1991

P.H.M. America, F.S. de Boer

A proof theory for a sequential version of POOL

Computer Science/Department of Software Technology Report CS-R9118 March

CWI vationaal institout voor onderzoek op het gebied van wiskunde en mformatica

CWI is the research institute of the Stichting Mathematisch Centrum, which
was founded on February 11, 1946, as a non-profit institution aiming at the
promotion of mathematics, computer science, and their applications. It is
sponsored by the Dutch Government through the Netherlands organization
for scientific research (NWO).

Copyright © Stichting Mathematisch Centrum, Amsterdam

A Proof Theory for a Sequential Version of POOL

Pierre America
Philips Research Laboratories
P.O. Box 80000, 5600 JA Eindhoven
The Netherlands
Frank de Boer

CWI
P.0. Box 4079, 1009 AB Amsterdam
The Netherlands

Abstract

We develop a Hoare-style proof theory for partial correctness of programs
written in a sequential version of the parallel object-oriented language POOL.
The systems described by this language give rise to dynamically evolving process
structures. One of the main objectives of the proof theory is to formalize reason-
ing about such structures at an abstraction level at least as high as that of the
programming language. We show that the proof system is sound and (relative)
complete.

1980 Mathematics Subject Classification: T0A05.

CR Categories: F.3.1.

Key Words and Phrases: proof theory, pre- and post-conditions, process creation,
dynamically evolving process structures, rendez-vous, soundness, completeness.

Report CS-R9118
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Contents

1 Introduction

2 The language SPOOL

2.1 An informalintroduction
2.2 Thesyntax

3 Semantics

3.1 Domain definitions
3.2 The semanticfunctions
3.3 Remarks on the semantics

4 The assertion language and its semantics
4.1 The assertionlanguage

4.2 Semantics of assertions and correctness formulae

5 The proof system

............................

..........................

6 Completeness

6.1 Introduction

.................................

........................

6.3 Freezing the initialstate e e e e e 65

6.4 INvarTiancCe . - . . = .« vt i i i e e e e e e e e e e e e e e e e e e 69
6.5 Most general correctness formulae 72
6.6 Thecontextswitch 82
7 Conclusions 91
References 93
A A generalisation of the rule (MR) 94
B Expressibility 97
B.l Coding mappings . . . - « . v« v vttt e e e e e e e e e e e 97
B.2 Arithmetizing Truth, 98
B.3 Expressing the coding relationship 102
B.4 Expressing the strongest postcodition 103

C A closure property of the semantics 106

1 Introduction

This document explores the possibilities of giving a Hoare-style proof system for a
language, called SPOOL, which is a sequential version of the language POOL [1].
SPOOL is an object-oriented language, just like POOL, but it is sequential, so that
we do not have to deal with the specific problems connected with parallelism (it turns
out that the other problems are already difficult enough).

The main aspect of SPOOL that is dealt with is the problem of how to reason about
pointer structures. In SPOOL, objects can be created at arbitrary points in a pro-
gram, references to them can be stored in variables and passed around as parameters
in messages. This implies that complicated and dynamically evolving structures of
references between objects can occur. We want to reason about these structures on
an abstraction level that is at least as high as that of the programming language. In
more detail, this means the following:

o The only operations on “pointers” (references to objects) are

— testing for equality

— dereferencing (looking at the value of an instance variable of the referenced
object)

e In a given state of the system, it is only possible to mention the objects that
exist in that state. Objects that do not (yet) exist never play a role.

Strictly speaking, direct dereferencing is not even allowed in the programming lan-
guage, because each object only has access to its own instance variables. However, for
the time being we allow it in the assertion language. Otherwise, even more advanced
techniques would be necessary to reason about the correctness of a program.

The above restrictions have quite severe consequences for the proof system. The
. limited set of operations on pointers implies that first-order logic is too weak to
express some interesting properties of pointer structures (for example, the fact that it
is possible to go from w to z by following a finite number of z-links). It is surely too
weak to apply the standard techniques in proofs of completeness of a proof system,
where arbitrarily long computation sequences are coded into a finite set of variables.

Therefore we have to extend our assertion language to make it more expressive. We
considered two approaches:

e Using recursively defined predicates, by which the above “interesting” properties
of pointer structures can be expressed quite easily. This approach is worked out
in [2].

e Allowing the assertion language to reason about finite sequences of ob jects. In
this way the above properties can also be expressed (but not quite so elegantly).
This approach is studied in this report.

In section 2 we shall present the syntax of this language SPOOL. Then, in section 3
we shall give a denotational semantics for it. In section 4 we introduce an assertion
language, using quantification over finite sequences of objects, in which properties
of states in a computation can be formulated, and we formally define its semantics.
After that, in section 5, we present a Hoare-style proof system for SPOOL using
this assertion language. This proof system is proved to be sound with respect to
the denotational semantics. In section 6 we prove the completeness of the system.
Finally, in section 7, some conclusions are drawn from the present work.

2 The language SPOOL

2.1 An informal introduction

The shortest description of the language SPOOL would be that it results from omit-
ting the body of each class in POOL-T [1]. The most important consequence of this is
that the parallelism, present in POOL-T, disappears. But let us try to give a short,
independent description of SPOOL.

