1991

F.S. de Boer

A proof theory for the language POOL

Computer Science/Department of Software Technology Report CS-R9117 March

CWI ationaal instituut voor onderzaek op het gebied van wiskunde en informatica

CWI is the research institute of the Stichting Mathematisch Centrum, which
was founded on February 11, 1946, as a non-profit institution aiming at the
promotion of mathematics, computer science, and their applications. It is
sponsored by the Dutch Government through the Netherlands organization
for scientific research (NWO).

Copyright © Stichting Mathematisch Centrum, Amsterdam

A Proof Theory for the Language POOL

F.S. de Boer

CwWI
P.O. Box 4079, 1009 AB Amsterdam,
The Netherlands

Abstract

We develop a Hoare-style proof theory for partial correctness of programs
written in the parallel object-oriented language POOL.

1980 Mathematics Subject Classification: T0A05.

1986 CR Categories: F.3.1.
Key Words and Phrases: proof theory, pre- and post-conditions, process creation,
dynamically evolving process structures, rendez-vous, cooperation test, completeness,

soundness.

Report CS-R9117
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Contents
1 Introduction 4
2 The programming language 7
2.1 Thesyntax o it ittt ittt it e 8
4 The proof system 226
4.1 Thelocalproofsystem 226
4.2 The intermediate proofsystem 228
4.3 The global proof system 236
5 Semantics 242
5.1 Semantics of the assertion languages 242
5.2 The transitionsystem 245
5.3 Truth of correctness formulas 251
6 Soundness 253
6.1 The local proofsystem 253
6.2 The intermediate proof system 254
6.3 The global proof system 257
7 Completeness 263
8 Conclusion 278

References 279

1 Introduction

The goal of this paper is to develop a formal system for reasoning about the correctness
of a certain class of parallel programs. We shall consider programs written in the
language POOL, a parallel object-oriented language [Am]. POOL makes use of the
structuring mechanisms of object-oriented programming, integrated with the concepts
for expressing concurrency: processes and rendezvous.

A program of the language POOL describes the behaviour of a whole system in terms
of its constituents, objects. These objects have the following important properties:
First of all, each object has an independent activity of its own: a process that proceeds
in parallel with all the other objects in the system. Second, new objects can be created
at any point in the program. The identity of such a new object is at first only known
to itself and its creator, but from there it can be passed on to other objects in the
system. Note that this also means that the number of processes executing in parallel
may increase during the evolution of the system.

Objects possess some internal data, which they store in variables. The value of a
variable is either an element of a predefined data type (Int or Bool), or it is a reference
to another object. The variables of one object are not accessible to other objects. The
objects can interact only by sending messages. A message is transferred synchronously
from the sender to the receiver, i.e., sending and receiving a message take place at
the same time. A message contains a method name (procedures are called methods in
POOL) and a sequence of actual parameters specified by the sender of the message.
While the receiver of the message is executing the method the execution of the sender
is suspended. When the result of the execution of the method has been received by
the sender of the message it resumes its activity.

Thus we see that a system described by a program in the language POOL consists of
a dynamically evolving collection of objects, which are all executing in parallel, and
which know each other by maintaining and passing around references. This means
that also the communication structure of the processes is completely dynamic, without
any regular structure imposed on it a priori. This is to be contrasted with the static
structure (a fixed number of processes, communicating with statically determined
partners) in [AFR] and the tree-like structure in [ZREB].

One of the main proof theoretical problems of such an object-oriented language is
how to reason about dynamically evolving pointer structures. We want to reason
about these structures on an abstraction level that is at least as high as that of the
programming language. In more detail, this means the following:

¢ The only operations on “pointers” (references to objects) are

— testing for equality
— dereferencing (looking at the value of an instance variable of the referenced
object)

e In a given state of the system, it is only possible to mention the objects that
exist in that state. Objects that do not (yet) exist never play a role.

Strictly speaking, direct dereferencing is not even allowed in the programming lan-
guage, because each object only has access to its own instance variables. However, for
the time being we allow it in the assertion language. Otherwise, even more advanced
techniques would be necessary to reason about the correctness of a program.

The above restrictions have quite severe consequences for the proof system. The
limited set of operations on pointers implies that first-order logic is too weak to express
some interesting properties of pointer structures. Therefore we have to extend our
assertion language to make it more expressive. We will do so by allowing the assertion
language to reason about finite sequences of objects. Furthermore we have to define
some special substitution operations to model aliasing and the creation of new objects.

To deal with parallelism, the proof theory we shall develop uses the concepts of cooper-
ation test, global invariant, bracketed section and auziliary variables. These concepts
have been developed in the proof theory of CSP [AFR], and have been applied to
quite a variety of concurrent programming languages [HR). In fact our proof method
generalizes the application of these concepts to the language Ada [GR]. The main
difference between the ADA-rendezvous and the rendezvous mechanism of POOL
consists in that in POOL we have no static bound to the recursion depth of the
rendezvous mechanism whereas in ADA there is. A consequence of this is that the
proof method for ADA is incomplete when applied to the language POOL. Here com-
pleteness means that every true property of a program that can be expressed in the
assertion language used can also be proved formally in the proof system. This incom-
pleteness can be resolved by some additional reasoning mechanism which essentially
formalizes reasoning about invariance properties of a rendezvous.

Described very briefly this proof method applied to our language consists of the
following elements:

o A local stage. Here we deal with all statements that do not involve message
passing or object creation. These statements are proved correct with respect
to pre- and postconditions formulated in a local assertion language, which only
talks about the current object in isolation. At this stage, we use the assump-
tion/commitment formalism [HR] to describe the behaviour of the rendezvous
and creation statements. The assertions describing the assumptions and com-
mitments are formulated in the local assertion language. The assumptions about
these statements then will be verified in the next stage.

e An intermediate stage. In this stage the above assumptions about rendezvous
and creation statements are verified. Here a global assertion language, which
reasons about all the objects in the system, is used. For each creation statement
and for each pair of possibly communicating rendezvous statements it is verified
that the specification used in the local proof system is consistent with the global
behaviour.

o A global stage. Here some properties of the system as a whole can be derived
from a kind of standard specification that arises from the intermediate stage.
Again the global assertion language is used.

We have proved that the proof system is sound and complete with respect to a for-
mal semantics. Soundness means that everything that can be proved using the proof
system is indeed true in the semantics. Due to the abstraction level of the assertion
language we had to modify considerably the standard techniques for proving com-
pleteness ([Ap]). In the completeness proof we combine the techniques for proving
completeness of the proof system for recursive procedures of sequential languages
([Ap2]) based upon the expressibility of the strongest postcondition with the tech-
niques of [Ap] developed for CSP.

Our paper is organized as follows: In the following section we describe the program-
ming language POOL. In section 3 we define two assertion languages, one to describe
the internal data of an object and one to describe a complete system of objects. Also
in section 3 we show how to specify the behaviour of an object and a system of ob-
jects. In section 4 we describe the proof system. The semantics of the programming
language, the assertion languages, and the specification languages are given in section
5. The soundness and completeness of the proof system are treated in the sections 6
and 7.

2 The programming language

In this section we define a abstract version of the programming language POOL of
which we shall study the proof theory.

The most important concept is the concept of an object. This is an entity containing
data and procedures (methods) acting on these data. Furthermore, every object has
an internal activity of its own. The data are stored in variables, which come in two
kinds: instance variables, whose lifetime is the same as that of the object they belong
to, and temporary variables, which are local to a method and last as long as the
method is active. Variables can contain references to other objects in the system (or
even the object under consideration itself). The object a variable refers to (its value)
can be changed by an assignment. The value of a variable can also be nil, which
means that it refers to no object at all.

The variables of an object cannot be accessed directly by other objects. The only
way for objects to interact is by sending messages to each other. If an object sends
a message, it specifies the receiver, a method name, and possibly some parameter
objects. The reception of a message is modeled by means of an answer statement
which specifies some method names for which an incoming message can be answered.
When an object executing an answer statement receives a message for one of the
specified methods it starts to execute the particular method, using the parameters in
the message. Note that this method can, of course, access the instance variables of the
receiver. The method returns a result, an object, which is sent back to the sender. The
sender of a message is blocked until the result comes back, that is, it cannot answer
any message while it still has an outstanding message of its own. Therefore, when
an object sends a message to itself (directly or indirectly) this will lead to abnormal
termination of the program. This is an important difference with some other object-
oriented languages, like Smalltalk-80 [Go]. After the result has been sent back both

the sender and the receiver resume their own activities.

Objects are grouped into classes. Objects in one class (the instances of the class) share
the same methods and the same statement which specifies their internal activity, so
in a certain sense they share the same behaviour. New instances of a given class can
be created at any time. There are two standard classes, Int and Bool, of integers
and booleans, respectively. They differ from the other classes in that their instances
already exist at the beginning of the execution of the program and no new ones can
be created. Moreover, some standard operations on these classes are defined.

A program essentially consists of a number of class definitions, together with a state-
ment which specifies the behaviour of the root-object, the object which starts the
execution. So initially only this object exists: the others still have to be created.

2.1 The syntax

In order to describe the language POOL, which is strongly typed, we use typed ver-
sions of all variables, expressions, etc. These types are indicated by subscripts or
superscripts in this language description. Often, when this typing information is re-
dundant, it is omitted. Of course, for a practical version of the language, a syntactical
variant, in which the type of each variable is indicated by a declaration, is easier to
use.

Assumption 2.1
We assume the following sets to be given:

A set C of class names, with typical element ¢ (this means that metavariables
like ¢, c’, ¢y, . .. range over elements of the set C. We assume that Int,Bool ¢ C
and define the set Ct = C U {Int, Bool} with typical element d.

e Foreach c € C and d € C*t we assume a set IVar§ of instance variables of type d
in class c. By this we mean that such a variable may occur in the definition of
class ¢ and that its contents will be an object of type d. The set IVarg will have
as a typical element z5. We define IVar = U, 4 IVarg and IVar® = U, IVarg.

e For each d € C we assume a set TVary of temporary variables of type d, with
typical element uy. We define T'Var = Uy TVarq and ITvar = IVar U T'Var.

o We shall let the metavariable n range over elements of Z, the set of whole

numbers.
e For each ¢ € C and dy,...,d, € CT (n > 0) we assume a set MNameg, 4.
of method names of class ¢ with result type do and parameter types di,...,dn.

The set MNameg, 4 willhave m _, as a typical element.

Now we can specify the syntax of our language. We start with the expressions:

Definition 2.2

For any ¢ € C and d € C1 we define the set Ezp§ of ezpressions of type d in class c,
with typical element e, as follows:

e1y = ey if d = Bool

eg = T
| ug
| nilg
| self ife=d
| true|false if d = Bool
| =n ifd=Int
|
|

[[+ 4 —_—
€1t T €2]nt ifd = Int
[+ C M —_
| efy <eofy ifd=Bool

The expression self denotes the current object. The expression nil stands for “unde-
fined”. The intuitive meaning of the other expressions will probably be clear. Note
that in the language we put a dot over the equal sign (=) to distinguish it from the
equality sign we use in the meta-language.

Definition 2.3
The set SEzp§ of expressions with possible side effect of type d in class ¢, with typical
element s, is defined as follows:

s = €

| newg ifd € C (d # Int,Bool)

| eot, ! m;‘jdhm'dn(elgl . -:enfi,.) (n>1) e =self
The first kind of side effect expression is a normal expression, which has no actual
side effect, of course. The second kind is the creation of a new object. This new
object will also be the value of the side effect expression. The third kind of side effect
expression specifies that a message is to be sent to the object that results from e, with
method name m and with arguments (the objects resulting from) es,...,e,. Note
that we require the first argument to be the sender itself (so we have that d; = ¢).
This requirement is not present in the language POOL. It is introduced for proof

theoretical reasons only. However, every POOL program can be transformed into an
equivalent one satisfying this requirement.

Definition 2.4
The set Stat® of statements in class ¢, with typical element S¢, is defined by:

S¢ = 2§« sy
l Ugd — 32
| answer(ma,...,my)
| 51553

M C (4 C £
| if e, then ST else S5 fi

M C [

| while eg | do 5¢od

The execution of an answer statement answer(m,...,m,) consists of waiting for
a message for one of the methods my,...,m,. When such a message arrives the
corresponding method is executed. In case of the arrival of several messages one
is chosen non-deterministically. The intuitive meaning of the other statements will
probably be clear.

Definition 2.5
The set MethDef§, 4. of method definitions of class ¢ with result type dy and pa-
rameter types di,...,dn (With typical element u§ ;) is defined by:

Ho, s B (vadys---rUnd,) ST €%,
Here we require that the u;4, are all different and that none of them occurs at the left
hand side of an assignment in S¢ (and that n > 1).

When an object is sent a message, the method named in the message is invoked as
follows: The variables uy, ..., u, (the parameters of the methods) are given the values
specified in the message, all other temporary variables are initialized to nil, and then
the statement S is executed. After that the expression e is evaluated and its value,
the result of the method, is sent back to the sender of the message, where it will be
the value of the send-expression that sent the message.

Definition 2.6
The set ClassDef;, ... of class definitions of class c defining methods my,...,mn,
with typical element Dy, ., ,is defined by:

Diny...ma = (MG, € 1, -y MG < png) 5
where we require that all the method names are different (and n > 0) and TVar(S5¢) =

0. (Here TVar(S¢) denotes the set of temporary variables occurring in 5°. Further-
more, d;, denotes a sequence of types.)

Definition 2.7
The set Unat}:°n of units with classes cy,...,c, defining methods m;,...,m,

with typical element U} | is defined by:

yeeey MR Y

10

€1 1ee0yC e c1 ¢
U"}llr""i;;"i .o — Dlﬁll gy Dn'ﬁ':n)
where myq,...,my = My,..., My, that is, my, ..., m; results from concatenating the

sequences of method names 77;. We require that all the class names are different.

Definition 2.8
Finally, the set Prog® of programs in class ¢, with typical element p°, is defined by:

pc se— (Ucl,...,cn lC : Sc)

mM1,y.c., Mg
Here we require that ¢ does not occur in ¢y, ..., ¢, and that no assignment z < new,
z of type ¢, and u — new, u of type ¢, occurs in Uzl »G and §°. Finally, we require
that TVar($°¢) = 0. (The symbol ‘|’ is part of the syntax, not of the meta-syntax.)

We call a program p = (Ugi %, |c : §¢) closed iff every method name occurring in it

is defined by U, and only variables z4, ug, with d € {c1,. .., ¢n, Int, Bool}, occur in p.

