal schedule in which J is last.

LAWLER’S ALGORITHM

O T <Z=1pj ¢ {J1,---,Jn}-

(1) Determine the set 9 containing the jobs that have no successorsin §.

(2) Choose from U the job J; that has minimal f; (7)) value, settling ties arbitrarily; J; is pro-
cessed from time 7' —p; to time 7.

BT« T~—pj; $<$—{J;}.

(4) If § =~ &, then go to Step 1; otherwise, stop.

THEOREM 1. Lawler’s algorithm solves 1| prec | fiay-

PROOF. Let o be the schedule obtained by Lawler’s algorithm, and let ¢ be an optimal schedule
for 1|prec | fmax- Compare both schedules, starting at the end. Suppose that the first difference
occurs at the kth position; let J; occupy the kth position in 6. Adjust ¢ by assigning J; to the kth
position; the sequence of the other jobs stays the same. The new schedule o is feasible; J; can be
assigned to that position as o is feasible, and the sequence of the other jobs has not been
changed. Furthermore, its cost has not been increased; J; was chosen by Lawler’s algorithm, so
it must have minimal cost among the unassigned jobs that could be scheduled in that position.

Proceed in the same way until ¢ and o are identical, implying that f,.,(0) < fia (o). Hence, o
is optimal. [J
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Lawler’s algorithm is easily adjusted to deal with 1 |Z] .prec | fmax. If a job Ji is a candidate for
the last position, then we have to check whether J has no successors and d; = 7. Hence, the set
AL contains the jobs that have no successors in § and that have a deadline greater than or equal to
T. Alternatively, we can incorporate the deadlines by redefining f;(T)<« oo for T >d;
(j =1, ...,n)and apply Lawler’s algorithm to the adjusted 1| prec | fax problem.

The deadlines do not have to be given explicitly, but may be induced by given upper bounds
on other criteria. For example, if g; is a non-decreasing penalty function, fori = 1,...,n, then
the constraint g ,,,x < G induces a deadline for each job J;.

3. ANALYSIS OF THE TWO-CRITERIA PROBLEM

For notational convenience, we denote the penalty functions for J; (i = 1,...,n) by f; and g;,
respectively. Correspondingly, the maximum cost criteria are called fax and g yay, Tespectively.
There are basically two ways to deal with the 1| | P(fmax ;g max) problem. The first one is to
solve it directly, for instance through branch-and-bound. The second one is to solve it in a roun-
dabout way by determining the Pareto optimal set, that is, the set of points that are Pareto
optimal with respect t0 (fmax ;g max), and then selecting the one that minimizes P (fmax ,g max)-
We take the second option. From now on, whenever we refer to the problem
1| P (fhaxs-- - fEax), it is assumed that we are going to determine all Pareto optimal points
with respect to (f, Laxs e es ﬂ.‘m). For instance, 1|d; | P(fmax ;gmax) denotes the problem of
determining all Pareto optimal points with respect to (fax ;& max) Subject to deadlines.

In order to determine the Pareto optimal set, we apply the following strategy. We start by
solving 1| | fmax; this yields the first value F' that corresponds to a candidate Pareto optimal
point (F,G). Next, we determine the corresponding value G by solving 1| fmax <F |gmax
through Lawler’s algorithm. Then, we determine the next larger value F that corresponds to a
possibly Pareto optimal point (F,G), solve 1| finax < F | g max to obtain G, and so on.

There are two difficulties with the application of this strategy. The first one is how is the next
value of F determined. The second one concerns the question of how many of these values are to
be computed before all Pareto optimal points have been found.

We start by addressing the first problem. Let ¢ be the schedule obtained by solving
1] fmax < F | gmax through Lawler’s algorithm, and let J; be a job that attains gmax(0), that is,
g (Cj(0)) = max|<i<n & (Ci(0)). As g; is non-decreasing, a Pareto optimal point with smaller
gmax value can be obtained only if the completion time of J; is decreased. Hence, some job J;
that is before J; in o and that has g; (C; (0)) < gmax has to be completed no earlier than time
C;(0).