The most important concept is the concept of an object. This is an entity containing
data and procedures (methods) acting on these data. The data are stored in variables,
which come in two kinds: instance variables, whose lifetime is the same as that of
the object they belong to, and temporary variables, which are local to a method and
last as long as the method is active. Variables can contain references to other objects
in the system (or even the object under consideration itself). The object a variable
refers to (its value) can be changed by an assignment. The value of a variable can
also be nil, which means that it refers to no object at all.

The variables of an object cannot be accessed directly by other objects. The only
way for objects to interact is by sending messages to each other. If an object sends
a message, it specifies the receiver, a method name, and possibly some parameter
objects. Then control is transferred from the sender object to the receiver. This
receiver then executes the specified method, using the parameters in the message.
Note that this method can, of course, access the instance variables of the receiver.
The method returns a result, an object, which is sent back to the sender. Then
control is transferred back to the sender which resumes its activities, possibly using
this result object.

The sender of a message is blocked until the result comes back, that is, it cannot
answer any message while it still has an outstanding message of its own. Therefore,
when an object sends a message to itself (directly or indirectly) this will lead to
abnormal termination of the program. This is an important difference with some
other object-oriented languages, like Smalltalk-80 [6].

Objects are grouped into classes. Objects in one class (the instances of the class)
share the same methods, so in a certain sense they share the same behaviour. New
instances of a given class can be created at any time. There are two standard classes,
Int and Bool, of integers and booleans, respectively. They differ from the other classes
in that their instances already exist at the beginning of the execution of the program
and no new ones can be created. Moreover, some standard operations on these classes
are defined.

A program essentially consists of a number of class definitions, together with a state-
ment to be executed by an instance of a specific class. Usually, but not necessarily, this

-~

instance is the only non-standard object that exists at the beginning of the program:
the others still have to be created.

2.2 The syntax

In order to describe the language SPOOL, which is strongly typed, we use typed
versions of all variables, expressions, etc. These types are indicated by subscripts
or superscripts in this language description. Often, when this typing information
is redundant, it is omitted. Of course, for a practical version of the language, a
syntactical variant, in which the type of each variable is indicated by a declaration, is
easier to use.

Assumption 2.1
We assume the following sets to be given:

e A set C' of class names, with typical element ¢ (this means that metavariables
like ¢, ', c1, . . . range over elements of the set C'). We assume that Int, Bool ¢ C
and define the set ('t = C U {Int, Bool} with typical element d.

e Foreachc € C andd € C't we assume a set IVar§ of instance variables of type d
in class c. By this we mean that such a variable may occur in the definition
of class ¢ and that its contents will be a reference to an object of type d. The
set I'Varg will have as a typical element z3.

e For each d € € we assume a set TVary of temporary variables of type d, with
typical element uq. '

e We shall let the metavariable n range over elements of Z, the set of whole

numbers.
e For each ¢ € C and dy,...,d, € C* (n > 0) we assume a set MNameg, 4.
of method names of class ¢ with result type do and parameter types dy,...,dx.

The set MName§, 4 will have m§ ; as a typical element.

Now we can specify the syntax of our language. We start with the expressions:

Definition 2.2
For any ¢ € C and d € C't we define the set Ezp§ of expressions of type d in class ¢,
with typical element e§, as follows:

1% = e5, if d = Bool

eg = g
| ua
| nilg
| self ife=d
| true | false if d = Bool
| n ifd = Int
|
|

C c M o
e1fne T €2t if d = Int
5, C c 3 —
| €15nt < €2Jnt if d = Bool

The intuitive meaning of these expressions will probably be clear from section 2.1.
Note that in the programming language we put a dot over the equal sign (=) to
distinguish it from the equality sign we use in the meta-language.

Definition 2.3
The set SExp of expressions with possible side effect of type d in class ¢, with typical
element s3, is defined as follows:

G u= eg
| newy ifd e C (i.e., d # Int,Bool)
| eoly ! mPy, (€18, end,) (n>0)

The first kind of side effect expression is a normal expression, which has no actual
side effect, of course. The second kind is the creation of a new object. This new
object will also be the value of the side effect expression. The third kind of side effect
expression specifies that a message is to be sent to the object that results from e,
with method name m and with arguments (the objects resulting from) ey, ..., e,.

Definition 2.4
The set Stat® of statements in class ¢, with typical element S¢, is defined by:

c P— 2 C C
S§¢ u= 2§ s
| ug — 5
| sa

Cc. c
| 51353
| if egoo then ST [else S5} fi
H c c
| while e, do 5 od

Again, the intuitive meaning of these statements will probably be clear. Note that a
side effect expression s may occur in the place of a statement. This means that s is

evaluated and then its value is discarded, so that only the side effect remains. If in
a conditional statement the else-part is absent, the statement is interpreted as if it
contained else nilj¢.

Definition 2.5
The set MethDef, 4. of method definitions of class ¢ with result type dy and pa-
rameter types dy, . ..,d, (with typical element pu ;) is defined by:

”tcio,m,dn G (uldl’ . "’u"dn) 257 820

Here we require that the u;g4, are all different and that none of them occurs at the left
hand side of an assignment in S¢ (and that n > 0).