The interpretation of such a program is that the statement S is executed by some
object of class ¢ (the root object) in the context of the declarations contained in the
unit U. We assume that at the beginning of the execution this root object is the only
existing non-standard object. The additional requirement ensures that throughout
the execution the root-object will be the only existing object of its own class.

11

3 The assertion language

In this section we define two different assertion languages, i.e., sets of assertions. An
assertion is used to describe the state of (a part of) the system at one specific point
during its execution. The first assertion language describes the internal state of a
single object. This language will be called the local assertion language. The other
one is to be used to describe a whole system of objects. The latter language will be
called the global assertion language.

3.1 The local assertion language

First we introduce a new kind of variables: For d = Int, Bool, let LVar, be an infinite
set of logical variables of type d, with typical element z;. We assume that these sets
are disjoint from the other sets of syntactic entities. Logical variables do not occur
in a program, but only in assertions.

Definition 3.1

The set LEzp§ of local ezpressions of type d in class ¢, with typical element I3, is
defined as follows:

zg
Uq

self ifd=c

nil

n if d = Int
true | false if d = Bool
Wi+ Db, ifd=Int

| nLS=15 ifd=Bool

Definition 3.2
The set LAss® of local assertions in class ¢, with typical element p€, is defined as

12

follows:
R
C

| -p
| P5APS

| Jzgp® d € {Int,Bool}

Local expressions IS and local assertions p° are evaluated with respect to the local
state of an object of class ¢ (plus a logical environment that assigns values to the
logical variables). They talk about this single object in isolation. It is important to
note that we allow only logical variables ranging over integers and booleans to occur
in local expressions. The intuition behind this is that the internal data of an object
consists of the objects stored in its instance variables, so only these objects and the
standard ones are known by this object. A logical variable of a type ¢/ € C would
provide a “window” to the external world. Furthermore, as we will explain below, we
will define the range of quantification over a class ¢’ to be the set of ezisting objects
of this class. But the set of existing objects of the class ¢’ is a global aspect of the
system, what is known locally is in general a subset of this set. So quantification over
objects of some class ¢’ can not be evaluated by looking only at the local state of some
object.

3.2 The global assertion language

Next we define the global assertion language. As we want to quantify in the global
assertion language also over objects of some arbitrary class ¢ we now need for every
¢ € C anew set LVar, of logical variables of type ¢, with typical element z.. To be
able to describe interesting properties of pointer structures we also introduce logical
variables ranging over finite sequences of objects. To do so we first introduce for every
d € C7 the type d* of finite sequences of objects of type d. We define C* = {d*:d €
C*} and take Ct = C+ U C*, with typical element a. Now we assume in addition for
every d € Ct the set LVarg. of logical variables of type d*, which range over finite
sequences of elements of type d. Therefore in total we now have a set LVar, of logical
variables of type a for every a € C1.

Definition 3.3
The set GEzp, of global expressions of type a, with typical element g,, is defined as

13

follows:

9a == Zg
| nil
| n if a = Int
| true | false if a = Bool
| gez§ ifa=d
| gd* : Gint ifa=d
| |94 if a = Int
| 91int + 92|nt if a = Int

| if gBool then g1, else g2, fi
| 914 = 924 if a = Bool

A global expression is evaluated with respect to a complete system of objects plus
a logical environment. A complete system of objects consists of a set of existing
objects together with their local states. The expression g.z denotes the value of the
variable z of the object denoted by g. Note that in this global assertion language we
must explicitly specify the object of which we want to access the internal data. The
expression g; : g, denotes the nt! element of the sequence denoted by g1, where n is the
value of g,. (If the value of g, is less than 1 or greater than the length of the sequence
denoted by g; we define the value of g; : g, to be undefined, i.e., equivalent to nil.) The
expression |g| denotes the length of the sequence denoted by g. For sequence types the
expression nil denotes the empty sequence. The conditional expression if-then-else-fi
is introduced to facilitate the handling of aliasing . If the condition is undefined, i.e.,
equals nil, then the result of the conditional expression is undefined, too. Finally,
note that we do not have temporary variables in the global assertion language, since
objects that are not executing a method do not have temporary variables.

Definition 3.4
The set GAss of global assertions, with typical element P, is defined as follows:

P == gBool
| -P|PAP,

| Jz.p

Quantification over (sequences of) integers and booleans is interpreted as usual. How-
ever, quantification over (sequences of) objects of some class c is interpreted as ranging

14

only over the ezisiing objects of that class, i.e., the objects that have been created
up to the current point in the execution of the program. For example, the assertion
dz, true is false in some state iff there are no objects of class ¢ in this state.

Next we define a transformation of a local expression or assertion to a global one. This
transformation will be used to verify the assumptions made in the local proof system
about the send, answer, and new-statements. These assumptions are formulated in
the local language. As the reasoning in the cooperation test uses the global assertion
language we have to transform these assumptions from the local language to the global
one.

Definition 3.5
Given a local expression I, which does not contain temporary variables, we define
I¢[gc/self] by induction on the complexity of the local expression IS:

zdlge/self] = z4
zglge/self] = ge.zg
self[gc/self] = g

The omitted cases follow directly from the transformation of the subexpressions. For
a local assertion p°, which does not contain temporary variables, we define p°[g. /self]
as follows:

I oilgc/self] as above

(=p°)[ge/self] = (~p°[gc/self])

(324p°)[gc/self] = Az4(p°[g./self])

The global assertion p°[g./self] expresses that the local assertion p° is true for the
object denoted by g.. Note that we do not allow temporary variables to occur in p©
because they do not exist in the global assertion language.

3.3 Correctness formulas

In this section we define how we specify an object and a complete system of ob-
jects. For the specification of an object we use the assumption/commitment for-
malism ([HR]). First we introduce two sets of labels Laby and Labc such that
Laby N Labc = 0. Elements of Laby U Labc we denote by I,.... We extend the
class of statements by the rule

S =1

15

The execution of a label is equivalent to a skip statement. A label is used to mark a
control point. We use labeled local assertions, notation: l.p, to characterize the state
during the execution of the corresponding label. We can now give the definition of a
specification of an object.

Definition 3.6
We define a local correctness formula to be of the following form:

(4,C: {p}5{¢°})

where

o AC{lp™: 1€ Laby}
o CC{lp': l € Labc}.

Furthermore, we require that every label of the set A (C') occurs at most once.

The meaning of such a correctness formula is described informally as follows:

For an arbitrary prefix of a computation of S¢ by an object of class c the
following holds:

If

p° holds initially and in an arbitrary state of this sequence whenever the
object is executing a label | € Laby the corresponding assertion holds
then

if the object is about to execute a label | € Labg then the corresponding
assertion holds and if the execution is terminated then ¢° characterizes its
final state.

A local correctness formula (A4,C : {p}5{q}) formalizes reasoning about the local
correctness of an object relative to assumptions concerning those parts of its local
process that depend on the environment. This can be explained as follows: let, for
example, R be a send statement occurring in S. An assumption about R is a Hoare-
triple {p'}R{q'}, which states that whenever R is executed in a state satisfying p’
then the resulting state will satisfy ¢’. Note that ¢’ thus “quesses” the result of
R, i.e., the value sent back. The correctness of a specification {p}S{q} of § with
respect to the assumption {p'}R{q’} about R then amounts to the derivability of
{p}S{q} from {p'}R{q'} using the standard Hoare-style proof system for sequential
programs ([Ba]). Now this is equivalent to requiring that the partial proof-outline

16

of S which consists of associating with § the precondition p and the postcondition
g and with R the precondition p’ and the postcondition ¢’ can be extended to a
complete proof-outline which associates with every substatement of § a precondition
and a postcondition. In our framework the above mentioned partial proof-outline
corresponds to the local correctness formula ({l.¢'}, {V'.p'} : {p}S5'{q}), where S’ is
obtained from S by replacing R by |; R;|". In the following section we define a proof
system for reasoning about local correctness formulas. The derivability from this
system of the correctness formula ({l.¢'}, {l.0'} : {p}S’{q}) then amounts essentially
to proving the derivability of {p}S{g} from {p'} R{¢'} using the usual proof system
for Hoare-triples.

The parts of a local process which depend on the environment are called bracketed
sections:

Definition 3.7
Let Ry and R, be statements in which there occur no temporary variables, and no
send, answer, and new-statements. A bracketed section is a construct of one of the
following forms:

o l3; Ry;l;2 — eolmfen, . .., en); Rajla,
where Mod(R1) N Var(eg,e1,...,e,) = 0.

o l1; R1;z «— new; Ra; |,
where z ¢ Mod(R3).

o li;answer(my,...,my);l2

o m <= Ryjly; 5515 Ry Te,
where Mod(R;) N Var(e) = 0.

Here Mod(R) is defined inductively as follows:

o Mod(z « s) = {z}

® Mod(answer(m;,...,m,)) = UU; Mod(S;) N IVar,
where S; is the body of m;

) MOd(S1; Sz) = MOd(Sl) U Mod(52)
e Mod(if e then S else Sy fi) = Mod(S1) U Mod(S2)
e Mod(while e do S od) = Mod(S5)

17

When m is declared as Ri;l1;S;ls; Ry T e we call Ry its prelude and Ry its postlude.
Also we call the statement R; the prelude of the bracketed section I; Ry; R; Ra;l
(R a new or a send statement) and R, its postlude. The restriction Mod(R;) N
Var(eo, - - -,en) = 0 of the first clause is introduced to ensure that the execution of R,
does not affect the values of the expressions ep, . . ., €n, so that before the execution of
R, we in fact know the object to which the request is made and the actual parameters.
The restriction Mod(Rz2) N Var(e) = @ of the last clause ensures that the execution of
R, does not affect the result. Both restrictions will be used in the definition of the
cooperation test.

In the following section we define a proof system for reasoning about local correctness
formulas. The derivability from this system of a correctness formula (A, C : {p}S{q})
then amounts essentially to proving

A+ {p}5'{q}

where A = {{C()}R{A()} : |;R;V a bracketed section occurring in S}, and S’
results from S by removing all labels, using the usual proof system for sequential
programs. Here, given a set of labeled assertions X such that with each label occurring
in X there corresponds at most one assertion, and a label |, we define

X(l) =p iflpeX

= true otherwise.

However, with respect to the soundness proofs, correctness formulas (4, C : {p}S{q}),
as they essentially represent a partial proof-outline of the version of § without labels,
are more convenient.

Next we define intermediate correctness formulas, which describe the behaviour of
objects executing a local statement (that is, a statement not involving any new,
answer, or send statements), or a bracketed section containing a new-statement, from
a global point of view.

Definition 3.8
An intermediate correctness formula can have one of the following two forms:

o {P}(z, R°){Q}, where R° is a local statement containing no temporary vari-
ables or a bracketed section containing a new-statement. (A local statement is
a statement containing no new, send, or answer statements).

o {P}(ze,,RT) || (#c;, R3){Q}, where 2z, and 2/, are distinct logical variables
and R{' and R3? are local statements.

18

The logical variables z., z,, and z’c, in the above constructs denote the objects that
are considered to be executing the corresponding statements. More precisely, the
meaning of the intermediate correctness formula {P}(z, R){Q} is as follows:

Every terminating execution of R by the object denoted by the logical
variable z starting in a state satisfying P ends in a state satisfying Q.

The meaning of the second form of intermediate correctness formula, {P}(z, R1) ||
(', R2){Q}, can be described as follows:

Every terminating parallel execution of R; by the object denoted by the
logical variable z and of R, by the object denoted by 2’ starting in a state
satisfying P will end in a state satisfying Q.

In the cooperation test a correctness formula {P}(z, R){Q}, R a bracketed section
containing a new-statement, will be used to justify the assumption associated with R.
A correctness formula {P}(z1, R1) || (22, R2){Q}, with Ry the prelude of a bracketed
section containing a send-statement, and R, a prelude of an answer-statement, will
be used to justify the assumption about the paramefers. Information about the
actual parameters will be coded in P. On the other hand a correctness formula
{P}(21, R1) || (22, R2){Q}, with R; the postlude of a bracketed section containing a
send-statement, and R, a postlude of an answer-statement, will be used to justify
the assumption about the result value and the assumption about the state after the
execution of the answer-statement. Information about the result will be coded in P.

Finally, we have global correctness formulas, which describe a complete system:

Definition 3.9
A global correctness formula is of the form

{p°[zc/self]}p{Q}

where p is a program and c is the root class in p, and TVar(p) = 0.

The variable z. in such a global correctness formula denotes the root object. Initially
this root object is the only existing object, so it is sufficient for the precondition of
a complete system to describe only its local state. We obtain such a precondition by
transforming some local assertion p° to a global one. On the other hand, the final
state of an execution of a complete system is described an arbitrary global assertion.
The meaning of the global correctness formula {p[z/self]}p{@Q} can be rendered as

follows:

If the execution of the unit p starts with a root object denoted by z that
satisfies the local assertion p and no other objects, and if moreover this ex-
ecution terminates, then the final state will satisfy the global assertion Q.

19

20

4 The proof system

The proof system we present consists of three levels. The first level, called the local
proof system, enables one to reason about the correctness of an object. Testing the
assumptions, which are introduced at the first level to deal with answer, send and
new-statements, is done at the second level, which is called the intermediate proof
system. The third level, the global proof system, formalizes the reasoning about a
complete system.

4.1 The local proof system

The proof system for local correctness formulas dealing with assignment, sequential
composition, the conditional and the loop construct equals the usual system for se-
quential programs:

Definition 4.1
We have the following well-known assignment axiom for instance variables:

(4,C : {p°lea/=5l} =5 := €3{p}) (LIASS)

Definition 4.2
We have the following assignment axiom for temporary variables:

(4,C : {p°[ed/ual}ua := €3{r}) (LTASS)

The substitution operation occurring in the assignment axioms is the ordinary sub-
stitution, i.e., literal replacement of every occurrence of the variable z (u) by the
expression e. Note that at this level we have no aliasing, i.e., there exist no two local
expressions denoting the same variable.

Definition 4.3
The following rule formalizes reasoning about sequential composition:

(4,C : {p°}Si{r°}), (4, C : {r}53{¢°})
(4,C : {p°}5%; 55{¢°})

(LSC)

21

Definition 4.4
Next we define the rule for the alternative command:

(4,C: {p° A e}55{4}), (A,C : {p° A —e}53{q"})
(4,C : {p°}if e then S5 else S5 fi{q°})

(LALT)

Definition 4.5
We have the following rule for the iteration construct:

(4,C: {p° Ae}S°{p°})
(4, C : {p°}while e do 5¢ od{p® A —e}) (LIT)

Definition 4.6
We have the following consequence rule:

p° — 7§, (4,C: {pi}S°{gi}), g1 = ¢
@, C - (r*}5a)) (LCR)

The following axioms and rule deal with bracketed sections.