]This observation provides the basis for our algorithm to determine the increase of F that is
necessary to reach a new candidate Pareto optimal point.

ALGORITHM NEXT UPPER BouND (NUB)

(0) Given a schedule ¢ obtained by Lawler’s algorithm, determine the set § of jobs that attain
g max(0)-

(1) Determine for each J; €% the set A, of jobs J; that are scheduled before J 7in o and that have
gi (Cj( 0)) <gmax(0).lfU; = & for someJ i €%, then gy, (0) cannot be decreased; stop. For
each jobJ; €f, define F; = min{f; (C;(0))|J; €U;}.

(2) The new upper bound F on f,,, is the maximum of the values F -
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THEOREM 2. Let (j", é) be a Pareto optimal point with respect 1o (fmax & max), and let ¢ be the
corresponding schedule. Let F be the new upper bound on f .y that is obtained by applying Algo-
rithm NUB, given o. There is no Pareto optimal point corresponding to a value F, with F>F>F.
O

A decrease of C; does not necessarily induce a decrease in g (Cj), and hence the new upper
bound F does not necessarily correspond to a Pareto optimal point. The remaining question is
how many values F are determined by Algorithm NUB, before all Pareto optimal points have
been found.

THEOREM 3. The Algorithm N'UB determines at most n(n —1)/2 values F.

ProOF. Every new value F obtained by applying Algorithm N'UB to ¢ corresponds to a combi-
nation of two jobs {J;,J;}, where g; (Ci(o)) = gmax(0) and f;(C;j(0)) = F. We will show that
every upper bound value F that is obtained by Algorithm NUB corresponds to a different com-
bination of jobs. L

Define /* and g* as the outcome of 1| | fmax and 1| | g max, Tespectively. Let o) be the schedule
obtained by Lawler’s algorithm when solving 1| fimax < f* | gmax- Fora = 1,..., 4, apply Algo-
rithm NUB to schedule o, to obtain F?*! and determine o,4; by solving
1| fmax < Fet! | g max; A4 is such that g,,(04) = g*. Suppose that the combination {Ji,J;}
corresponds to both F* +1 and F®*! with @ <b. Without loss of generality, let J ; attain
gmax(04); fi(Cj(0,)) = F a+1 We have to consider two cases: either J; or J ; attains gmax (05 )-
First, suppose that g = gma(0); fi(Cj(0p)=F"'. As £(C;(04)) = gmax(0s) =
gmax(0p) = g; (C; (0,)), we must have C; (o, )= C; (0; ). This implies that J; is allowed to be
completed at time C; (0, ) when o, is constructed, because F b > Fe+l As Lawler’s algorithm
selected J; to be completed at time C; (o), we must have that either J; had already been
scheduled or g; (C; (05)) < g (C; (0p)). In both cases, Algorithm NUB will not take J; into con-
sideration, when applied to a;. In the same fashion, we prove that J; will not be taken into con-
sideration by the algorithm if J; attains g (05 ). Hence, every pair of jobs (/;,J;) corresponds
to at most one of the values F obtained by Algorithm NUB. This proves the theorem. [1

COROLLARY 1. The number of Pareto optimal points with respect 10 (f max ,& max) is at most equal to
nn—1)/2+1. O

The following example shows that this bound is tight, even if both maximum cost functions are
of the maximum lateness type, thatis, f;: C; > C; — d;,and g; : C; > C; — ¢;,fori = 1,...,n.

d=nm—Dn—i+3)/2 fori=1,...,n,

i
e =i—1+ 3 diy1, fori=1...,n—1,
j=2
e, =e,1 +1,

pi =n—i, fori=1,...,n—1.



Pn=dy —(n—Dn—2)/2;

It is easy to check that the Pareto optimal schedules for this example are: (J,,,...,J2,J1),
(Jna'--’Jl)JZ),---’(Jl’Jn)--'3J37J2),'--’(J13J2a']n:-":J4’J3):---’(le'--’Jn)'

For sake of completeness, we list the algorithm to determine all Pareto optimal points and the
optimal solution value. Its correctness follows from Theorems 1 and 2.