When an object is sent a message, the method named in the message is invoked as
follows: The variables uy, ..., u, (the parameters of the method) are given the values
specified in the message, all other temporary variables are initialized to nil, and then
the statement S is executed. After that the expression e is evaluated and its value,
the result of the method, is sent back to the sender of the message, where it will be
the value of the send-expression that sent the message.

Definition 2.6
The set ClassDef: . of class definitions of class ¢ defining methods my, ..., my,

my,...,m

with typical element D, ., is defined by:

c c ‘ c c [
n=c - us ... == 1nG
D c (mldlc;ldl, » Mng ;L,,dn)

my,...,Mp

where we require that all the method names are different (and n > 0).

Definition 2.7

The set Unitin of units with classes ¢q,...,¢n defining methods my, ..., my,

with typical element Ug} Sz, is defined by:

ey I c c
Uitroem = D1y D,y
where mq,...,my = my,..., m,. We require that all the class names are different.

Definition 2.8
Finally, the set Prog® of programs in class ¢, with typical element p°, is defined by:

pe = (Ucl,...,c,.]c . Sc)

my,...,Mg

Here we require that ¢ occurs in ¢y, ..., cn. (The symbol ‘| is part of the syntax, not
of the meta-syntax.)

The interpretation of such a program is that the statement S is executed by some
object of class ¢ (the root object) in the context of the declarations contained in the
unit U. In many cases (including the following example) we -hall assume that at the
beginning of the execution this root object is the only existing non-standard object.

10

Example 2.9
The following program generates prime numbers using the sieve method of Eratos-
thenes. We assume the following symbols:

¢ The class name Sieve € C (abbreviated sometimes by ¢,) with instance variables
pel Va'rf"‘t and next € IVar(!, temporary variable q € TVar|y, and method
name input € MName: Int*

o The class name Driver € C' (abbreviated by c;) with instance variables i, bound €
IVar{?, and first € IVarg].

Then this is the program:

(Sieve : (input <= (q) : if next = nil
then next «— new;
P—2q
else if qmod p #0
then next ! input(q)
fi
fi
1 self),
Driver : ()
|
Driver : i « 2;
first — new;
while i < bound
do first ! input(i);
i—i+1
od
)

Figure 1 represents the system in a certain stage of the execution of the program.

Driver

(351 Sieve Sieve Sieve

bound: G12) HEED CHEND) PG
first: (= next: = next: (=5 next: Co—+—

Figure 1: Objects in the sieve program in a certain stage of the execution

11
3 Semantics

3.1 Domain definitions

Definition 3.1
We assume for every ¢ € C' an infinite set O¢ of object names of class ¢, with typical
element 3°. We define P¢ to be the set of all finite subsets of O°¢, with typical
element 7¢. Furthermore we assume a function pick® : P¢ — O°€ that satisfies

V7€ € PC: pick®(w°) ¢ 7°. (3.1)

This function will be used to generate the name of a new object, whenever one is
created.

For the standard classes Int and Bool we define the sets of object names as follows:

Olnt = 7
0Bo° - B = {t,f}

(We shall not need functions pick'"t or pickBool)

Definition 3.2
For every set X we define the corresponding flat domain X to be the set X U {1},
equipped with an ordering C defined by

rCy < rz=1LVer=y.

Note that for every set X, X, is a complete partial order (cpo). Sometimes we shall
only consider the underlying set of this ordering, for example in definition 3.4. -

Definition 3.3
We shall often use generalized Cartesian products of the form

11 BG).

i€A
As usual, each element of this set is a function f with domain A such that f(z) € B(7)
for each ¢ € A. We shall sometimes write f(;) for f(i) if i € A and f € [;c4 B(%),
and also we sometimes write (f(¢))ica for A(i € A).f(7). Finite products are special
cases: If A is of the form {1,...,n} we sometimes write B(1) x --- x B(nr).

Definition 3.4
We define the set ¥ of states, with typical element o, as follows:

v = HP° X H (O° — IVar§ — O‘i) X H (TVaf‘d — Oi)
c c,d d

A little explanation is surely required here. A state o € T records the values of the
variables in the whole system at a certain point in the computation:

12

o Its first component oy, gives for every class ¢ € C afinite set of objects oy €
P¢. This set represents the objects that ezist in this state (i.e., they have already
been created).

¢ The second component o(3) records the values of the instance variables. More
concretely, if c € C' and d € C'* are class names, ¢ € O€ is an object of class c,
and z§ € IVar§ is an instance variable of type d in class ¢, then o(3)(c,a)(83°)(23) €
O‘i is the value of the instance variable x§ of object 3¢. If this value is L, this
means that the variable refers to no object. This is the situation for a variable
that has not been initialized, but it can also be achieved by assigning nil to it.

e The third component (3, records the values of the temporary variables. More
concretely again, if d € ('t is a class name and uy € TVarg is a temporary
variable of type d, then o(3)4)(uq) € O‘i is the value of the variable ug. Here
again, it is possible that the value of the variable is nil.

For any state o we introduce by convention that &,)|n, = Z and o), Bool) = B.