Definition 4.7
We have the following axiom about bracketed sections containing new-statements:

(4,C : {C(h)}1; R1; = « new; Ra; 1,{A(l2)}) (BN)

We have a similar axiom in case the identity of the newly created object is assigned
to a temporary variable.

Definition 4.8
We have the following axiom about bracketed sections containing send-statements:

(A,C : {C(11)}1; Ri; ;2 — eolm(es, . .., en); Ra; 12{A(I2)}) (BS)

where z ¢ IVar(C(l)). We have a similar axiom in case the result of the send-
expression is assigned to a temporary variable.

Definition 4.9
We have the following rule about bracketed sections containing answer-statements:

(0,0 : {ply/al}S:{ply/ul}), i=1,...,n
(A,C : {p A C(l1)}1; answer(my,...,m,); l2{p A A(l2)})

(BA)

22

where 4 is the sequence of the temporary variables occurring in p, and 7 is a corre-
sponding sequence of new instance variables, and TVar(C(l1), A(l2)) = §. Further-
more, S; denotes the body of the method m;.

The axioms (BN), (BS) and the rule (BA) extract from the set C' the precondition
and from the set A the postcondition using the labels which mark the beginning
and the end of the bracketed section. The rule (BA) additionally incorporates the
derivation of some invariance property of the answer-statement involved. Note that
in the derivation of this property we are not allowed to use the sets of assumptions A
and commitments C. To reason about the new, send, and answer statements in the
derivation of some invariance property as required by the rule (BA) we introduce an
invariance axiom:

Definition 4.10
We have the following invariance axiom:

(4,C: {p}5{p}) (INV)
where Mod(S) N ITvar(p) = 0.

In the cooperation test the applications of the axioms (BN), (BS) and the rule (BA)
will be justified.

4.2 The intermediate proof system

In this subsection we present the proof system for the intermediate correctness for-
mulas. This proof system is derived from the proof system for the language SPOOL,
a sequential version of POOI [AB2].

4.2.1 The assignment axiom

We have the following assignment axiom:

Definition 4.11 ,
Let z «— e € Stat® and z € LVar.. We define

{Ple[z/self]/ z.z]}(z,z — e){P} (IASS).

23

First note that we have to transform the expression e to the global expression e[z/self]
and substitute this latter expression for z.z because we consider the execution of
the assignment z « e by the object denoted by z. Furthermore we have to define
this substitution operation [e[z/self]/z.z] because the usual one does not consider
possible aliases of the expression z.z. For example, the expression Z'.z, where 2/
differs syntactically from z, has to be substituted by e[z/self] if the variables z and 2’
both refer to the same object, i.e., if z = 2’ holds.

Definition 4.12

Given a global expression g, a logical variable z. and a variable z, z € I Var§, we
define for an arbitrary global expression g the substitution of the expression g’ for z..z
in g by induction on the complexity of g. The result of this substitution we denote
by glgli/zc.z]. Let [.] abbreviate [g/z..2]:

Al = =

gl.] = g, g = n,nil,self, true, false
(99 = glly,v#=

(g.z)[] = if g[.] = z then g} else g[.].z fi

The omitted cases are defined directly from the application of the substitution to the
subexpressions. This substitution operation is generalized to a global assertion in a
straightforward manner, notation: P[g};/z..z].

The most important aspect of this substitution is certainly the conditional expression
that turns up when we are dealing with an expression of the form g.z. This is
necessary because a certain form of aliasing, as described by the example above, is
possible: After substitution it is possible that g refers to the object denoted by the
logical variable z, so that g.z is the same variable as z..z and should be substituted
by g'. It is also possible that, after substitution, g does not refer to the object denoted
by z., and in this case no substitution should take place. Since we can not decide
between these possibilities by the form of the expression only, a conditional expression
is constructed which decides “dynamically”.

The intended meaning of this substitution operation is that the value of the substi-
tuted expression (assertion) in a state equals the value of the expression (assertion)
in the state resulting from assigning the value of the expression g} to the variable z
of the object denoted by z.. A proof of the correctness of the substitution operation
can be found in section 6.

24
4.2.2 The creation of new objects

We describe the meaning of a new statement by the following axiom:

Definition 4.13
Let z «— new € Stat®, the type of the variable z being d € C. Furthermore let
z € LVar. and z' € LVary be two distinct variables. We define

{P[Z/z.z][new/Z'|}(z,z « new){P} (NEW)
provided 2’ does not occur in P.

The calculation of the weakest precondition of an assertion with respect to the creation
of a new object is done in two steps; the first of which consists of the substitution
of a fresh variable 2z’ for z.z. This substitution makes explicit all the possible aliases
of the expression z.z. Next we carry out the substitution [new/z’]. This substitution
interprets the variable z’ as the new object.

The definition of this latter substitution operation is complicated by the fact that the
newly created object does not exist in the state just before its creation, so that in
this state we can not refer to it. Assuming the new object to be referred to by the
logical variable 2’ (in the state just after its creation) we however are able to carry out
the substitution due to the fact that this variable z’ can essentially occur only in a
context where either one of its instances variables is referenced, or it is compared for
equality with another expression. In both of these cases we can predict the outcome
without having to refer to the new object.

Definition 4.14

25

Let [.] abbreviate [new/z], we first define g[.] by induction on the complexity of g:

z[.]

ze[.]

gl]

(z:2)[]

(2eza)l]

(9.y-=)[]
if go
then g4

else g,

fi
(g:9"]
lgl[-]

if go
then g1
else g,
fi

(91 = g2)[]
(g1 = 92)[)
(91 = 92)[]

= z,z# 2
is u;ldeﬁned

g g = n, nil, self, true, false

z.z, z # 2z
nil

(99))=

if go[.]

then (g1.2)[]
else (g2.2)[.]
fi

= gl gl

= 1ol

if go[-]

th .
= en g1[if the substitutions are defined,

else g5l
fi

Il

—
.
—

undefined otherwise

ail] = g2[] 91,92 # 2, if .. i
false 9i = 2c, 95 # Ze,if .. fi, i£JE {1,2}

true g1 =92 = Z¢

26

if go[.] =nil
. then (gs = nil)[.]
Ithgo else if gol.]
e gy Z0[1 = then (g1 = gs)|]
o else (g = gs)[]
' f
fi
if gol.] =nil
” then (gs = nil)[.]
thgo else if go[.]
mﬁd:f [l = then (g1 = go)l] g3 £ F...f
P else (g2 = gs)[]

fi
fi
We have the following proposition about this substitution operation applied to global
expressions:

Proposition 4.15
For every global expression g, logical variable z., g[new/z.] is defined iff g is not of
the form gz:

gz = z.|if go then gz else g1 fi | if go then g1 else gz fi

In section 6 we prove that g[new/z.] equals the value of the expression g in the state
resulting from the creation of a new object of class ¢, assuming this new object in this
new state to be referred to by the variable z..

Next we define P[new/z.] by induction on the complexity of P.

Definition 4.16

27

Let, again, [.] abbreviate [new/z].

9Booll-] defined as above

(=P)[] = =(PL])

(PLAP)] = (ALIAPL])

(VzeP)[.] = Vz(P[]), a#c,c*

(VzeP)l.] = Vz(PL)APlz/z]l], 2 # z

(Vzer P).] = VzeVzpoo(l2er] = |2Bool*| = PlzBool*s ze/ ze*][-])
(32, P)[.] = 3z(P[]), a #¢,c*

(3zP)] = 3=Z(PL)V Plz/z]l], 2 # z

(Fzeo P)[.] = FzerTzgoopr(12e0] = |2Bool* | A PlzBool® > 2/ Ze*][-])

Here we assume that zg |+ does not occur in P. The case of quantification over the
type c of the newly created object can be explained as follows: Suppose we interpret
the result of the substitution in a state in which the object denoted by z. does not yet
exists. In the first part of the substituted formula the bound variable 2z, thus ranges
over all the old objects. In the second part the object to be created (the object denoted
by z.) is dealt with separately. This is done by first (literally) substituting the variable
z, for the quantified variable z/ and then applying the substitution [new/z.]. In this
way the second part of the substituted formula expresses that the assertion P is valid
in the new state (the state after the creation of the object denoted by z.) when this
variable 2! is interpreted as the newly created object. Together the two parts of the
substituted formula express quantification over the whole range of existing objects in
the new state.

The idea of the substitution operation [zggo)*, 2c/2c+] is that zg, o+ and z.+ together
code a sequence of objects in the state just after the creation of the new object. At the
places where zg + yields true the value of the coded sequence is the newly created
object. Where zg,* yields false the value of the coded sequence is the same as the
value of z.» and where zg+ delivers L the sequence also yields 1.

Now g[zggol*s Zc/2c+] is defined as follows:

Definition 4.17

28

Let [.] abbreviate [2g,q*; 2/ 2e*]-

Zes[.] isundefined
z[.] = z,Z2# Zs
g[-] = g, g = n,nil,self, tue, false

(g2)[] = gll=

if zggore 1 (9]

then z.
(e 20 = else z.» : (g[.])

fi
(g1:92)] = @l]:g2], g1 # 2o
(lze= D[] = |ze|

(lgD(-] = |glll, 9 # 2~

We have the following proposition:

Proposition 4.18
For an arbitrary global expression g the expression g[zg o, 2c/2c+] is defined iff g is
not of the form g¢':

g’ == ze | if go then g’ else gy fi | if go then gy else ¢’ fi

In section 6 can be found a proof that the assertion P[new/z.] holds in a state iff P
holds in the state resulting from the creation of a new object of class ¢, assuming the
newly created object in this new state to be referred to by the variable z.

4.2.3 Some other rules

The rules for sequential composition, the alternative, the iterative construct, and the
consequence rule are straightforward translations of the corresponding rules of the
local proof system.

Definition 4.19
Let Sy, 55 € Stat® and z € LVar,.

{P}(z, S1){R}, {R}(z, 52){Q}
{P}(z, 51; 52){Q}

(ISC)

Definition 4.20
Let if e then Sy else S, fi € Stat® and z € LVar,.

{P A e[z/self]}(z, 51){Q}, {P A —e[z/self])}(z, $2){Q}

{P}(z,if e then Sy else S, fi){Q}

Definition 4.21
Let while e do § od € Stat® and z € LVar,.

{P A e[z/self]}(z, S){P}
{P}(z,while e do S od){P A —e[z/self]}

Definition 4.22
Let S € Stat® and z € LVar..

P - Py, {P1}(2,5){@1}, @1~ @
{P}(z,5){Q}

29

(IALT)

(IIT)

(ICR)

Finally, we have the following two rules describing the parallel execution of two ob-

jects:

Definition 4.23

{P}(zla Sl){R}: {R}(‘zZ: S2){Q}
{P}(z1,51) || (22, 52){Q}

Definition 4.24

P — Py, {P1}(z1,51) || (22, 52){@1}, Q1 — @
{P}(z1,51) || (22, 52){Q}

(Par)

(Cpar)

30
4.3 The global proof system

In this section we describe the global proof system. We first define the notion of the
cooperation test:

Definition 4.25
Let p¢ = (Ui mitlen © Sm) be bracketed (that is, every new, send, and answer

statement of p© occurs in a bracketed section), with U,-c,:l', Y =Did ..., Daazt
; ;¢ ;ci e x5
where D7 = (m‘l% <= piz—i Yo m:,':—;-r = ;‘d,) : Sf. (We define Dn =():5.)

The specifications

(A, Cr s {p* 1S3 {g*}), 1<k <n
(with T'Var(pg, qx) = 0) cooperate with respect to some global invariant I € GAss iff

1. There are no occurrences in I of variables which occur at the left hand side of
an assignment which is not contained in a bracketed section

2. F (Ak, Cie - {p*}SHar'}), 1<k <n
3. F(A;, Ci: {Ai(h)}R{Ci(12)}), 1 < i < n, where m < Ry;h; R;lz; R2 T e € D;.

4. Let l1; R; 1, be a bracketed section, occurring in D;, containing the new-statement
z « new. Furthermore, let z € LVar.; be a new variable. Then:

H{T A plg/a)lz/self]}(z, R[5/ @)){T A q[5/)[z/self] A p7 (2.2 /self]}

where % is the sequence of the temporary variables occurring in p = C;(1)), ¢ =
A;(l2), and 7 is a corresponding sequence of new instance variables. Further-
more, we assume the variable z to be of type c;.

5. For ly; Ry;l; 2 < eolm(ey, ..., er); Re; |z occurring in D;, and If; answer(...,m, .. .);|
occurring in Dj, such that the type of eq is ¢;, with m declared as R}; I; R; I5; R 1
e, we have

{I A r1[§1/@1][z1/self] A 7[z2/self] A P}
- (21, Ba[i1 /t]) || (22, RY[52/Ts])
{I A r[g1/@1][z1/self] A r{[F2 /2] [22/5elf]}
and
{I A rl[§1/ 5] z1/self] A 75[G2 [62][22/self] A Q}
F (21, Ra[g1 /t]) || (22, R5[F2/T2])
{I A vl [81][21/self] A v5[z2/self]}

31

where 1 is the sequence of the temporary variables occurring in r, 71,72, R1, Ra,
and #; is the corresponding sequence of new instance variables, %, is a sequence
of the temporary variables occurring in 7,75, 7{, 74, R}, R3, and 72 is a corre-
sponding sequence of new instance variables. The variables z; and z; are new

variables, z; being of type ¢; and z; being of type ¢;. Furthermore, we have
o Ci(h) =71, Ci(1) =7, Ai(lz) =72
[CJ(la) = Ti, A_,(l;) = ré, AJ("Ill) — ril, CJ(VzI) - 'I‘g

Finally, we have

o P = eo[f1/t][z1/self] = za A \; €i[§1/Wa][21/5elf] = z2.9] A \; 2297 = nil
o Q =z = 2.y, A\ z1.z = e[ffa/p)[22/self]

where %' U §" = 7, with §' being the instance variables corresponding to the
formal parameters and 7" corresponding to the local variables of m.