ALGORITHM A

(0) Determine f* and g* by solving 1| | fmax and 1] | g max, Tespectively; put F < f*.

(1) Solve 1| fmax < F | g max; let G denote the outcome. Add (F,G) to the set of Pareto optimal
points, unless it is dominated by the previously obtained Pareto optimal point. If G=g%
then go to Step 3.

(2) Determine the next value of F by applying Algorithm NUB to the schedule obtained in the
previous step. Go to Step 1.

(3) The Pareto optimal set has been obtained. The 1| | P (fmax ,&max) problem is solved by com-
puting the value of the objective function for each point of the Pareto optimal set, and by
choosing the optimum.

The running time of Algorithm A is O (n*); this is the time needed for solving O (n?) instances
of the 1| fiax < F | g max problem.

4. ANALYSIS OF THE K-CRITERIA PROBLEM

We prove that the K-criteria problem can be solved by solving a polynomial number of (K —1)-
criteria problems. First, we analyze the three-criteria problem; later on, we show how this
analysis can be extended to the K-criteria problem. For notational convenience, the criteria are
called frmax, £max» a0d hpg, Tespectively; correspondingly, the penalty functions for J;
(i =1,...,n)arecalled f;, g;, and h;, respectively.

Note that each Pareto optimal point (F,G) for (fmax ;& max) Yi€lds a Pareto optimal (F,G,H)
for (fimax »& max »Amax), Where H is the outcome of 1| fmax < F,gmax < G | A max, and that each
non-Pareto optimal point (F, G) can only correspond to a Pareto optimal point (F, G, H) if H is
attractive enough. Note further that, if (F,G,H) is Pareto optimal, then (F, G) is a solution of
1A max < H | P(fmax »& max)- These observations provide the basis for our strategy to solve the
three-criteria problem, denoted by 1| | P (fmax »& max >/ max)-

We will determine all Pareto optimal points (F, G, H) for (fmax »&max »#max) by considering all
h max values that correspond to a candidate Pareto optimal point. The %, values under con-
sideration lie in the interval [#*, H]; k* is the solution of 1| | & 4y, and H is an upper bound on
the 7 pox value of any Pareto optimal point that we will establish now. Obviously, H should be
such that solving 1|hpme < H|P(fmax:&max) Yields the set of Pareto optimal points for
(frmax »& max)- Hence, H is determined by solving 1| fmax < F,gmax < G | A max for every Pareto
optimal point (F,G) for (fax »& max) 20d selecting the maximum. If we want to determine new
Pareto optimal points (F, G, H), then we have to decrease the upper bound on % 4, such that at
least one of the currently determined Pareto optimal points is eliminated. This leads to the
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following outline for an algorithm to determine all Pareto optimal points for (fmax »& max »% max)-

(0) Determine the set of Pareto optimal points (F,G) with respect t0 (fiax »£ max)- For each of
these points, compute the corresponding %, value, say, H. Store these Pareto optimal
points (F,G,H)inaset Uj.

(1) Determine H as the maximum of the h nax values in U;. Remove the Pareto optimal points
with /4 p,, value equal to H and store them in a set U 2-

Q1 H= h*, then stop; the set of Pareto optimal points is equal to U; U U,.

(3) Solve 1]k < H | P (fmax »& max), and compute for these points (F,G) the corresponding
h max values H. Add these points (F,G,H) to U;. Go to 1.

We solve 1|4y, < H | P (fmax »§ max) by adjusting Algorithm A such that every solution that is
generated by Algorithm A satisfies & ,,x << H. As observed before, this is easily achieved by
adjusting the penalty functions appropriately.

Before proving that this strategy determines all points (F,G,H) that are Pareto optimal with
respect {0 (fmax & max -/ max)» W€ prove two preliminary results.