Furthermore we write (%) for I(1)(d)-

Definition 3.5

Note that in general it is possible that in a state the variables of an existing object refer
to an object that does not exist. If this is not the case and, additionally, the variables
of the non-existing objects are not initialized, we say that the state is consistent.
More precisely, we call a state o consistent if

e Vce CV3 € a9V e €Vl e [Vars, a2)c,en(3N2a) € US_C’)

° VC € C" Vuc € T"’(l"c U(s)(c)(llc) (S ("g_c)

o Ve € CV3 € 0%\ o) Vd € CF Va§ € IVary o(zca)(B°)(29) = L

(Note that it would not make sense for either ¢ or ¢’ to be Int or Bool.) We shall
occasionally use the shorthand OK(&) to indicate that o is consistent.

Definition 3.6
We say that a state o’ extends a state o (notation @ < ¢') if Ve € C () C '),

Definition 3.7

We shall make flexible use of the so-called variant notation, especially in connection
with states. The variant notation is a short way to express a new state that arises
when some component of an old state is modified. For example, if we write

o' = a{p?/B>, 23}

13

this means the following:

() = 0

Ufz)(c,d)(ﬂﬁ(z) = B

0{2)(c.d)(’32)("c1) = 0(a)(ca)(B2)(2") ife! £z
F(3)(ca)(B") = o)ea(3) if B # B
Ufz‘)(cr,df) = O(a)(cd') ifc #cord #d

‘7(,3) = 0(3)
(This example also illustrates the usefulness of this notation.)

Definition 3.8
The set A¢ of conterts of class ¢, with typical element 6¢, is defined as follows:

A° = 0° x [[P
cl
The meaning of a context é° is as follows:

e The first component ‘5(81) £ O° indicates the object that is currently executing
(the object denoted by self).

o The second component 6(°._,) represents all the objects that are waiting for the
result of a message they have sent. This is because these objects become blocked,
that is, they cannot answer any message before they have received the result of
their outstanding message. If ¢/ € C is a class name, then 67, ., € P< is the
set of blocked objects of class ¢'. :

Definition 3.9
We say that a context §¢ agrees with a state o if

¢~ lc)
B 6(1) Eo

e Ve C 6?2)(&) C ol
We shall write the shorthand OK(a,§) to indicate that o is consistent and § agrees
with o. ‘

Definition 3.10
The domain T of environments, with typical element «, is defined as follows:

= H (MNamefio‘_“,dn — (ﬁO‘i’) —A° > %, — (E_L % 0(10))
1=1

c,do,....dn

14

An environment ¥ records the meaning of the methods. More concretely, if ¢ €
C and dy,...,d, € C* are classes, m € MName§, 4 is a method name, 3 =
(B, ..., B.%) e I, O‘Ji_‘ a row of objects (each possibly L), § € A° a context,
o € £, a state (again possibly L), then 'y(cld)(m)(,é)(é)(a') is a pair (o',) € T, X
Oi", with the intended meaning that if the method named by m is invoked with
parameters (3, in the context § (which indicates among others the object that executes
the method), and starting in the state o, then after the execution ¢’ will be the new
state and g is the result of the message. Here (o', 30) = (L, L) indicates abnormal

termination or divergence.

Definition 3.11

We call an environment vy agreement-preserving if for every c, dy, . . ., d,, for every m§,
for every 6°, for every ¢ € I, and for every 3 = (ﬂld’,Bnd") € 1=, U(J_d‘) (note
that we consider only existing objects) we have that if OK(c,6) and (o', 3%) =

7(C'J)(m)(,§)(6)(a) and ¢’ # 1 then OK(0¢'), o < o', and 3% ¢ aff_d“.

Note that the requirement is somewhat stronger than preservation of the agreement
between state and context. We require that the new state extends the old state and
that it is consistent. This automatically implies that the context § agrees with the
new state.

3.2 The semantic functions

Definition 3.12
The semantics of expressions is given by a function

£S: Expy — A° =, — 09,

which is defined as follows:

Eqleql(d)(+) = 1L (from now on we assume o # 1)
Eil=z3l(8) (@) = oa)ea)(d))(zd)

Elual(8)(0) = oyzya)(ua)

Eglnila](6)(e) = L

Eglself](8)(@) = & (only if ¢ = d)

ESltruel(d)(o) = ¢ (only if d = Bool)
ESlfalse](8)(o) = f (only if d = Bool)

Enl(é)(e) = n (only if d = Int)

Eqlery = e23](6)(o)

o if £5ea](6)() = E5le](8)(0)
= f otherwise
(only if d = Bool)

15

Eqlerg + e23](6)(o) L if &fe](8)(o) = L or £Gex](8)(0) = L

E5ler](8) (o) + E5le2](8) (o) otherwise

(only if d = Int)

Il
-

Eqlerg < eazl(8)(o) if £3[e1](6)(o) = L

or Esfea](8)(0) = L

t if £5[e1](6)(a) < E4le2](6)(o)
= f otherwise

(only if d = Bool and d' = Int)

Il

Although most of these equations speak for themselves, we shall give some informal
explanation.

e The function E[e](8) is strict, that is, it will always yield L if it is applied to a
state o that is equal to L.

e The value of an instance variable is looked up in the second component of the
state o. The first component of the context § indicates the currently active
ohject.

e The value of a temporary variable is looked up in the third component of the
state o.

o The value of the expression nil is always L.
e The value of the expression self is the first component of the context 4.

o The Boolean constants true and false get the corresponding truth-values as their
value.

e Integer numbers are mapped to themselves. Note that at this point we are
confusing syntactic and semantic entities a little, but here this is harmless.

o The equal sign between expressions means that we test whether their values are
really the same objects. Note that this is a kind of non-strict predicate, because
if both sides yield L, the result of the equality is nevertheless t.