6. The following assertion holds:

pr(z/self) AVZ (2'=2) A\ (Vzfalse) — I
1<i<n

Here the variables z and 2’ are assumed to be of type c,, the type of the root-
object, the variable z; is assumed to be of type c;.

The syntactic restriction on occurrences of variables in the global invariant I implies
the invariance of this assertion over those parts of the program which are not contained
in a bracketed section. The clauses 4 and 5 imply among others the invariance of the
global invariant over the bracketed sections.

This global invariant expresses some invariant properties of the dynamically evolving
pointer structures arising during a computation of p. These properties are invariant
in the sense that they hold whenever the program counter of every existing object is
at a location outside a bracketed section. The above method to prove the invariance
of the global invariant is based on the following semantical property of bracketed
sections: Every computation of p can be rearranged such that at every time there is
at most one object executing a bracketed section containing a new-statement, or a
bracketed section belonging to an answer-statement.

Clause 2 verifies in an uniform manner the behaviour of the objects belonging to a
class defined by the program.

Clause 3 verifies the behaviour of the methods, more precisely, the part of the body
of a method excluding its prelude and postlude.

32

Clause 4 discharges assumptions about bracketed sections containing new-statements.
Additionally the truth of the precondition of the local process of the new object is
established. Note that by definition of a bracketed section we know that immediately
after the execution of a bracketed section containing a new-statement « := new the
newly created object is referred to by z.

Clause 5 establishes the cooperation between two arbitrary matching bracketed sec-
tions, where two bracketed sections are said to match if they contain a send-statement
and an answer-statement which match, i.e., the method name mentioned in the send-
statement occurs in the answer-statement and the class of the object to which this
method is sent equals that of the answer-statement.

The first correctness formula of clause 5 describes the activation of the rendezvous
whilst the second one describes the termination of it.

The state before the rendezvous is characterized by

e the global invariant I, which describes the complete system,

o the precondition 7{ of the answer statement, which describes the local state of
the receiver, lifted to the global assertion language.

e the precondition 7; of the bracketed section, containing the send statement,
which describes the local state of the sender, also lifted to the global assertion
language, and, finally,

¢ aglobal assertion P expressing that the sender indeed addresses the receiver and
that the actual parameters are stored in the instance variables which denote at
the level of the global assertion language the formal parameters.

Note that we have to introduce new instance variables which at the level of the
global assertion language stand for the temporary variables of the sender and the
receiver (remember that temporary variables do not exist in the global assertion
language). The activation of the rendezvous then is described as the parallel execution
of the prelude of the bracketed section containing the send-statement, and that of the
method being executed. Note that the order in which these statements are executed
does not matter because by definition the values of the expressions denoting the
receiver and the actual parameters are not affected by the execution of the prelude
of the bracketed section containing the send-statement. After the execution of these
preludes the global invariant must hold and the local assertions lifted to the global
assertion language, which are associated with the corresponding control points.

The state just before the termination of the rendezvous, which is described by the par-
allel execution of the postlude of the bracketed section containing the send-statement
and that of the method being executed, is characterized by

33

e the global invariant,

e the local assertions r, 7"y, which are associated with the correspond.iﬁg control
points, lifted to the level of the global assertion language,

e a global assertion Q expressing that this incarnation of the method has indeed
been invoked by the object executing the bracketed section containing the send-
statement (note that here we make use of the fact that the identity of the sender
is sent as parameter) and, furthermore, that the result has been sent back.

Note that we may assume that the result has been sent back before the execution of
the method has been completed because, by definition, the execution of the postlude
of the method does not affected the result. Furthermore, the variable of the sender
in which this result is to be stored, is not allowed to occur in the local assertion
associated with the label marking the send-statement. After the execution of these
postludes the global invariant must hold again together with the local assertions,
which are associated with the corresponding control points, lifted to the global asser-
tion language.

Clause 6 establishes the truth of the global invariant in the initial state. Note that
the assertion Vz.false expresses that there exist no objects of class c. The assertion
Vz'(Zz' = z) expresses that there exists precisely one object of class c,.

One of the main points of the above definition is the formalization of reasoning about
recursive answer statements. The basic pattern of reasoning about recursive procedure
calls is given by the following rule ([Ba)]):

{p}m{q} {p}S{p}
{p}m{q}

where m is a recursive procedure defined as S. Now let m be a method declared as
m < Ry;l1; R;lp; Ry T e, with the (labeled) answer statement |; answer(m); I’ occurring
in R. Clause 3 then roughly amounts to proving that

{p}answer(m){q} F {p1} R{q1}

where p and g are the assertions associated with | and I, and p;,q; the assertions
associated with |; and l,. To derive from this the conclusion {p}answer(m){q} we
have to ensure that the execution of the prelude R, in a state satisfying p results
in a state in which p; holds, and that the execution of the postlude R, in a state
satisfying ¢; results in a state in which ¢ holds. So essentially we have to prove
{p}R1{p1} and {¢1} R2{q}. But the executions of R; and R, are dependent upon the
actual parameters sent. This dependency is taken care of by clause 5, where all the
different possibilities for the actual parameters are are accounted for by considering

34

the matching send statements. Summerizing, one can say that the clauses 3 and 5
together embody the following recursive rule for answer statements:

{p}answer(m){q} F {p1} R{q:}
{p}answer(m){q}

where m, R, p,q,p1, and ¢q; are defined as above, assuming for the sake of simplic-
ity that in R there occur no new and send statements and no other other answer
statements.

Finally for p° = (U, i en : Sen), with Uy U35 = Did,, - -, Dno1mll,, where
DG =(miZ<pis,..., mi5 < pi.%): SF we have the following rules:
: 1 1

n; Ji"_ nidi, ;

Definition 4.26
We have the following program rule:

(A, C; : {p7*}) S {¢{*}, 1 < i < m, cooperate w.r.t. [
{p[2/sef]}p{I A Aicicn V2igi*[2:/self] A g57 [2/self]}

where z is of type ¢, and z; is of type ¢;.

(PR)

Note that in the conclusion of the program rule (PR) we take as precondition the
precondition of the local process of the root-object because initially only this object
exists. The postcondition consists of a conjunction of the global invariant, the asser-
tions Vz;g;*[2i/self], which express that the final local state of every object of class
c; is characterized by the local assertion ¢*, and the assertion g5*[z/self] expressing
that the final local state of the root-object is characterized by the local assertion gg~.

Definition 4.27
We have the following consequence rule for programs:

Pc" - p§n1 {pf"[zcn/self]}p{Ql}, Ql - Q
{7°" {7, /=11 P1QY (BC)

Definition 4.28
Next we have a substitution rule to initialize instance variables:

{2, /self}p{Q) s1)
(= T1]2)z../seH}o{Q)

provided the instance variable z does not occur in p or @Q.

35

Definition 4.29 ‘
The following substitution rule initializes logical variables:

{p°[zc. /self]}p{Q}

S2
(@1)z, /e T} (@) (52
provided the logical variable z does not occur in Q.
Definition 4.30
The following rule is used to describe the initial state:
{(p Az = n'l)[ZCn/self]}p{Q} (MT)

{p°n[2c. /self]}p{Q}

where z € U, IVarc®.

Definition 4.31
Finally, we have the following rule for auziliary variables:

) |
FEn0)! (AUX)

where p is obtained from p’ by deleting all assignments to variables belonging to
some set Auz, i.e. a set of auxiliary variables, such that for an arbitrary assignment
z «— e (u « e€) occurring in p' we have that ITvar(e) N Auz # @ implies that
z € Auz (u € Auz), moreover, the variables of the set Auz do not occur in tests
of p’ or in assignments z « s (u « $), s not a simple expression, and, finally,
IVar(Q) N Auz = 0.

The rule for auxiliary variables can be explained as follows: To be able to express
some properties of a program p it may be necessary to add some assignments to new
variables, which are called auxiliary variables. These assignments may not influence
the flow of control of p, otherwise these auxiliary variables can not be used to express
some properties of p. This requirement is formulated syntactically.

36

5 Semantics

In this section we define in a formal way the semantics of the programming language
and the assertion languages. First,in section 5.1, we deal with the assertion languages
on their own. Then, in section 5.2, we give a formal semantics to the programming
language, making use of transition systems. Finally, section 5.3 formally defines the
notion of truth of a correctness formula.

5.1 Semantics of the assertion languages

For every type a € Ct, we shall let O® denote the set of objects of type a, with typical
element a®. To be precise, we define O™ = Z and 0B = B, whereas for every
class ¢ € C we just take for O° an arbitrary infinite set. With Of_ we shall denote
09 U {1}, where L is a special element not in O¢, which will stand for ‘undefined’,
among others the value of the expression nil. Now for every type d € C* we let o+
denote the set of all finite sequences of elements from Oi and we take O‘J’: = 0%,
This means that sequences can contain | as a component, but a sequence can never be
L itself (as an expression of a sequence type, nil just stands for the empty sequence).

Definition 5.1
We shall often use generalized Cartesian products of the form

11 B().
i€A

As usual, the elements of this set are the functions f with domain A such that
f(2) € B(z) for every i € A.

Definition 5.2

Given a function f € A — B, a € A, and b € B, we use the variant notation f{b/a}
to denote the function in A — B that satisfies

b ifa'=a

f(a') otherwise.

f{b/a}(d) = {

Definition 5.3
The set GState of global states, with typical element o, is defined as follows:

GState = (][P*) x [[(0° — [[(1Var — 04)) x [](0° — (J[(TVars — 02))*)
d c d c d

where P¢, for every ¢ € C, denotes the set of finite subsets of O¢, and for d = Int, Bool
we define P4 = 09,

37

A global state describes the situation of a complete system of objects at a certain
moment during program execution. The first component specifies for each class the
set of ezisting objects of that class, that is, the set of objects that have been created
up to this point in the execution of the program. Relative to some global state o an
object @ € O can be said to exist if a € 0(1)(a)- For the built-in data types we have
for every global state o that o(y)(Int) = Z and o(;)(Bool) = B. Note that L ¢ o(1)(@)
for every d € C*. The second component of a global state specifies for each object
the values of its instance variables. The third component specifies for each object a
stack of local environments, i.e., functions assigning objects to temporary variables.

We introduce the following abbreviations:

o We abbreviate o(1)(q) to o),

e The local state of an object a in o we will denote by o(ca), it consists of the
assignment of objects to the instance variables and the temporary variables as
given by o(3)(), Top(a(s)(@)), respectively. Furthermore, o(a)(z) and o(a)(u)
will abbreviate o(z)(c,a)(@)(2), Top(a(s)c)())(d)(w), respectively, assuming the
type of a to be ¢ and that of z and u to be d. Here Top(< fi1,..., fn >) = fa.

e Furthermore, 0{3/a,z} will denote the state resulting from o by assigning 3 to
the variable z of a, and 0{8/a, u} will denote the state resulting from assigning
B to the variable u of the top local environment of a, i.e., Top(o(s)(a))-

Definition 5.4
The set LState® of local states of class ¢, with typical element 8, is defined by

LState® = O° x GState

For convenience sake we formalize the notion of a local state as a pair consisting
of an object name and a global state, instead of an object name and a function
characterizing the values of the variables of that object.

Definition 5.5
We now define the set LEnuv of logical environments, with typical element w, by

LEnv = H(LVara - 09).

A logical environment assigns values to logical variables. We abbreviate w(g)(2a)
to w(zg).

38

Definition 5.6
The following semantic functions are defined in a straightforward manner. We omit
most of the detail and only give the most important cases:

1. The function £ € Ezpg — LState® — O assigns a value £[e](6) to the expres-
sion €5 in the local state 6°. For example, £5[nil](6) = L and E5[z5]({e, o)) =
o(a)(23)-

2. The function £5 € LEzp — LEnv — LState® — O% assigns a value L[I](w)(8)
to the local expression IJ in the logical environment w and the local state 6°.

3. The function G, € GEzp, — LEnv — GState — O assigns a value G[g](w)(o)
to the global expression g, in the logical environment w and the global state o.

4. The function A° € LAss® — LEnv — LState® — B assigns a value A[p](w)(6)
to the local assertion p° in the logical environment w and the local state 6°.
Here the following cases are special:

t if L[I)(w)(8) = t

Allgooll(w)(8) = { £ if L[I)(w)(8) = £ or L[I(w)(0) = L

t if there is an a? € 0% such that A[p](w{a/z})(8) =t
f otherwise

A[3z4p)(w)(9) = {

Note that in the latter case d = Int or d = Bool and that the range of quantifi-
cation does not include 1.

5. The function A € GAss — LEnv — GState — B assigns a value A[P](w)(o)
to the global assertion P in the logical environment w and the global state o.
The following cases are special:

t if L[g](w)(o) =1t

AlgBooll(@)(e) = { £ if L[g)(w)(c) = £ or L[g](w)(c) = L

t if there is an a? € o{%) such that A[P](w{a/z})(s) =t
f otherwise

A[3z4 P](w)(0) = {

Note that here d can be any type in C* and that the quantification ranges
over o{9), the set of ezisting objects of type d (which does not include).

t if there is an a?" € O such
that a(n) € oD U L foralln € N
and A[P](w{a/2})(c) = t

f otherwise

A[3zge P](w)(o) =

For sequence types, quantification ranges over those sequences of which every
element is either | or an existing object.

39

The values G[g.](w)(c) of the global expression g, and A[g](w)(o) of the global
assertion P are in fact only meaningful for those w and o that are consistent and
compatible:

Definition 5.7
We define the global state o to be consistent, for which we use the notation OK (o)
iff

Ve € CVa € 0©Vd € CVz € IVar§o(a)(z) € oD U L.

and

Ve e CVa € oDVd € CVu € TVargo(a)(u) € DU L

In other words, the value in o of a variable of an existing object is either L or an
existing object itself.

Furthermore we define the logical environment w to be compatible with the global
state o, with the notation OK(w, ¢), iff OK(¢) and, additionally,

Vd € CVz € LVary (w(z) € oD U {L})

and

Vd € CVz € LVarg Ya € N (w(2)(n) € oD U {L}).

In other words, w assigns to every logical variable z4 of a simple type the value L
or an existing object, and to every sequence variable zg+ a sequence of which each
element is an existing object or equals L.