THEOREM 4. Let (F,G) be an arbitrary Pareto optimal point that is obtained when solving
HAmax <H|P(fmax -8max) let H be the outcome of 1| frax < F,gmax < G | Amax. The point
(F,G,H) is Pareto optimal with respect 10 (f max »& max »# max)-

PROOF. Suppose that there exists a Pareto optimal point (177 G,H ) that dominates (F, G, H). This
implies that (F,G) is obtained when solving 1|4 ne < H | P(fimax »& max)- AS H< H < H, the
constraint & ,, << < H is at least as restrictive as Ay, < H implying that the point (F G) is also
obtained when solving 1|4y, < H | P (fmax »& max)- Hence, F = F and G= G, implying that
H= H, as both values are equal to the ouicome of 1| fipax < F,gmax < G |Amax- O

COROLLARY 2. Let (F,G,H) be an arbitrary point with H < H that is not_found when solving
17 max <H | P(fmax »& max)- Then there exists a Pareto optimal point (F,G,H) with H < H such
that F < F and G < G, where at least one of the inequalities is strict. [

THEOREM 5. Every Pareto optimal point with respect 10 (f ax »€ max »# max) iS found.

PROOF. Let (F, G, H) be an arbitrary Pareto optimal point with respect to (fmax »& max »# max)- If
(F,G) is Pareto optimal with respect to (fnax ;& max), then (F, G, H) is determined at the initiali-
zation. Otherwise, there must exist a Pareto optimal point that dominates (F, G, H) with respect
t0 (fmax »&max)- Suppose that (F G H ) is the Pareto optimal point with the smallest % ,, value
that dominates (F, G, H) with respect to (fax ,g max)- Hence, (F,G, H) will be generated as soon
as the upper bound on 4 ,, has become smaller than H. O

A straightforward implementation of the strategy leads to an O (n* | Z |) time algorithm, where
| Z | denotes the cardinality of the set of Pareto optimal points. The factor O (n*) stems from
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solving an 1| fmax < F,gmax <G | 7 max problem for every point (F, G) that is obtained when
solving 1A, < H | P(f max »g max)- Note that we have not yet taken precautions to avoid a
point (F,G) being generated more than once. Hence, we may improve the time complexity by
determining a quick way to generate every Pareto optimal point only once. This is achieved by
generating only the Pareto optimal points that are not present in the current set U, when solv-
ing 1| hma < H | P(fmax - max); these are exactly the points that are dominated with respect to
(fmax »&max) by 2 Pareto optimal point (F,G,H) with H = H, but not by any other Pareto
optimal point (F,G,H) in U, with H < H. In order to determine only these Pareto optimal
points, we derive lower and upper bounds on the fnax value such that a new Pareto optimal
point must have a fi,, value that is in between. We then search within this region for fa,
values that correspond to a possibly Pareto optimal point by applying Algorithm NUB. The
schedule we need to start with is obtained simultaneously with the bounds.

Order the Pareto optimal points in the set U lexicographically, that is, put the points in non-
decreasing order of fma Vvalue, settling ties according to non-decreasing gmax values. Let
(F',G',H") be the last point before (F,G,H) in the list with H'! < H, and let o; be the
corresponding schedule. If there is no such point, then F ! is equal to the outcome of
1|4 max <I7|fmax, G! to the outcome of 1|fmax < F' 1oy < H |gmax, and H! to the out-
come of 1|fpax <F ! gmax < G'|hmax, Tespectively; o' is then the corresponding schedule.
Let (F2,G?,H?) be the first point after (F,G,H) with £ ,, value smaller than H. If such a point
does not exist, then F2 = oo.

The new Pareto optimal points are determined by an iterative procedure. Apply Algorithm
NUB to oy; this yields an Smgx value F. . Determine G by solving 1| fmax < F ,Amax < H | gmax,
and H by solving 1| fiax < F,gmax < G | A max; call the corresponding schedule 6. If F > F?,
then stop; otherwise repeat the above procedure, in which Algorithm NUB is applied to o.