¢ Addition is only defined for genuine integers: If one of the two sides yields L
the result is also L.

e The same is true for the relation <.

16

Definition 3.13
The semantics of expressions with possible side effect is given by the function

25:SEepy =T — A° - 1 — (S x 0%).

To a side effect expression s € SEzp§, an environment y € I, a context § € A€, and a
state o € £, (the state before evaluation of the side effect expression), this function
assigns a pair {0/, 3) € £ x 0%, consisting of the state o after the evaluation and
the result 3 of this side effect expression. Here (o', 3) = (L, L) represents abnormal
termination or divergence. The function Z§ is defined as follows:

Z5Ts51(4)(8) (L) = (L, L) (from now on we assume o # 1)
Z5legl(7)(8) (o) = (o, Ele](é) (o))

Zi[newa](7)(6)(o) = (o', 3)
where 3 = pick?(o(d)

o = o‘{a(d) U {ﬁ}/d}{L/6,;c3'}d,ec+,x€”,ar:l
note that d € (', i.e., d # Int, Bool

Z5leos ' mG g 4. (€15, enl)(1)(E)(0) = (o', B%)

where 3p° = E5lead](8)(a)
3 = &lego)e) (i=1,....n)
(0,39 = (L1,1) if3 =1

(from now on we assume 3o # 1)

& - <;3o°',5(2){‘5(2)(e) U {6(1)}/C}>
(o' Bd) _ “/(c',d,dl...-,dn)(‘m)(ah o Bn)(0')(0)

Some explanation is appropriate here.

e Again, for any s, 7, and 8, Z[s](7)(8) is a strict function: if the starting state o
is L it delivers (L, 1).

o If an expression € occurs as a side effect expression, its result is computed using
the function £ and the state is unchanged.

e The resulting object 3 of a new-expression is obtained by applying the func-
tion pick? to the set o(?) of existing objects of class d. By the property listed
in equation 3.1 on page 24, we know that we really get a new object. The new
state o’ reflects the situation after the creation of this object. In its first com-
ponent 0'61) the object 3 is added to the set of existing objects of class d, while

17

the other classes are unchanged (we use the variant notation to express this).
The explicit initialization of the instance variables to nil would be unnecessary
if we knew that o is consistent.

e In order to evaluate a send-expression, first the destination object 3p and the
parameters 31, ..., 3, are computed (in the old state). Note that if the desti-
nation is L (i.e., nil), then the program will fail, which is represented by setting
(o',3%) to (L, L). Otherwise a new context is created, in which the executing
object is the destination of the message, and in which the sending object is
added to the set of blocked objects (of the appropriate class). Then the mean-
ing of the method m is looked up in the environment vy and, provided with the
parameters, the new context and the old state, it gives us the new state and the
result of the send-expression.

Definition 3.14
The semantics of statements is given by a function

S¢:Stat* =T - A= X, =%,

which is defined as follows:

Se[SN(y)(0)(L) =L (from now on we assume o # L)

Sxg — s3l(v)(6) (o) = o”
where (d',3) = Z3[s51(7)(6)(o)
o" = o'{B8/64). 2}
S[ua — s3)(7)(6)(0) = o”
where (o/,3) = Z5[=31(7)(8)(o)
o= B
SLsgl()(8) (o) = (250531 (1)(6)(a))y)
Se[S1: Sa](7)(8) (o) = S°[S21(7)(8) (S°[S:](7)(8)(o))

S¢[if e then Sy else Sy fi](7)(6)(o)

I

L if3=1
SIS k(1) (8)(o) B =t
= S[SA(1)8)e) B =1

Il

where 8 = £[e](6)(o)

18

S¢[while e do S od](y) = u®
where @ : (A€ — (¥, — ;1)) - (A° - (¥ — E))) is defined as follows:

Bp)(6)(0) = L =1
= p(8)(SISN)E)(0)) ifB =t
o ifg=f

where 3 = E[e](8)(o)

Here is some informal explanation:

e For any 5, v, and §, S[S](7)(¢) is a strict function from £, to ¥, .

o If an assignment to an instance variable @ is done, first the right hand side is
evaluated, resulting in a new state o’ (because of possible side effects), and an
object 3. Now the final state ¢ is constructed from ¢’ by modifying its second
component in such a way that the object 8 becomes the value of the variable .

¢ For an assignment to a temporary variable, essentially the same thing is done,
except that the new value is stored away in the third component of the resulting
state o”.

o If a side effect expression occurs at the place of a statement, it is evaluated
and its resulting object is ignored. Only the new state is kept (this is the first
component of the result of the evaluation).

e Sequential composition of statements is modelled by letting the second state-
ment act on the state that results from the first statement.

e For a conditional statement first the condition is evaluated. Depending on that
the first or the second clause is executed (or a failure is signalled).

e A while statement is modelled by taking the least fixed point of the operator &.
This operator takes its argument ¢ as an approximation of the meaning of the
while statement and maps it to a better approximation, obtained by unwinding
the loop one more time.