5.2 The transition system

We will describe the internal behaviour of an object by means of a transition system.
A local configuration we define to be a pair (5¢,6°). The set of local configurations
is denoted by LConf. Let Rec = {< a,8 >,< m,f >,< m9,B >,< ml, B >:
a,pB € U, O°, B denoting a sequence of objects} U {e}. A pair < a, > is called an
activation record. It records the information that the object @ created 8. Sequences
of the form < m,3 >,< m!,3 >, and < m?,3 > are called communication records.
A record < m, o, .. .,Bn >, with n the number of formal parameters of m, records
the information that the method m has been sent by 3; to By with actual parameters
B1,---,Bn- (Remember that the identity of the sender is sent as the first actual
parameter.) On the other hand a record < m, B4, ..., B, >, with again n the number
of formal parameters, records the information that the method m has been received
with actual parameters fi, ..., 8. A record < m©, By, B2 > records the information
that the result of the method m, the object B;, has been sent to B;. A record
< ml, By, B2 > records the information that the result of the method m, the object
B2, has been received from f.

40

We define for every r € Rec a transition relation —"C LConf x LConf. (In fact
we define —" given a unit U.) To facilitate the semantics we introduce the auxiliary
statement E, the empty statement, to denote termination, the statement send(m, e, a)
and and the expression wait(m, 3). The statement send(m, e,) will model the process
of sending the result of m, the value of e, to a. The expression wait(m, 3) will model
the process of waiting for the object 8 to send the result of m. Furthermore, we
introduce the operations Push and Pop:

P'Il,Sh(<f1,...,fn>,f) =<f1,-°-afn’f>
Pop(< fi,--nfn>) =< fireoesfac1 >

Definition 5.8
Let 6 = (@, o). We define

o (zq4 — eq,0) - (E,0),
where 0 = (a, 0{E[ed] (0)/c,z}).

o (ug — e4,0) —° (E,),
where 8 = (a,a{E]ed] (6)/, u}).

o (24 := new,§) »<*F> (E,¢"),
where 0 = (a,0'{B8/a,za}{L/B,Y},c1vare), and
o' = (o(1){cD U {B}}, 9(2), 0(3)),
and g € 0%\ o(9.

o (ug := new,) »<*F> (E,¥"),
where ¢’ = (a,0'{8/c,ua}{L/B,y} ¢ 1ver¢), and

o' = (0,(1){0_(d) U {ﬂ}}, 7(2) 0‘(3)),
and B € 0%\ ¢(9).

o (z — eglm(ey,...,en),0) —<m.B> (z « wait(m, Bo), 6),
where 8; = £|e;] (8), and B = B, - - -, Bn-

o (u«— eolm(er,...,en),0) ——_><""ﬁ> (u « wait(m, Bo), 9),
where ﬁi = gﬂeiﬂ (0)1 and ﬂ = ﬂo: .. "ﬂn-
o (z — wait(m, fo),0) »<™" B> (E, ¢),
where 6’ = (a,0{7/a,z4}), with v an arbitrary element of O4.

¢ (u « wait(m, (o), 6) —<mT,Bo1> (E,9),
where ¢/ = (a,0{y/a,z4})-

41

o (answer(...,m,...),0) —<mB> (5: send(m, e, B1),¢'),
where 6/ = (@, o{ Push(o(3)(a), f)/a}), and

flw) =6 ifu € {u1,...,Un}
f(‘ll.):_]_ ifu¢{u1,...,u,,}.

Furthermore,
o{Push(o(s)(a), f)/ e} = (o1), a(2), 9(3){ Push(a(s)(), f)/a}).
Here we assume uy, ..., U, to be the formal parameters of m, The statement §

to be its body, and e to be its result expression.
s (send(m,e,B),0) —<m®B> (B ¢,
where 8’ = (o, o{Pop(o(s)(@)/a}), and 7 = E[€](0). Here
a{Pop(o(3)(a))/a} = (6(1),0(2), 0(3){ Pop(o(3)(a)) /a})-

o (1;5,0) —=(5,9).

(51,0) =" (S2,8") | (E,¥)
(S1;5,0) =7 (52, 5,0) | (8,7)

o (if egyol then S1 else Sy fi,0) —° (51,6),
if £]epooll (8) = true.

o (if epoo) then Sy else Sy fi,0) —¢€ (52,0),
if SHeBoolﬂ (8) = false.

o (while eggoop do S od,8) —¢ (5; while egyq do S od, 8),
if £]egooll (8) = true.

o (while eg g do S od,8) —< (E,9),
if E]egooll (0) = false.

We define —"= TC(U,cpec —")- Here the operation TC denotes the transitive
and reflexive closure which composes additionally the communication records and
activation records into a history h, a sequence of communication records and activation
records.

Using the above transition system we define another transition relation —z which
hides the computations within the bracketed sections.

Definition 5.9

42

(81,61) =7 (52, 65)

(511 01) —L (521 02) ’

where S is not of the form §’; S”, with S’ a bracketed section.
. (5,61) =" (E,6))

(1;5;158,6,) > (1, 5,6,)’

where |; ;1 is a bracketed section.

The semantics of statements and local correctness formulas will be defined with re-
spect to this transition relation — .

Next we describe the behaviour of several objects working in parallel. The local
behaviour of the objects we shall derive from the local transition system as described
above. But at this level we have the necessary information to select the right choices
concerning the communications.

We define an intermediate configuration to be a tuple (o, (i, SF*);), where a; € o{),
assuming all the o; to be distinct. The set of intermediate configurations will be
denoted by IConf. We define —"C IConf x IConf, with r =< m,B >, as follows
(note that we use the same notation as for the local transition relation, however this
will cause no harm):

Definition 5.10
We define

. (8, (ej,0)) =" (S_;" (aj,0"))
(‘7$ (aia Si)i) -7 (UI: (ai, S,')z)

where r = ¢,< a;,8 >
Sl = 8; i#]

= S! otherwise.

(S5, {ej,0)) =" (S_;" (aj,01)), (Sk,{ak,)) - (Sks (o, 02))
(o, (e, 8i)i) =™ (o, (ew, $1)i)

where j # k and r =< m, f4,...,B, >, ¥’ =< m,e;,B1,...,Bn >, furthermore,
we have
S = S i#i4,k

= S/ i=4jk,
and o' = o{oy(;)/a;}{o2(cr)/cr}. (Here o{o1(a;)/a;}{o2(ar)/ar} denotes
the state resulting from changing the local state of a; () to a1(c;) (02(as)).)

(S5, (@5, 0)) =7 (55, (@, 91)), (Sk, (@, 0)) =" (S}, (o, 92))

(o, (e, 83):) = (o', (e, 57):)
where j # k and 7 =< m% oy, 7 >, 7 =< m! aj,y > and " =< m,a;,y >,

43

furthermore, we have
St = 8 i#i5,k
= S} i=14k,

and o' = o{01(e;)/aj}{o2(ar)/ar}-

The first rule above selects one object and its local state and uses the local transition
system to derive one local step of this object. The second and third rule select two
objects which are ready to communicate with each other. Note that we use a different
interpretation of a communication record now: A record < m,a, B1---,Bn >, with
n the number of formal parameters of m, records the information that o has received
the method m with actual parameters By, . . ., Bn, where f; in fact denotes the sender.
Furthermore, < m,a,y > will now record the information that a has received the
result of m, the object 7.

We define —»"= TC(U,crec —"), 8gain using the same notation as for the transitive
and reflexive closure of the local transition relation, from the context however it should
be clear which one is meant. This new transition relation will be used to define the
semantics of intermediate correctness formulas.

To describe the behaviour of a complete system we introduce the notion of a global
configuration: a pair (X,0), where X € [],0° — Stat®, and a transition relation
—"C GConf x GConf. We note again that we do not notationally distinguish be-
tween the different transition relations, from the context however it will be clear which
one is meant. The set of all global configurations we denote by GConf. We will ab-
breviate in the sequel X(;)(a), for a € O°, by X (). The idea is that X () denotes
the statement to be executed by c.

Definition 5.11
We have the following rule

(o, (i, X ())i) =" (o', (e, 57)i)
(X,0)—" (X',0")

where o; € o(%) (all the o; distinct) and X' = X {S]*/c;}i.

This rule selects some finite set of objects which execute in parallel according to the
previous transition system.

We define —"= TC(U,cpe. —")- This transition relation will be used to define the
semantics of programs and global correctness formulas.

We proceed with the following definition which characterizes the set of initial and
final global configurations of a given program p:

44

Definition 5.12 :
Let p° = (Umy i’ len 2 Si), with Um 205" = D1, - -, Dot , Where D;3, =
(m’i}';; < p‘i}‘;l yenos m""f%.; = I‘n.-%q) : S5, Furthermore let X € [, O° — Stat®. We
define

Init,(X) iff

o X(a) =5, ¢ €{c1,...,cn}, a € O%.
e X(a)=E, a€ 0° c¢ {c1,...,¢n}.

We define for a state o such that OK(o):
Init,(o) iff

o ol =9 ce€{c1,---rCn-1}

= {a} ¢=cy, for some a € O°"

s o(a)(z) = L, for a € o{*) and z € IVarsr.

We next define Init,((X, o)) iff Init,(X) and Init,(o). We define

Final,((X,0))iff X(a) = E, for alla € o%), ¢; € {c1,...,cn}

The predicate Init,(Final,) characterizes the set of initial (final) configurations of
p. Note that the value of a variable z¢* of the root-object, ¢ € {c1,...,¢n}, is
undefined initially. This follows for ¢ # ¢, from the fact that we consider only
consistent states and that initially only the root-object exists (with respect to the
classes ¢1,...,¢c,). But the consistency of the initial state would also allow the value
of a variable z € IVar:" to be the root-object itself. However, as it will appear to be
convenient with respect to the formulation of some rules which formalize reasoning
about the initial state, we define the initial state to be completely specified by the
variables ranging over the standard objects.

Now we are able to define the meaning of the following programming constructs: ¢,

(2,589, (zcnslci) I (zcjws;j) and p.

Definition 5.13
We define

SI[SC]](o) = {< (51101)1 .- -7(511,671) >: (Siagi) —L (Si+170i+1)7 1 < 1< n, Sl = S; 01 = 0}

45

Definition 5.14

We define Z[(z, $)](w)(o1) = 0 if not OK (w,01), and Z[(z1, 51) || (22, §2)](w)(o1) = 0
if not OK (w, 1) or w(z1) = w(z;). So assume from now on that OK(w,01), further-
more that w(z) = a, w(z) = a;.

I[(z, S)](w)(01) = {o2 : for some h (a1, (e, §)) =" (02, (e, E))}

Assuming furthermore that a; # as:

I[(21, 51) || (22, 52))(w)(o1) =
{o; : for some h (o1, (1, $1), (@2, 52)) =" (02, (1, E), (a2, E))}

Definition 5.15
The semantics of programs is defined as follows:

Plel(a1) = {o2 : for some h (Xy,01) —h (X2,02)}
where Init,((X1,01)) and Final,((X2, 02))-

Note that P[p](c) = @ if it is not the case that Init,(o).

5.3 Truth of correctness formulas

In this section we define formally the truth of the local, intermediate, and global cor-
rectness formulas, respectively. First we define the truth of local correctness formulas.

Definition 5.16
We define

= (4,C: {p}5°{q}) iff
for every w and < (51,61),--.,(Sn,0n) >€ S[S](61):

g 011("":?
e 0;,wlk A(Lab(S;)), 1<i<n

implies

0p,w |= C(Lab(S,)) and if S, = E then 0,,w | q.

46

Here

Lab(S) =1 i S=1;§

=0 otherwise

(Note that for X a set of labeled assertions we have X (0) = true.)
Next we define the truth of intermediate correctness formulas.

Definition 5.17
We define

F {P}z, 5){Q} iff
VwYoiVos € I[(z:, S%))(w)(o1) : o1,w E P = o2,w = Q.

And

F {P}ze:, S%) || (2'¢;, S9){Q} iff
Vw¥o1Voy € If(z;, §%) || (2'¢;, 5%)](w)(01) : o1,wE P = o3,w = Q.

Finally, we define the truth of global correctness formulas.

Definition 5.18
We define

= {P}p{Q}iff VuVo Vo, € Plp](01): o1,wE P = o2,w = Q.

a7

6 Soundness

In this section we préve the soundness of the proof system as presented in the previous
section. We first discuss the soundness of the local proof system.

6.1 The local proof system

The following theorem states the every local correctness formula derivable from the
the local proof system is valid:

Theorem 6.1
For every local correctness formula (A4, C : {p}S{q}) we have

if
- (4,C: {p}5{q})
then

= (4,C: {p}5{q})

(Here I denotes derivability from the local proof system.)

The above theorem is proved by induction on the length of the derivation, that is, we
prove the soundness of the axioms, and for every rule we prove that the validity of
the premisses implies the validity of the conclusion. We treat the rule BA, the other
axioms and rules being straightforward to deal with.

Lemma 6.2

If
= (0,0 {pl3/a]}S:{ply/ul})
then
= (A4,C : {p A C(l1)}1;answer(my,...,my); 2{p A A(l2)}).
Proof

Let R = l;; answer(my,...,m,); 2. As the semantic function S is defined with respect
to the transition relation —z,, which hides the computations within bracketed sections,
it is sufficient to consider for every 8 the case of < (R,6),(l2,6') >€ S[R](6) such
that

e dwlE=pAC(h),
o 0w A(ly).

48

We then have to prove that §',w |= p. Let (answer(my,...,my),0;) —™ ... —>7k1
(E,6), with 6; = 6 and 6y = 6'. We next define for 1 < i < k, 0} = (a, 0}) (assuming
0; = (a,0;)), with o} = ;{o1(a)(@)/, 7}. It then follows that: (answer(m,,...,m,),0;) -
. =71 (E,6;) (note that § are some new variables not occurring in the body of
m;, 1 <1 < n). We have for some 1 < i < n that (5;,63) —»™ ... >™-2 (E,6;,_,) and
0,,w = p[g/a], with S; the body of method m;: o7 results from o by creating a new lo-
cal environment for the execution of §; by a, and oy, is obtained from oj,_; by popping
the stack of local environments associated with a. (Note that o; and o] agree with
respect to the instance variables of). From this and |= (0,0 : {p[7/2]}S:{pl7/%]})
we infer that 6;_,,w |= p[y/a]. Since p[j/ 4] contains no temporary variables and o,
and o}_, agree with respect to the instance variables of a we have 8}, w | p[§/1],
or, equivalently, 64, = p (note that o}(a)(7) = 4(@)() = o1(a)(3) = o} (a)(8) =
or,(a)(@)). We conclude ¢',w |= p. m]

6.2 The intermediate proof system

The following theorem states that every intermediate correctness formula derivable
from the intermediate proof system is valid:

Theorem 6.3
Whenever

H{P}(z R){Q}

- {P)emio)

then

and, whenever
H{P}R) | (#, B){Q}
then

= {P}(=)| (, B){Q}

We prove the validity of the assignment axiom (IASS) and the axiom (NEW). The
proof of the above theorem then proceeds by a straightforward induction on the
length of the derivation. To prove the soundness of the assignment axiom (IASS)
we need the following lemma about the correctness of the corresponding substitution
operation. This lemma states that semantically substituting the expression g’ for
z.z in an assertion (expression) yields the same result when evaluating the assertion
(expression) in the state where the value of g’ is assigned to the variable z of the
object denoted by =z.