THEOREM 6. Let (i’, é,ﬁ ) be an arbitrary Pareto optimal point that is dominated with respect to
(frmax »& max) by (F,G,H), but that is not dominated with respect to (frmax »&max) by_a point in U,
with h .y value smaller than H. Then F < F <F 2, these Pareto optimal points (F,G,H) are all
determined by the procedure described above.

PrOOF. First, we prove the validity of the bounds on F. The lower bound F follows by defini-
tion; the upper bound follows from the observation that G <G as (F 2 ,(A;zA,I{ 2 is not dom-
inated by (F,G,H) with respect t0 (fmax ;& max)s and hence G? < G. As (F,G,H) is not dom-
inated by (F 2 G?,H?) with respect t0 (fmax »& max), F must be smaller than F 2,

Second, the point (F I G1)is a solution of 1|k < H | P(f max »§max)- Applying Algorithm
NUB as described above, starting with o!, yields a set of values F each corresponding to a possi-
bly Pareto optimal point. None of these points is dominated with respect to (fmax »&max) by 2
point already in U}, as F is chosen such that G < G ! while (F!,G',H!)is not dominated by a
point in U with respect t0 (fmax ;g max)- U

Note that we have to check whether the fp,,, value determined by Algorithm NUB corresponds
to a Pareto optimal point (F,G) with respect to (fmax »& max) Subject to the constraint 4 ,,, < H,
as an increase of the f ., value does not necessarily induce a decrease of the g 5, value.



The theorems above show that our strategy can be implemented in such a way that all Pareto
optimal points with respect to (fmax ;& max >/ max) are found in O (n? |2 ) time. The O (n%) com-
ponent per Pareto optimal point is needed to solve 1|Amax <H | P (fmax »€ max), to solve
1| fmax <F,gmax < G | % max, to order the Pareto optimal points in U; lexicographically, and to
determine the maximum of the A p,, valuesin U. It remains to be shown that | P | is polynomi-
ally bounded in 7.

THEOREM 7. There are at most n> (n —1)?/4 + n(n —1) + 1 Pareto optimal points with respect to
(fmax »& max »# max)-

PrOOF. Immediately after the initialization, U} contains at most n(n —1)/2 + 1 points. Every
other Pareto optimal point (F, G, H) is dominated with respect to (f max »gmax)> and hence is gen-
erated in the remainder of the algorithm.

Consider an arbitrary point (F,G,H) that is generated from (F,G,H). Let  be the schedule
corresponding to (F,G,H), and let o be the schedule corresponding to (F,G,H). Let hy, be
attained by J; in 0. As H > H,J; must be completed earlier in o, and hence, there must be a job
J; preceding J in o that in o is completed at or after time C;(¢). As F = Fand G = G, we can
prove along the same lines as in the proof of Theorem 3 that this combination {J;,J;} will not
occur again, when A, is decreased. Hence, every point obtained in Step 0 dominatcs at most
n(n —1)/2 Pareto optimal points with respect t0 (fmax g max), Which implies that there are at
mostn? (n —1)2/4 + n(n —1) + 1 Pareto optimal points. [J

For sake of completeness, we list the 0 (n®) time algorithm to determine all Pareto optimal
points. Its correctness follows from Theorems 5 through 9.

ALGORITHM B

(0) Solve 1| | P(f max »§ max)- Determine for each point (F,G) the corresponding 4 a value by
solving 1| finax < Fygmax < G | Amax- Store these points in set U;; determine H as the max-
imum of the A ,, values of the pointsin Uj.

(1) Order the pointsin U lexicographically and let H be the maximum max Value. Let (F,G,H)
be the first point in the list with 4 ;,, value equal to H. Determine the bound F? and the
schedule 6!, and solve 1 | F<fpax <F 2 By < H | P(f max »& max) as described on the previ-
ous page, and scan the solution set for Pareto optimal points (F,G) with respect to
(fmax & max)- Determine  the  corresponding e value by solving
1 fmax < F,g max < G | Amax- Remove (F,G,H) from U, and store it in the set U,. Add the
newly obtained points to U;.