Definition 3.15
The semantics of method definitions is given by a function

MG, 4. MethDefS, , —T — <H oj*) A5 %) - (zl x 0F)

i=1

which is defined by:

19

Goroda [(Urdys - Ung,) 1 85T €5 1(N(B™, - ., Ba™)(8°)(0) = (0", B%)

where o' = 1 if 6(1) € 6(2)((:) oroc = |

= (o), 0(2) 0'63)) otherwise

0'63)(d)(ud) = ﬂ,‘di lf d = d‘i and ug = uid,’

fori=1,...,n

= 1 otherwise

o" = SSN)(6) (o)

p = £5,[eg,1(6)(0")

" — ifo = L

"

= (olpoipo@) il £ 1L

Again we give an informal explanation: The first thing to be checked when a method is
to be executed is whether the executing object is blocked, that is whether §(1) € §(3)()
or whether the starting state o is L. If this is the case the result of the method will be
the pair (1, L) (this will come out automatically if we set ¢’ to L). Next we construct
a state o’ by initializing all temporary variables to L, except the formal parameters,
which are bound to the corresponding actual ones (that is, the variable u;q, is set
to ﬂid‘). In this modified state o’ we execute the statement 5¢ of the method, which
results in a new state ¢”. In this state we can evaluate the result expression €j ,
which gives us the object 3%. The state o’ after the method execution is obtained
by restoring the temporary variables to their values before the method execution.

Definition 3.16
The semantics of class definitions is given by a function

Cray.my ¢ ClassDefy, o —T =T
which is defined as follows:
Crpmale s (mg = g oo mag = tng)(7)

= Y{M[[#lf‘—l]](‘y) / m,l;-l} . {/‘Al[ﬂng—n]]('y) / mn(‘;_n}

This means that in the environment 4 the value associated with each method m in
the class definition is replaced by the value obtained from the corresponding method
definition. However, this method definition is still evaluated with respect to the old
environment y. Note that the order of the replacements does not matter, because it
is required that all method names must be different. '

Definition 3.17
The semantics of units is given by a function

€C1,--9Cn . 1€l Cn
uml,..’.,mk N lrnltml,...,mk - r - F

20

which is defined by:

Uk D1k Do 1) = 7'

where 7' = 1{G/miYs,
(ST Y = u¥
T(Chh-- k) = (Y"(ci;0d5)(m)))5,
7" = C[Di]o---oC[DA)(v{¢}/m;}%,)

(we suppose that m; = mjzj)-

The main point in this definition is the construction of an environment 4’ from the
least fixed point of the operator . This operator ¥ takes as its argument a row
(15 -+ of possible meanings of the methods defined in the unit. Assuming these
meanings for the corresponding methods, a new environment 4" is determined from
the class definitions in the unit and from this environment the new meanings for the
previous methods are extracted, yielding the output of ¥. The least fixed point of ¥
therefore consists of the meanings of the methods defined in the unit, where for the
other methods the meanings recorded in v are assumed.

Because we require that all the class names (the ¢;) are different, each C[D;] modifies
a different part of the environment y{¢!/m; };?:1. Therefore the order in which they
are composed does not matter. We cannot simply take the least fixed point of C[D;]o
... 0C[D,] because we want to preserve the meanings of methods not defined in
Dq,...,D,. This is important in the soundess of the recursion rule.

Definition 3.18
Finally we give the semantics of programs by defining a function

P¢:Prog° T - A° -3, -5,

as follows:

PUUR mile s S9(v) = S[S1(+")
where 7' = U[U](y)

If every method used in the program is defined in the unit then the meaning is

independent of the environment y. One could take the “empty” environment Yo,
defined by

v0(c, d)(mg)(3)(&°) (o) = (L, L)

(this is certainly agreement-preserving).

21

3.3 Remarks on the semantics

In the foregoing definition of the semantic functions that play a role in our language,
we have omitted some details. One of these details is the fact that all the functions
of which we need the least fixed point are indeed continuous.

Lemma 3.19
The function ®, used in the semantics of while statements in definition 3.14, is con-
tinuous.

Proof
First of all it is easy to see that

e For every expression ¢ and for every context §°, the function £[e](6) is strict,
i.e., that £fe](8)(L) = L.

e For every statement S¢, for every environment 7y, and for every context §°, the
function S[S](y)(8) is also strict, i.e., S[S](7)(6)(L) = L.

Now after a little calculation it becomes clear that this is all we need to ensure the
continuity of &, which moreover maps strict functions in A — (Z£. — £) again to
strict functions (so its least fixed point will also be a strict function). o

Lemma 3.20
The function ¥, used in definition 3.17 to define the semantics of units, is continuous.