49

Lemma 6.4 ‘
For an arbitrary o, w such that OK(w, o) we have:

Glglgh/ ze-zd)l(w)(o) = Glgl(w)(o”)
and
A[Plgy/ ze-zd]l(w)(o) = A[P}(w)(c)
where o' = 0 {G]gyl(w)(o)/w(z), za}-
Proof

By induction on the complexity of g and P. We treat only the case g = g1.2, all the
other ones following directly from the induction hypothesis. Now:

Glglga/ ze-zall(w)(o) =
Glif g1(g}y/ ze-za] = 2 then g’ else g1[g’/z..z].z fi|(w)(o)

Suppose that G[g1[g}/ zc-zd][(w)(0) = w(z:). We have: Glg1-z|(w)(d') = ' (Glg1](w)(a"))(=)-
So by the induction hypothesis we have that:

Glg1-zl(w)(0") = o'(w(z))(=) = Glgal(w)(o)-

On the other hand if Gg1[g}/zc.zd][(w)(0) # w(zc) then:

Gl9:1(g3/ zc-za)-zal(w)(o) =
o(Glg1lga/ ze-=d]l(w)(e))(2a)
o'(Glo1lg4/ ze-za]l(w)(9))(2a)
o' (Glg1l(w)(e))(2a)
Glg1-zal(w)(o")-

(definition of o)
(induction hypothesis)

The following lemma states the soundness of the axiom (IASS)

Lemma 6.5

We have

= {P[e[z/self]/z.z]}(z,a: — e){P},
where we assume z «— e € Stat® and z € LVar..
Proof

Let o,w, with OK(w,o), such that o,w | Ple[z/self]/z.z] and ¢’ € I[(z,z «
e)](w)(o). It follows that o' = o{G[e[z/self]](w)(c)/w(2),z} (note that as e is a

50

local expression we have G[e[z/self]](w)(o) = £[e]({a, o(a))), with a = w(z), a for-
mal proof of which proceeds by a straightforward induction on the complexity of e).
Thus by the previous lemma we conclude ¢/,w = P. O

To prove the soundness of the axiom describing the new statement we need the follow-
ing lemma which states the correctness of the corresponding substitution operation.
This lemma states that semantically the substitution [new/z] applied to an assertion
yields the same result when evaluating the assertion in the state resulting from the
creation of a new object, interpreting the variable z as the newly created object.

Lemma 6.6
For an arbitrary w,w’, a,a’, 8 € 0°\¢{°) such that OK (w,0) and
o' = (‘7(1){0(c) U {ﬂ}/c},"(z){l/ﬂ, Y}yelvare, 0(3))

and v’ = w{B/z.}, we have for an arbitrary assertion P:

Al P[new/z]|(w)(o) = A] P(«')(a").

The proof of this lemma proceeds by induction on the structure of P. To carry out
this induction argument, which we trust the interested reader to be able to perform,
we need the following two lemmas. The first of which is applied to the case P = g
and the second of which is applied to the case P = 1zP’, z € LVar,, a = ¢, c*.

Lemma 6.7
For an arbitrary o, w, with OK (w, o), global expression g and logical variable z. such
that g[new/z.] is defined we have:

Glgl(w') (o) = Glglnew/z]|(w)(o)
where o' = (0(1){0(C)U{ﬂ}/c}, 0'(2){-]-/ﬂ) y}'yEIVar‘; 0(3)) and w’ = w{ﬂ/zc}i :3 ¢ a.(c).

Proof
Induction on the structure of g. O

The following lemma states that semantically the substitution [zgyg}s, 2/ 2c+] applied
to an assertion (expression) yields the same result when updating the sequence de-
noted by the variable z.+ to the value of z. at those positions for which the sequence
denoted by zg,.. gives the value true.

Lemma 6.8
Let w,0, @ = w(ze+), @' = w(2zgye*) such that |a| = |@| and OK (w, 7).

Let a” € O¢" such that

51

o || =]a|

o forn e N: o'(n) =w(z) ifa'(n)=true
= a(n) if o/(n) = false

=1 ifa'(n)=1
Let v’ = w{c"/2.+}. Then:

1. For every g such that g[zggcls, Zc/ Zc+] is defined:
GlglzBoolss 2/ ze+]l (w)(@) = Glgl(«')(o)
2. For every P such that zg,,+ does not occur in it:

Al P[2Bools» 2/ ze+]|(w)(e) = Al P(w')(<)

Proof
Induction on the structure of g and P. m]

Now we are ready to prove the soundness of the axiom (NEW).

Lemma 6.9

We have
E {P[z'/z.:c][new/z’]}(z,z = new){P},

where z := new € Stat®, z € LVar., and z’ is a new logical variable of the same type
as z.

Proof

Let o,w, with OK(o,w), such that o,w |= P[z'/z.z][new/2'] and o' € I[(z,z :=
new)](w)(¢). We have by lemma 6.6 that o”,w’ |= P[2'/2.z], where v’ = w{B/z'},
with 8 € O¢\ o9, assuming d to be the type of the variable z, and 0" = (0(1){a(d) U
{B}/d}, o2){L/B,y}yervars,0(3)). Now by lemma 6.4 it follows that ¢/ 0w’ | P.
Finally, as z’ does not occur in P we have ¢/,w |= P. u|

6.3 The global proof system

The following theorem states that every global correctness formula derivable from the
global proof system is valid:

52

Theorem 6.10
‘Whenever

- {plz/self]}p{Q}
then

= {plz/self]}p{Q}

We will prove only the validity of the rule (PR), the other rules being straightforward
to deal with. We first introduce some definitions.

Definition 6.11

We call a global configuration (X, o) stable iff there exists no object executing inside a
bracketed section. With respect to the global configuration (X, ¢) an object a € o(©),
for some c, is said to be executing inside a bracketed section if X (a) = R; R’, for some
R', with R a substatement of a prelude or postlude of a braceted section containing
a new or send statement, or the prelude, postlude of the body of a method. Note
that if X(a) = wait(m, B8); R, for some method m and object B3, that is, a has just
finished executing the prelude of a bracketed section containing a send statement and
has sent the actual parameters to §, then a is not considered to be executing within
a bracketed section.

Definition 6.12
We call a global computation of p, i.e., a sequence (Xi,01),...,(Xs,0,) such that
Init,((X1,01)), and for 1 < i < n we have (X;, 0;) =™ (Xi31,0i41), for some record
7;, regular if in every configuration (Xj;, 0;) at most one object is executing inside a
bracketed section.

We observe that every terminating computation of a program p (p arbitrary) can
be rearranged into an equivalent (with respect to the local behaviour of the objects)
regular one. More precisely, for every terminating computation (X1, 01),...,(Xns,05)
of a program p there exists a regular computation (X7, o1), ..., (X}, 0}) such that for
every object a the sequence (X;(a),o1()),...,(Xn(a), on(c)) equals the sequence
(Xi(a),01(a)),. .., (Xi(a),ok(a)) modulo finite stuttering.

It is not difficult to see that the following lemma implies the soundness of the rule
(PR):

Lemma 6.13

Let p° = (Umy) iz |en : SE*) be bracketed, with Ul "ot = D13,y Daa
where D, = (m‘ls—‘; = p’i;—‘i e m;x.;—';f-r = ”i‘i;-i‘l-) : 85°. Let (A;, Ci: {pF}S5{gf}), 1 <
¢t < n, be some cooperating (with re;pect to some global invariant I) specifica-
tions. Then for an arbitrary regular computation (Xo,0y),- .., (X, 0%) of p such
that (a,00),w |= pn (a being the root-object), and (X%, o%) is stable, we have

53

e for every object a € a,gc‘) we have (a, o%), w = Ai(Lab(Xr(a))),
o op,wk1I,

o if @ € O is a newly created object of o then (a,o%),w = pj*.

Proof

The proof proceeds by induction on the length of the history h associated with the
computation (Xo, o), - - -,(Xk, o). Let us consider first the case that |h| = 0. Let
a be the root object. As the history A is empty and (X&,0%) is stable we have that
Xi(a) ¢ A, (note that | € A, marks the rear of a bracketed section), so we have that
(a, 01),w |= An(Lab(Xn(a))) holds vacuously. Furthermore, as the variables of I can
only be changed by the execution of a bracketed section (by the first clause of the
cooperation test), we have ox,w |= I (note that oo,w |= I by (a,w),w |= pn and the
last clause of the cooperation test).

Now let || > 0. First we consider the following case: Let
(Xo0,00) = ... = (Xm,0m) = ... > (Xk,ox)

such that

o X..(a) = li; Ry;l; z — eolm(€); Ry;lg; S, for some §, with a € O%
o Xn(B) = I§;answer(...,m,...);l5; S, for some §’, with B € O%

o From (Xm,0m) to (Xk,0%) only o and B are executing; a is executing the
statement R; and sending B the actual parameters, and B is executing the
statement R}, assuming m to be declared as R};If; R;15; Ry T e.

Let
r1 = Ci(h), r1=Cj5(11),
r=Cil), = A().

Next suppose that ly; Ry;l;2 « eo!m(€); Ra;lz occurs in the statement S*. Let k'
be such that from (X, o) to (Xm,0m) a is executing S;*. From the induction
hypothesis it then follows that {a,owp),w = pi'. We are given that = (A4;,C; :
{pF}55{q¢f'}) (by the second clause of the cooperation test and the soundness of the
local proof system), so from the truth definition of local correctness formulas and
another application of the induction hypothesis we have that (a,0.),w = 1. On
the other hand if |;; Rq; ;2 «— eg!m(€); Rg;lz occurs in the body of some method m'
it follows in a similar way from |= (4;,C; : {4(11)}R{C:(12)}), assuming m' to be
declared as Ry;T1; R;15; R 1 €', and the induction hypothesis, that (a, om),w = 71.

Analogously we have that (3,0m),w = 7{.

54

Furthermore, as X, is stable we have by the induction hypothesis that o,,,w | I.
Next we define

o = Om{om(e)(@)/a, L HE[e:)((@, 0m)) /B, yit1<ica{L /B, 45 }i)

where 7, = 7' U §”, with §’ being a sequence of instance variables corresponding to
the formal parameters of m and 7" to the local variables of m. It then follows that

o w' | I Ari[g1/t1][z1/self] A ri[z2/self] A P,

where ' = w{a,/z1,22} and P = eg[§1/t][z1/self] = z2 A A\; ei[F1/T1][21/self] =
22.9; A \;j z2.y; = nil. Next, let

(0’:,” (av Rl[gl/ﬁ'l])a (:31 Rll[gz/ﬁz])) —-* (0"1 (a7 E)1 (137 E))

It then follows by the cooperation test and the soundness of the intermediate proof
system that

o' ,w k= I A7l /11][21/self]) A 7] [§2 / E2][22/ self].
Now it is not difficult to see that
ok = 0" {5n(@)(31)/ 2 5 Hom(B)(2)/ B, L Ho' (@) §1) /e 51 H Push(oly g, £)/B,

where f(@;) = o'(8)(#2). So we conclude that

o op,whk1T

* (aao'k)’w |= r

o (B,0k),w = 1.

Next we consider the following case. Let
(Xo0,00) = ...(Xmyom) = ... = (X, 0%)

such that

¢ Xn(a) =z « wait(m, B); Rs; lz; S, for some S, with a € O%

* X(B) = I3; Ry;send(m, e, a); S/, for some §’, assuming R} to be the postlude
of the method m, with m declared as R;l{; R;|7; R, T e, and B € O¢

¢ From (Xp,0m) to (Xg,0k) only a and B are executing; « is executing z «
wait(m, 8); Rz and S is executing Rj; send(m, e, o).

55

Let C;(I¥) = ry and A;(l3) = 5, where I; marks the end of the answer statement
which gave rise to the activation of the method m. Furthermore, let 4;(lz) = r2. From
k= (4;,C; : {r/}R{ry}) and the induction hypothesis we infer that (8,0m),w E ry.
Moreover, by the induction hypothesis we have om,w |= I. From the previous case it
follows that we may assume (@, 0y,), w |= 7, where 7 = Cj(l), with | the label marking
the send statement which activated the method m. Next, we define

oty = Om{om()(@1)/ 2, 1 HE[E)((B, om))/ s zH{om(B)(H2)/ B, F2}-
It then follows that
ol W' = I Ar[f1/t][z1/self] A 73 [g2/d2][22/5elf] A Q,

where o' = w{a,B/z1,22}, and Q = z1 = z3.9] A z1.% = e[§2/U2][22/self]. (Note that
z does not occur in r.) Next, let

(., (o, Rl /1)), (B, Roldiz/H2))) =~ (o', (e, E)(, B, E)).

It then follows by the cooperation test and the soundness of intermediate proof system
that

o, W' = I A 7ol [n][21/self] A 79[22 /self].
It is not difficult to see that
ok = o' {om(@)(@1)/ 1 Hom(B)(#2)/B8, 2 H{o' (@) (1)), T H{ Pop(a(z)(s))/ B} -

So we conclude that

® Ok, Ww ‘= I
o (a,0),w =7y

o (B,01),w = 75

(Note that T'Var(ry) = 0.)

Finally, we have the following case to consider: Let
(Xo0,00) = -.. = (Xmom) = ... = (Xk, 0%)

such that

o Xn(a) =li; Ri;z < new; Ry;la; S, for some S, with a € O%.

o From (X, 0m) to (Xk,0k) is executing li; R1; 2 « new; Ry; ls.

56

Let C;(l1) = 71 and A;(l2) = r2. As in the previous cases, by the induction hypothesis
we have
(a,0m),w = and o, w = I.

Next, we define

O = Om{om(a)(@)/c, 7}-
It then follows that

o, w I Ary/a)[z/self].

where v’ = w{a/z}. Now, let
(0m: (2, (R1;2 — new; Ry)[7/a])) —* (o', (a, E)).