(2) If H is greater than the outcome of 1| | % ymay, then go to Step 1. Otherwise, the union of the
sets U and U, contains all Pareto optimal points (F, G, H) with respect to (f max »& max >/ max)-

It is easily checked that the strategy that was followed to solve the three-criteria problem can
also be applied to solve the K-criteria problem, as the Theorems 4 and 5 and Corollary 2 still
hold for the K-criteria case. Unfortunately, Theorem 6 no longer holds, so we can no longer
guarantee that each Pareto optimal point is generated only once. We now solve O (| P |) times
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the problem of determining all Pareto optimal points for a (K — 1)-criteria problem with a given
upper bound on f&ax; for each of the obtained points, we determine the corresponding fhx
value.

The proof of Theorem 7 can be extended to the K-criteria case, showing that there are at most
(n(n —1)/2+ 1)X ! Pareto optimal points. Therefore, our strategy can be implemented to run
in O (nK&+D~6) time, for K = 4.

5. RELATED PROBLEMS

We finally consider the problems 1|prec | P(f,lnax, ceey fgu) and 1| |P(g,lnax, e gﬁax), where
the functions g&,, are induced by penalty functions g}‘ that are non-increasing in the job com-
pletion times, for kK = 1,..., K. We show that we can solve both problems by Algorithm B by
modifying the penalty functions appropriately. .

First, we deal with 1|prec | P(fiax>- - f&a)- Let & denote the set of jobs J; that have to
succeed J; in any feasible schedule 6. As C; (o) < C; (o) for each job J; €%;, the cost of o does
not increase if at time 7' (7 €[0,2p;]) the value of the penalty functions ﬂ‘ k=1,...,K)is set
equal to max{f¥ (T), /¥ (1)}, for each J; €%;. The next theorem shows that the precedence con-
straints can be handled by adjusting the penalty functions as described above.

THEOREM 8. The 1 |prec | P (fiaxs- - - » fX x) problem is solved by adjusting the penalty functions as
described above, provided that ties in Lawler’s algorithm are settled according to the precedence con-
straints.

PROOF. Let g¥ (k = 1,..., K) denote the adjusted penalty functions. The proof consists of two
parts. First, we have to show that every Pareto optimal point for 1||P (8haxs - - - s 85ax)
corresponds to a schedule that is feasible with respect to the precedence constraints. This is
guaranteed by the requirement to settle ties in Lawler’s algorithm according to the precedence
constraints.

Second, we have to prove that the sets of Pareto optimal points for 1|prec | P (Fhiaxs - - - s fsax)
and 1| | P (ghaxs - - - » §ax) are the same. Note that a point (F1,...,FX)is Pareto optimal with
respect t0 (fhax, - - - » fanax ) Subject to precedence constraints if and only if, fork = 1, ..., K, the
outcome of the problem of minimizing fkax subject to the constraints finax <F'
(i=1,...,K;ik) and precedence constraints is equal to F k. Furthermore, a point
(F,... , FX) is Pareto optimal with respect to (g,lnax, . es ,gﬁax) if and only if, fork = 1,..., K,
the outcome of the problem of minimizing gk, subject to the constraints ghax <F'
Gi=1,...,K;is*k) is equal to F k. Hence, if we prove that the problems
U foax <F', . A5l < FE7! prec | flig and 1| gha <F', .. ghax. <F* " | gmax yield
the same outcome, then we are done. To that end, we have to justify the following three claims.

(1) The outcome of the problem 1| fhax < Fl A3l < FE=1 prec | fKax stays the same
if we replace the constraints fX,,, < F¥ by gkax < Fk fork=1,...,K—1.