Proof
The proof of this lemma is somewhat more involved. It would proceed in the following
steps:

For any side effect expression s9, Z[s] is a continuous function from I' to A® —
51— (S x 09).

e For any statement S¢, S[S] is a continuous function from T to A° — ¥, — &,.

e For any method definition ug , , M{[y] is a continuous function from T to
(M=, 0%) - ac = £, = (BLx OF).

For any class definition D%, C[D] is a continuous function from I to T'.

e Now we can prove that ¥ is a continuous function.

22

O

In retrospect we can change the domain assignments of several entities as follows
(where 5 stands for continuous functions and - for strict functions):

r= J] (MNamego’m’dn - (H of) —A° - TS (31X of))
i=1

£5: Ezpg — A° — B, 504

Z5: SExpy —T5A° -3, 5 (5, x 0%)

S¢:Stat* »TSA -8, 5%,

MG, 4. : MethDefs, 4 —T 5 (H o‘f) - A= 55 (21 x 0F)

=1
1 c
Cray.mn @ ClassDefy, . —T—=T
c
Uptrcr o Omatgn - T'—T

Pe¢:Prog - T SA° -5, 5%,

Lemma 3.21
Now we come to the issues of consistent states and agreement between context and
state. We can make the following observations:

e For any expression ¢, for any state ¢ € X, and for any context § € A° such
that OK(o,8), we have that £[e](8)(o) € cr(f).

e For any side effect expression s§, for any agreement-preserving environment 7,
for any state ¢ € I, and for any context § € A€ such that OK(o,), we have
that if (o', 3%) = Z[s](7)(¢)(c) and ¢’ # L then OK(0'), o < o’ (therefore also
OK(c",6)), and g € /")

e For any statement 5S¢, for any agreement-preserving environment v, for any state
o€ V‘, and for any context § € A€ such that OK(o,¥d), if o/ = S[S](7)(8)(7)
and ¢’ # L then OK(c') and o < o' (therefore also OK (o', §)).

o For any method definition pg, _; , for any agreement-preserving environment v,
for any state o € X, for any context § € A€ such that OK(o,d), and for any
row of(existing) objects /; (B, .., B8, %) € TI™, a(f) we have if (o', 3%) =
M[u](7)(B)(8)(¢) and o’ # L then OK(o'), o <X o' (so also OK(o',§)), and
ﬂdo € af)

o For any class definition D and for any agreement-preserving environment y we
have that C[D](v) is again an agreement-preserving environment.

23

e For any unit U and for any agreement-preserving environment 7y we have that
U[U](7) is again an agreement-preserving environment.

e For any program p¢, for any agreement-preserving environment <, for any state
o € ¥, and for any context §° such that OK(s,$), if ¢/ = P[p](7)(8)(c) and
o' # 1 then OK(c') and ¢ <X o’ (therefore also OK (o', §)).

Proof
The proof consists of an easy induction on the structure of the syntactical object
under consideration. a

24

4 The assertion language and its semantics

In this section we shall develop a formalism for expressing certain properties of states,
and we shall give a semantics for it.

One element of this assertion language will be the introduction of logical variables.
These variables may not occur in the program, but only in the assertion language.
Therefore we are always sure that the value of a logical variable can never be changed
by a statement. Apart from a certain degree of cleanliness, this has the additional
advantage that we can use logical variables to express the constancy of certain ex-
pressions (for example in the proof rule (MI) for message passing in definition 5.24).
Logical variables also serve as bound variables for quantifiers.

The set of expressions in the assertion language is larger than the set of programming
language expressions not only because it contains logical variables, but also because
it is allowed to refer to instance variables of other objects. Furthermore we include
conditional expressions in the assertion language because they are very convenient
(e.g., in the axiom (SAI), see definitions 5.6 and 5.7).

In two respects our assertion language differs from the usual first-order predicate logic:
Firstly, the range of quantifiers is limited to the existing, non-nil objects in the current
state. With respect to the classes Int and Bool this only means that the range does
not include L. This does not affect essentially the expressive power of the assertion
language, but in most practical cases one wants to exclude L from the quantification,
so in these cases the assertions become shorter. For the other classes this restriction
means that we cannot talk about objects that have not yet been created, even if they
could be created in the future. This is done in order to satisfy the requirements on the
proof system stated in the introduction. Because of this the range of the quantifiers
can be different for different states. More in particular, a statement can change the
truth of an assertion even if none of the program variables accessed by the statement
occurs in the assertion, simply by creating an object and thereby changing the range
of a quantifier. (The idea of restricting the range of quantifiers was inspired by [8].)

Secondly, in order to strengthen the expressiveness of the logic, it is augmented with
quantification over finite sequences of objects. It is quite clear that this is necessary,
because simple first-order logic is not able to express certain interesting properties.

4.1 The assertion language

Definition 4.1
For each d € Ct we introduce the symbol d* for the type of all finite sequences with

25

elements from d, we let C* stand for the set {d*|d € C+}, and we use C!, with typical
element a, for the union C* U C*.

We define O¢" to be the set of finite sequences with elements from O‘i (note that
the elements can also be L). The empty sequence ¢? is also included in O%". The
elements in a sequence are always numbered starting from 1. In order to simplify
some formulae we define O‘f to be the same as O¢", in deviation from definition 3.2.
In addition to B4, we shall sometimes use a?” to range over elements of o+,

We have the following functions:

o len?: 0% — Z returns the number of elements in the sequence.

o eltt: 0% xZ — O‘i extracts from the first argument the element numbered by
the second argument. If the second argument is “out of bounds” (less than 1 or
greater that the length of the first argument) then the result is L.