It then follows by the fourth clause of the cooperation test and the soundness of the
intermediate proof system that

o', w' = I Aryz, §/self, @] A plz - 2 /self],
where p is the precondition of the newly created object. It is not difficult to see that
ok = 0'{om(a)(7)/e, FHo'(a)(§)/ e, B}

So we conclude that (a,0r),w = 72, (B,0k),w = p (here B is the newly created
object), and op,w |= I. o

57

7 Completeness

In this section we prove that every valid correctness formula about a program is
derivable. To be more specific, let {p[z/self}p{@} be a valid correctness formula,

with p¢ = (U "t en - SS») where Umyioma! = D1, -+ -y Dnoamnty, and D, =
(mij—’; & u’lff,; Yooy m;h.filz‘_ = F:;.-Z";".) : 55, (Here we put D, = () : S5=.) Without

loss of generality we assume that [V(;r(p, Q) C IVar(p) and that every logical variable
occurring in @ has a type defined by p.

First we want to modify p by adding to it assignments to socalled history variables,
i.e., auxiliary variables which record for every object its history, the sequence of
communication records and activation records the object participates in. In languages
like CSP such histories can be coded by integers: In CSP we can associate with
each process an unique integer and thus code a communication record by an integer
[Ap]. As there is no dynamic process creation in CSP a history is a sequence of
communication records, which, given the coding of these records, can be coded too.

Given some coding of objects, it is not possible in our language to program an internal
computation, using only auxiliary variables, which computes the code of an object.
That is, we cannot program a mapping of histories into integers. Therefore to be able
to prove completeness, using the technique applied to the proof theory of CSP, we
have to extend our programming language. We do so by introducing for each d € ct
a new finite set of instance variables IVar5., for an arbitrary c. It is not difficult to
see how to code histories using these variables. However in the completeness proof
we will not go into the details of coding these histories but simply assume to be given
for each object of a class c; defined by p a history variable h;. For the details we refer
to [AB]. We transform p to p’ as follows:

Definition 7.1

Let Z* be the instance variables occurring in D; including the history variable k; and
7* be some new corresponding instance variables.

e Prefix every occurrence of an answer-statement, occurring in, say, D;, by the
multiple assignment 7* « Z*.

o Let the method m be declared in D; as S 1 e; replace S T e by
5 §'5hi — hio <m, & >;1; 55157 — Bk — hio <m,ug,e>Te,

where 7 is a sequence of new temporary variables corresponding to the variables
of the sequence #*, and % are the formal parameters of m.

o Replace every occurrence of a statement z «— eg!m(€) in, say, D;, by

l; hi — hjo < m,ep,& >; ;2 — eo!m(&); h; — hjo < m,self,z >;I'.

58

® Replace every occurrence of a statement z « new in, say, D;, by

’
I;2 « new; h; « h;o < self,z >;I’.

We assume the labels introduced to be distinct. It is important to keep in mind that
the assignments to the history variables are in fact abbreviations of statements which
compute the corresponding code. To be able to reason about invariance properties
of an answer-statement we introduced some new instance variables #* to freeze the
state just before the execution of the answer-statement. To ensure that after the
execution of an answer-statement these variables still refer to the state just before
the execution we assign the values of these variables to some new temporary variables
when entering the body of a method. After the execution of a body of a method
we then can recover the initial values of 7* from these temporary variables. We
assume that p' = (Umimmrt|en @ 84, with Updrin-t = Diz - "D:'I—I:;::.l’

%o _ 1Ci n"ei, i Ci no%o\ . o
Where‘Diih;—(mlii<=ﬂld;7“’!mn.'[{;'l.<: n;J;“.)'Si .
£] s

Definition 7.2

Let R denote an occurrance of a statement of D}, we define the set After(R, Dl) as
follows: First, assume that R occurs in S}*, we put After(R,D!) = After(R,S'),
where After(R,S) is defined as follows:

o If R = S then After(R,S)={E}

e If S =51;5,
then After(R,S)={R';S;: R' € After(R,S1)} if R occurs in S,
After(R,S) = After(R, S,) if R occurs in S,

o If § = if e then §; else S fithen After(R,S) = After(R,S;) if R occurs in S;
After(R,S) = After(R, S2) if R occurs in S

o If 5 = while e do S od then After(R,S)={R';S: R' € After(R,S1)}
Next, let R occur in 5, S being the body of some method declared in D, we define
After(R, D!) as follows:

After(R,D!) =
U{After(R1, R});...; After(Rn,R,): Ri=R,R,=5,R = S Vi<i<n:

R; = answer(...,m;,...),m; < Ri_; T e; € D}.

(Here, Xq;...; Xy, X; being a set of statements, is defined by {Ry;...;R, : R; €
Xi})

59

Furthermore we define Before(R, D) as follows:
Before(R, DY) = {R; R': E;R' € After(R,D})}.

Finally, for R = ¢ « wait(m, ep), associated with the send-statement R’ = z «
eo!m(€), we define

Before(R,D!) = {R;R": E;R" € After(R', D})}.

The intuition formalized by this definition should be clear: After(R, D}) characterizes
control when R has just been executed, while Before(R, D;) characterizes control in
those cases that R is about to be executed. The complication arising when R occurs
in the body of some method is due to the fact that we have to take into account chains
of answered methods of arbitrary length. We note that we assume some mechanism
to distinguish between different occurrences of a statement.

Next we modify the precondition p of the valid correctness formula {p[z /self } p{Q}
as follows:

Definition 7.3
We define

=" A N (2= 2)Aha| =0,
ceEW

where W = I Va‘rfr'l‘t U IVarg, |, Zz= being a new logical variable uniquely associated
with the instance variable z. These newly introduced variables are used to “freeze”
that part of the initial state as specified by the integer and boolean variables.

Note that the assertion |h,| = 0 should be interpreted as an abbreviation of an
assertion expressing the same fact, i.e., that there is no history yet, in terms of some
particular coding of the histories.

To define the ezpressibility of some set of states we have the following definition:

Definition 7.4
For R occurring in, say, D, we define

V(R) = IVar(D!)U TVar(D}) if R occurs in the body of some method
= IVar(D}) if R occurs in §;%.

Furthermore, for Y C IVar® U TVar, 0,0, and a € @ N ¢"©), we define

o(a) =y d'(a) iff o(a)(v) = o'(a)(v), forallv € Y.

60

Each of the following lemmas state the expressibility of a set of states which collects
all those states occurring during a particular computation whenever control is at some
specific point.

Lemma 7.5

Let R be a substatement occurring in p’, say, R occurs in D]. There exists a local
assertion Pre(R) with IVar(Pre(R)) U TVar(Pre(R)) C V(R), describing the local
state of objects of class ¢;, such that

(a,0),w |= Pre(R) iff

3(Xo, 00) —* (X', '), such that Init, ((Xo, 00)),

X'(a) € Before(R, D}),

(8, 00),w |= P, B being the root-object,

o'(@) =v(r) o(2)-

This local assertion Pre(R) describes all the local states (a, o) for which there exists
an intermediate configuration (X', ¢’) of a computation of p/, starting from an initial
state of the root-object which satisfies p, such that ’(a) equals o(a) with respect to
the variables of V(R), and furthermore, in the configuration (X', ¢’) the object a is
about to execute R.

Using the techniques of [AB] one can show that the assertion Pre(R) exists. Note that

the set Before(R, D?) (and After(R, D}) as well) is recursive. (To decide if a statement

occurs in, say, After(R, D!), we only have tolook at the sets After(Ry, R});...; After(Rn, R}),
with n the length of the statement. But these sets are finite and there are only finitely

many of them.)

Lemma 7.6)
Let R be a substatement occurring in p’, say, R occurs in D!. There exists a local

assertion Post(R) with IVar(Pre(R))U T'Var(Pre(R)) C V(R), describing the local
state of objects of class ¢; such that

(a, o), w |= Post(R) iff

L B(Xo, 0‘0) —* (X',O"), such that Initpl((Xo,O'o)),
» X'(a) € After(R, D}),

e (B,00),w |= P, B being the root-object,

61
o d'(a) =y(r) o(a).

This local assertion describes all the local states (a, o) for which there exists an
intermediate configuration (X’,0’) of a computation of p/, starting from an initial
state of the root-object which satisfies p, such that o’(a) equals o(a) with respect to
the variables of V(R), and furthermore, in the configuration (X', ¢’) the object a has
just finished executing R. The expressibility of this assertion is proved in the same
way as the assertion Pre(R).

Lemma 7.7
Again, let R be a substatement occurring in, say, D!. There exists a local assertion
Pre(R)y with IVar(Pre(R)y) U TVar(Pre(R)y) C Y NV(R), where Y C IVar® U
TVar, such that

(a,0),w |= Pre(R)y iff

there exists o’ such that o’(a) =y o(a) and (e, 0’),w |= Pre(R).

The expressibility of this assertion is proved in the same way as the assertion Pre(R).

Lemma 7.8
Let R be a substatement occurring in, say, D!, and p% be such that TVar(p) = 0.
There exists a local assertion SP(p, R) such that TVar(SP(p,R)) =9 and

(a,0),w = SP(p, R) iff

[] B(R,go) —72 (E,ol),

b 00,0.7 ':P,

® 0‘1(0!) =1Var(D}) O'(Q), where 6; = (a7 0'1)-

The assertion SP(p, R) expresses what is called the strongest postcondition of the
statement R with respect to the precondition p. Note that SP(p, R) specifies the
behaviour of R only with respect to the instance variables of D!. The expressibility
of this assertion is proved in the same way as the assertion Pre(R). Next we have the
following lemma:

Lemma 7.9
For every class c; defined by p’ there exists a local assertion Lhist]*, with TVar(Lhist;) =
@ and IVar(Lhist;) = {h;}, such that

(a, o), w |= Lhist; iff

62

o 3(Xo,00) =* (X', '), Init,((Xo, 00)),

e (B,00),w |= P, B being the root-object,

o o(a)(hi) = o'(a)(hi).
The expressibility of this assertion is proved among the same lines as the assertions
defined above. The assertion Lhist holds in a local state (a, o) iff there exists an
intermediate configuration (X’,o’) of a computation of p/, starting from an initial

state of the root-object which satisfies p, such that o and o’ agree with respect to the
history of a. Finally, we have the following lemma,

Lemma 7.10
There exists a global assertion I such that IVar(I) C {h1,...,h,} and

o,w = Tiff

3(Xo, 00) —* (X', '), with Init,((Xo, 00)),
X' is stable (see definition 6.11),

(aa UO);“’ |= D,
al(a)(hi) = O'(Q)(hi), fora € UI(CJ) ¢ € {cl7 . -7cn})

o o,(c,‘) — O’I(Ci), c; € {cl,. . .,Cn}-

This assertion I, which we call the global invariant, describes all states o for which
there exists an intermediate configuration (X’,¢’) of a computation of p/, starting
from an initial state of the root-object which satisfies p, such that o and o’ agree
with respect to the existing objects and with respect to the histories of these objects.
Note that as X’ is stable we have that the history recorded by an existing object
of o' equals the history obtained from h by deleting from it all the communication
and activation records not involving this object. The expressibility of this assertion
is shown along the lines of [AB].

Using the above lemmas we now define the set of assumptions and commitments for
each class ¢; € {c1,...,¢n}-

Definition 7.11
‘We define

o A;= {lI'Posi(R): R=1;R;l € Di, with R’ containing a new-statement} U
{V'.Post(R): R =1I;R;I' € D}, with R’ containing a send-statement} U
{l.Post(R): m < R;1; S;IR' T e € D} u
{V.SP(§* = z*,answer(7m)) A Lhist; : |;answer(n); ' € D!}

63

e C;= {l.Pre(R): R=I;R;l € D!, with R’ containing a new-statement} U
{I.Pre(R) : R=1;R;\ € D!, with R’ containing a send-statement} U
{I.Pre(R)1var : R = |;answer(m); " € D]} U
{I.Pre(R)17var\{z} : R = 2 « wait(m, e), with ;2 « eo!m(€) € D}}

Here R € D! should be interpreted to mean that R occurs in D.

It is important to note that given a statement |;answer(7); !’ we did not associate
the assertion Post(l;answer(7m);!") with the label I'. The reason for this being that
this assumption cannot be justified in the cooperation test, because when exiting
the body of one of the methods of » we have no information about the particu-
lar answer-statement which gave rise to the execution of this method. However we
will see in the following lemma how we can strengthen the assumption SP(7t =
z*,answer(7m)) A Lhist; by some reasoning within the local proof system to the asser-
tion Post(l; answer(/m);1’). We are now ready for the following lemma:

Lemma 7.12
‘We have
F (4;, C; : { Pre(R)}R{Post(R)}),

where R occurs in D! such that R is normal, i.e., R does not occur in a bracketed
section.

Proof
The proof proceeds by induction on the structure of R. We treat the case R =
l; answer(my, . . .,my); ', the other cases being straightforward.

Let m; be declared as R}; I%; Rj; I%; R 1 e;, furthermore, let p = Pre(l; answer(my, . . ., my); ')

and p' = p[§'/z']. We first show that
(0,0 {p'lg/ul} B}; Rj; R {p'[5/4]}),

where TVar(p') = % and 7 are some new instance variables:

1. (9,0 {p'lg/allo/5"} R} {p'[5/@}), by (LIASS).
2. (0,0:{¢'[5/a[o/7']}R;{p'(5/a[5/7']}), by (INV).
3. (0,0 {p'ls/al} R;{#'[§/ul[5/7']}), by (LTASS).

So applying the rule (BA) gives us

F (A:, C: : {p' A p1}l; answer(my, ..., my); '{p' A 1}),

where

64

° p = C(I) = Pre(l;answer(m1,. . -,mn); l,)IVury

o ¢ = A(l') = SP(F* = &*,answer(ma, ..., m,)) A Lhist;.

It is not difficult to check that
|= Pre(l; answer(my, ..., my); ") = p' A p1.
(Note that = Pre(l; answer(my, ..., my);l') — 7* = £'.) So applying the consequence
rule gives us
F (A;, C; : {Pre(l; answer(my, . .., my); I')}; answer(my, . .., mn); /{0 A ¢1}).

For an application of the consequence rule it thus suffices to show that the following
implication holds
p' A 1 — Post(l; answer(my, . ..,my,);l).

Here we go. Let
(aia)7w ‘= P, Aq.

From (e, 0),w |= Lhist; it follows that there exists a computation
(Xo,00) =" (Xm,0m)

of p’ such that o,(a)(h;) = o(a)(h;). Furthermore, we may assume without loss of
generality that a has just finished executing a bracketed section.