(2) The outcome of the problem 1|gma < F LK) <FEX~! prec| S stays the same
if we replace the objective function SR ax bY 2K

(3) The precedence constraints in the problem 1| ghax <FL, ..., gEa! < FEK! prec| o
are redundant.
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Proof of (1). The first claim is proven by showing that the sets of feasible schedules are identi-
cal for both problems. The nontrivial part consists of showing that every schedule
oE{o|f,lnax <F!,. . . fEi! <FK-! precyhasgk, <FFk(k=1,....K—1). Suppose to the
contrary that there exists a feasible schedule o with g¥ (C; (¢)) > F* for some job .J;, for some k.
Then J; must have a successor J; such that g!‘ (Ci(9)) =j;~° (Ci(0)) <j;‘? (Cj(o)) < F¥, con-
tradicting the assumption.

Proof of (2). The second claim is proven by showing that fi,, (o) = g%, (o) for every feasi-
ble schedule o. By definition, fX,, (6)<gX,, (o). Let gX,, be attained by J;; suppose that
fEax (0) <gK.x (o). Hence, J; must have a successor J; with ff(C;(0)) = gF (C;(0)). In that
case, however, fra =fF(C;(0))=fF(Ci(0)) =gK(C;i(0)) =gk, contradicting the
assumption. '

Proof of (3). Consider an arbitrary job J;; let J ; be a successor of J;. As gfm= g}‘ )
k=1...,K—-1;,T=1,... »2p;), job J; will be available for processing if job J; is. Hence,
Lawler’s algorithm yields an optimal schedule for 1|gn. < F1,...,gE5! < FK=1|gK  that
satisfies the precedence constraints, provided that ties are settled according to the precedence
constraints. [ R

COROLLARY 3. The ll%,prec | P (fhaxs- - - » fRax) problem can be solved in O (n*X) time Sor
K =23, andin O(mX & D=8 time for Kk = 4. O

The second problem we consider in this section is 1 | nmit | P(ghay, . . ., g5ax ), Where the max-
imum cost functions gk, (k=1,...,K) are induced by penalty functions g}‘
J=1...,n;k =1,...,K) that are non-increasing functions of the job completion times. In
order to avoid unbounded solutions, we make the additional assumption that no machine idle
time is allowed. This assumption is denoted by the acronym nmit, and implies that all jobs are
processed in the time interval [0,2p;]. We show that this problem can be transformed into a
problem that fits in the existing framework, and hence, that it is solved in O (%K) time for
K =123, andin O (n***D~®) time for K > 4.

THEOREM 9. Lawler’s algorithm solves 1 |g,1,,ax <G,..., g{ﬁa—xl < GEX! nmit ] ggax to optimal-
ity.

Proor. Consider an arbitrary instance of the 1|gl., <G!,..., X3 < GX7 nmit | gk
problem. Now construct the following instance of 1| fL. <F!,... f&.! <FkK-! | fXax- The

processing times are identical for both problems, f¥(T)= g{‘(ij +pi—1T1)
(i=1...nk=1...,K;T=1,...,3p)),and F* = G¥ fork = 1,...,K — 1. Suppose that
Lawler’s algorithm yields schedule o for 1| fh. <F',..., K5 | fK.. An optimal schedule &
for  1|ghm <G',...,g85' <GX™Y nmit |gZsx is  obtained by reversing o;
Ci(6)=2p;+pi—Ci(o) (=1,...,n), and hence, gF(C;(3))=7¥(Ci(0))
(G=1,...,n;k=1,...,K).. This implies that o is optimal and feasible if and only if ¢ is
optimal and feasible. [J

COROLLARY 4. 4 point (F!,. .., FX) is Pareto optimal with respect 10 (fha, - - - » faax) if and only
if this point is Pareto optimal with respect to (g}nax yees gﬁax ). O
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From Corollary 4 it follows immediately that we can solve 1|nmit |P(gmax, gKax) by
transforming it to an 1] | P (fiax, - - o) problem as described in Theorem 9, and by apply-
ing Algorithm B to this instance. As a deadline d; for the 1] |P(fmax, .. fﬁax) problem
corresponds to a release date r;, that is, a lower bound on the start time for J;
1|r; ,nmit,prec |P(gmax, gK ) is solvable in 0(n**) time for K=23, and m
O(nK(K“) 6 time for K = 4.
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