Let ¢’ = o{o(a)(7')/a,z'}. By (a,0'),w |= p it then follows that there exists a
computation
(Xo,00) =" (Xn,00)

of p’ such that X, (a) € Before(l; answer(my, ..., my,);V', D}) and on(a) =y (g) o'(a)
(R = l;answer(my,...,m,);l'). Note that we may assume that this computation
starts from the same initial configuration (Xo,00) as the computation which exists
according to o,w |= Lhist; because of the use of freeze variables in definition 7.3.

Finally, by {(a,o),w = ¢1 we have for some history A’
(answer(my, ..., my,),0) N (E, 8,

with (1) = 0(1) = a, 022)(a) =1var(D!) (), and 0, w |= 7 =z,

As om(a)(hi) = o(a)(h:) = 6y (a)(hi) we have 0(2y(@)(hi) = om(a)(h:) = B o b’ for

some history h”. Now let

(Xo,a'o) —* (th O‘k) —* (Xma Um)

65

such that op(a)(h;) = A" and a is about to execute a bracketed section. Now as
0(2)(“)("1‘) = 0(2)(a)(hi) oh' = k" o b’ we have

b2)(@)(h:) = R = or(a)(hs). (7.1)
From
802)()(¥)
0(2)(01)(37")
a(a)(7)
o'(a)(#) =
on(a)(Z)

Il

and _)
hwEy =7
it follows that
8(2)(@)(hi) = on(e)(hs)- (7.2)

So from 7.1 and 7.2 we infer that o,(a)(h;) = ok(a)(h;). From this in turn we
derive that Xi(a) = Xn(a) and ox(a) = o,4(a). (Note that the behaviour of an
object is uniquely determined with respect to the behaviour of the environment.)
Now, from ox(a) = 0,.(c) (using the above sequence of identities) it follows that
or(a) =rvar(p?) (2)(@). From which it is not difficult to derive that X,,(a) €
After(l; answer(my, . .., my); ', DY) and om(@) =1ver(D2) 0(2)(a) = IVar(D}) o(a) (use
again that the behaviour of an object is uniquely determined with respect to the
behaviour of the environment). Furthermore, we have

om(a)(u) =
or(a)(u) =
on(e)(v) =
d(a)(uv) =
a(a)(u),

where u € V(R) is a temporary variable. Note that the first identity follows from our
assumption that a in (X, 0,) has just finished executing a bracketed section, because
then, as oy, (a)(hi) = o(a)(h:) = 022)(a)(h,-), we have that a (in (X,,,0m)) has just
finished executing |; answer(my, . . .,my); . Thus we conclude that o(a) =y (gr) om(2),
so

(a,0),w |= Post(l;answer(my, ..., my);l').

O

In the following lemmas we show that the other requirements of the cooperation test
are satisfied.

66

Lemma 7.13

Let |;answer(...,m,...);|" occur in D, with m declared as Ry;ly; R;l2; R2 T e. Fur-
thermore, let I;; Ri;l;z — eo!m(ey, ..., en); R3; 15 occur in Di. Then the following
intermediate correctness formulas are valid:

{I A p}[#1/%1][21/self] A p[z2/self] A P}

(21, Ri[F1/@)) || (22, Ra[F2/%2])
{I A plin/@1][z1/self] A p1[F2/B2][22/self]}

and
{I A plg1/11][21/self] A p2[F2/@z2][22/self] A Q}
(21, Ry[§1/W)) || (22, Ra[F2/12])
{I A py[g1/t][z1/self] A p'[§2/ 2] [22/self]}
where

o p = Ci(I) = Pre(l;answer(...,m, ..);|") 1var,

o o' = A;(V') = SP(F* = z,answer(...,m,...)) A Lhist;,

o p1 = Ai(l1) = Post(Ry), p2 = Ci(lz) = Pre(Rz),

o gl = Ci(1) = Pre(t; T,z o eqtmlen, -, n); B 15),

o 5= Cj(l) = Pre(z «— wait(m, €))1Tver\{z}>

o phy = A;(l3) = Post(l}; R};T;z — eglmfey, . . ., en); R3; 13),

o P = eg[f1/])[z1/self] = 22 A \; €51/ B1][21/self] = z2.9] A \j 2297 = nil,

o Q =21 = zp.y) A z1.2 = e[fja/ila)[22/ self].

Here 7' U §” = 2, with §’ being the instance variables corresponding to the formal
parameters and 3’ corresponding to the local variables of m.

Proof
We start with the proof of the validity of the first correctness formula.

Let
o,w = I A pi[i1/81][21/self] A p[z2/self] A P.

Furthermore let

(o, (a1, R1[§1 /1)), (@2, Ra[§2/E])) —* (0, (1, E), (02, E)),

67

where a; = w(z;) and oz = w(zz). Next we define 0" = o{o(c1)(#1)/a1,81}. By
o w kI, (a1,0"),w |= p} and (az,0"),w |= p it then follows that there exists a
computation of p’

(Xﬂa 0'0) —* (X1u 0',,_)

such that

X,(a1) € Before(R}, D}) and Xn(az) € Before(l; answer(...,m,...); V', DY),

o on(a1) =v(r) o"(c1) (R = Ri;2 — eo!m(es,. .., en); Ry) and on(a2) =1var())
a.”(az)’
e o) = 0", c€ {1, -, n}s

Un(a)(hi) = a”(a)(hi)i S a,,(ci): ¢ € {(21, LR cn}

Note that, as the history of &y (@z) in the computation which exists according to
(a1,0"),w | P} ({(@2,0"),w |= p) equals that of a1 (@2) in the computation which
exists according to ¢”,w |= I, we have that in this latter computation a; is about to
execute R} (and a3 is about to execute I;answer(...,m,...);|') and the local states of
a3 (az) in the final states of these computations coincide. (Again, the above obser-
vation is based on the fact that the behaviour of an object is completely determined
given its interactions with the environment, furthermore we make use of that the com-
putations which exists according to o”,w |= I, (a1,0"),w |= p; and (az,0"),w Ep
all start from the same initial state, which is due to the use of the logical variables
Zg, introduced in definition 7.3, as freeze variables.) ' ‘

Now let
(Xn,0n) =% (X, 0k)

such that

o Xi(an) € After(R}, D)) and Xi(a2) € Before(z « wait(m, eg), D%),

o from < X,,0, > to < Xi,0r > only a; and a, are executing; « is executing
R} and a is executing Rj.

Note that such a computation exists because o”,w |= eo[§1/%1][z1/self] = 22, so we
have £[eo]({a1,0n)) = E[eo]({1,0")) = a2.

It is not difficult to see that

ox(ea)(@h) = o'(a1)(#1),

68

or(a2)(t2) = o'(az)(F2),
or(a1)(z) = o'(a1)(2), z € IVar(Dg),
or(az)(z) = o'(az)(z), = € IVar(D}).

Furthermore we have
a,(:) =09, ce{e,y...,cn}

and _
ou(@) (k) = o'(@)(hs), @ € o\, e € {e1,- .., en}.

So we conclude that
dwkEl,

(1,0"),w = Pre(z « wait(m, eo))[#1/),
(az,0"),w |= Post(Ry)[§2/82]-
Now it is not difficult to see that
k= Pre(z « wait(m, eg)) — -

So we conclude

o', w = I A pl§1/6][z1/self] A p1[F2/Bz)[22/ self].

The proof of the validity of the second correctness formula is similar. o

Lemma 7.14
Let ;= «— new; Ry; I’ occur in D!. Then the following correctness assertion is valid:

{I A plg/a][z/self]}
(2,(z « new; Ry)[§/a])
{I A p'[7]1][z/self] A g[z.z/self]}

where

o p = Pre(l;z — new; Ry;l'), p' = Post(l;z «— new; Ry;l'), and ¢ = Pre(S}%),
assuming the type of z to be c;,

e i are some new instance variables corresponding to the temporary variables .

Proof
Let

o,w |= I Aply/al[z/self],

69

and
(0, (a, (z — new; Rp)[7/a])) —* (o', (e, E)),

where o = w(z). Let ¢’ = o{o(a)(7)/u}. It follows that there exists a computation
of p’
(XO, 00) —* (Xn.7 an)

(the existence of such a computation is justified as in the proof of the previous lemma)
such that

Xn(c) € Before(l; z — new; Ry; ', D),

on(0) =v(R) 0"(@), R = = « new; Ry,
G'S;c) — a—”(c), cE {cl, .. -;Cn}f

an(B)(hs) = "(B)(h:), B € 0"(),¢; € {c1,. .., en}-

Next let
(ana'n) —* (Xkyak)

such that Xi(a) € After(l;z «— new; Ra; 1, D}) and from (X, on) to (Xk,o%) only
is executing. Now from

ak(ﬁ) = a,(ﬁ)7
with B the newly created object,

ar(@)(@) = o'()(7),
or(a)(z) = o'(a)(z), = € IVar(Dy),
and, finally,
(B, 01),w |= Pre(S5;)

it follows that
o' ,w k= I A p'[§/i)[z/self] A g[z.z /self].

Theorem 7.15

The following formula about p’, which is called the most general correctness formula
about p/, is derivable:

{Pre(S5,%) [2n/self]}

/

p
{I A Nign V2 Post(Si%)[z/self] A Post(S,™)[zn/self]}.

70

Proof
From lemma 7.12 it follows that

F (Ai, C; : {Pre(S{")}S{" {Post(S5;™)}),
and
(4, Ci : {A4:(N}R{C:(}),
where R occurs in the body Ri;l; R;l.Ry T e of some method m defined in D..
Furthermore it is not difficult to prove that
E Pre(S,")[zn/self| AVZ' (2 = 2,) A /\ (Vz; false) — 1.
1<ikn

(The variables z; are assumed to be of type ¢;.) From the completeness of the in-
termediate proof system and the above lemmas it follows that the cooperation test
holds. (The completeness of the intermediate proof system is proved in a similar way

as the completeness of the usual Hoare-style proof system for sequential programs.)
An application of the rule (PR) then finishes the proof. 0O

We are now ready for the completeness theorem.

Theorem 7.16
Every valid correctness formula {p[z, /self]}p{Q} is derivable.

F {plzc. /self]}p{Q}.

Proof
By the previous theorem we have the derivability of the correctness formula
{Pre(5,°") zn/self]}
o

{I A Aigr, V2 Post(S!%)[zi/self] A Post(S},°")[zn/self]}.

It is not difficult to prove that = p"* A Ajcw 2 = nil > Pre(S,°"), where W =
U, IVarg®. Furthermore, as I A A;., V2 Post(S;%)[z/self] A Post(S!°")[z,/self] can
be easily seen to characterize precisely the set of final states, we have

= I A A VzPost(S{%)[z/self] A Post(5.°")[zn/self] — Q.
i#n

By the consequence rule and the rule (INIT) we thus have
F {p'[zn/self]}0'{Q}-

71

Applying the substitution rules (S1) and (S2), substituting every logical variable z,
by the corresponding instance variable z, and substituting every history variable by
the empty sequence, denoted by nil, then gives us, after a trivial application of the
consequence rule,

F {plzn/self]}0'{Q}-
An application of the rule (AUX) then finishes the proof.]

72

8 Conclusion

We have developed a formal proof system for reasoning about the partial correctness
of programs written in the language POOL. We proved the system to be sound and
(relative) complete with respect to a formal semantics.

We mention the following topics for future research: First, we have the problem of
compositionality, i.e., the development of a proof system along the lines of [ZREB] in
which the history variables introduced in the completeness proof as auxiliary variables
are incorporated in the system itself.

Another interesting subject is the problem how to formalize reasoning about deadlock
behaviour. Due to the presence of dynamic object creation the standard techniques
developed for languages like CSP do not apply.

Finally, in the full language POOL an object can call its own methods. We did not
study this feature because we wanted to focus on the remote procedure call mechanism
in POOL. But we think we can incorporate the proof theory for recursive procedures
([Ap2)]) in our assumption/commitment formalism.

A cknowledgements We are much indebted to the work of Pierre America on the
proof theory for the language SPOOL. Furthermore we thank the members of the
Amsterdam Concurrency Group, J.W. de Bakker, A. de Bruin, P.M.W. Knijnenburg,
J.N. Kok, J.J.M.M. Rutten, E. de Vink en J.H.A. Warmerdam for their fruitful

comments.

73

References

[AB]

[AB2]

[Am]

[Ap]
[Ap2]

[AFR]

P. America, F.S. de Boer: A proof system for a parallel programming lan-
guage with dynamic process creation. Technical Report, Technical University
Eindhoven.

P. America, F.S. de Boer: A proof theory for a sequential version of POOL,
Technical Report, Technical University Eindhoven.

P. America: Definition of the programming language POOL-T. ESPRIT
project 415A, Doc. No. 0091, Philips Research Laboratories, Eindhoven, the
Netherlands, September 1985.

K.R. Apt: Formal justification of a proof system for CSP. Journal ACM,
Vol. 30, No. 1, 1983, pp. 197-216.

K.R. Apt: Ten years of Hoare logic: a survey-part 1. Journal ACM, Vol. 3,
No. 4, 1981, pp. 431-483.

K.R. Apt, N. Francez, W.P. de Roever: A proof system for communicat-
ing processes, ACM Transactions on Programming Languages and Systems,
Vol. 2, No. 3, 1980, pp. 359-385.

J.W. de Bakker: Mathematical theory of program correctness, Prentice-Hall
International, Englewood Cliffs, New Jersey, 1980.

R. Gerth, W.P. de Roever: A proof system for concurrent Ada programs.
Science of Computer Programming 4, pp. 1569-204.

Adele Goldberg, David Robson: Smalltalk-80, The Language and its Imple-
mentation. Addison-Wesley, 1983.

J. Hooman, W.P. de Roever: The quest goes on: towards compositional proof
systems for CSP. J.W. de Bakker, W.P. de Roever, G. Rozenberg (eds.): Cur-
rent trends in concurrency, Proc. LPC/ESPRIT Advanced School, Springer
Lecture Notes in Computer SCIENCE, Vol. 224, 1986.

[ZREB] J. Zwiers, W.P. de Roever, P. van Emde Boas: Compositionality and concur-

rent networks: soundness and completeness of a proof system. Proceedings
of the twelfth International Colloquium on Automata, Languages and Pro-
gramming, Nafplion, Greece, July 15-19, 1985, Springer Lecture Notes in
Computer Science 194, pp. 509-519.