Assumption 4.2
We assume that for every a in C'! we have a set LVar, of logical variables of type a,

with typical element z,.

Definition 4.3
We the set LErpS of logical expressions of type a in class ¢, with typical element /g,
as follows:

I == e ifae C*
|
A ifae C*
| if log,, then I else Io; fi ifa € ct
| Lg =g if a = Bool
| hipe + L2int if a = Int
I hijge < lafnt if a = Bool
| S ifa=Intandde C*

i 112. . l?-fnt ifac C+

Note that the difference with the set Ezp§ of expressions in the programming language
is that in logical expressions we can use logical variables, refer to the instance variables
of other objects, and write conditional expressions. Furthermore, we extended the
domain of discourse by means of logical variables ranging over sequences and notations

26

to express the length of a sequence and the selection of an element from a sequence.
The selection operator ‘-’ can be distinguished from the dereferencing operator .’ by
its higher vertical position on the line and by the type of its first argument.

Definition 4.4
The set Ass® of assertions in class ¢, with typical elements P¢ and Q¢, is defined by:

Pt = CBooI
| Pe—QF
| -Pe
| Vz, P
| 3z, P

This definition is rather conventional.

Definition 4.5

Of course, we shall freely use the logical connectives A, V, and —, which we consider
as abbreviations of appropriate constructions with — and -. Furthermore we shall
use /3| as an abbreviation for I = nily and [§ | for - I§ = nily.

Definition 4.6
Finally we define the set CorrF¢ of correctness formulae in class ¢, with typical
element F€, as follows:

F¢ = P¢
| {Ple{Q}

4.2 Semantics of assertions and correctness formulae

Definition 4.7
In order to be able to assign a semantics to logical expressions we first define the set Q
of valuations, with typical element w, as follows:

Q =[] (LVar, — 0%).

(Remember that O = 0% if a € ('*.) A valuation assigns a value to each logical
variable.

Definition 4.8
We call a valuation w compatible with a state o if

o Vee CVz € LVar, wy(z) € a'ﬂ_c)

e Ve€ CVzes € LVare Vn € Z elt?(w(y(2),n) € agf)

Again an abbreviation is useful: we shall write OK(c, §,w) meaning that o is consis-
tent, § agrees with o, and w is compatible with o.

Lemma 4.9
Concerning the preservation of compatibility by statements and programs we have
the following properties:

o For any statement S¢, for any agreement-preserving environment v, for any
state o € X, for any context §° and for any valuation w such that OK(e,é,w)
we have if ¢/ = S[S](7)(8)(c) and o’ # L then OK(¢',6,w).

o For any program p°, for any agreement-preserving environment 7, for any state
o € X, for any context §° and for any valuation w such that OK (o, §,w) we have
if o/ = P[p](7)(8)(¢) and o’ # L then OK(o’,6,w).

Proof
This is an easy consequence of lemma 3.21. a

Definition 4.10
We define the semantics of logical expressions by specifying the function

LS : LEzprS — Q@ — A° > S — 0%

as follows:

Legl@)(6)(0) = E5Ll(6)(0)
Lifzad(@)(6)(@) = wa?)
L5l 251 @)(6) (o) = L 8= 1

0'(2)(c',d)(f3)(‘-'3§') otherwise
where 3¢ = L5 [I](w)(6)(o)

& ifg=1
dhl(w)(é)e) ifB=t
dlbl(w)(é)(e) fB=f

L[Loy, then L else o fil(w)(8)(o)

where 8 = L3[lo](w)(8)(o)

Lyl = Lapl(w)(8)(o) = t if LG[L])(w)(6)(o) = LG [l](w)(6)(e)
= f otherwise
(only if d = Bool)

28

Ly[hg + Lal(w)(é)(e

Il

L L5ILlw)(8)(e) = L
or c;[[z,]](w)(Jo)= L
[L](w)(8)(@) + L3[La)(w)(8)(o)

otherw1se

Il

(only if d = Int)

Ll < by)(w)(é)(e) = L if LG[h](w)(6)(e) = L
or LG [L](w)(6)(e) = L
=t if £3[L](w)(8)(e) < LG[L)(w)(6)(o)
= f otherwise
(only if d = Bool and d’ = Int)

L], LG 11(w)(6)(o) = len?(£3 [1](w)(6)(0))

L3Thg - b J(w)(8)(o) elt (L. [L](w)(8)(0), L5 [l](w)(8)(2))
These equations are just what one would expect, especially after having seen defini-
tion 3.12.

Lemma 4.11
Ifoec ¥, 6 A andw € Q are such that OK (o, §,w), then for every logical expression

l € LEzpr§ we have L[I](w)(d)(c) € a(l) and for every expression | € LEzpr§. we
have elt?(L]I}(w)(&)(c),n) € U(Ld), for every n.

Proof
Induction on the complexity of I. a

Definition 4.12

Now we can define the semantics of assertions in terms of the function
A1 45 - Q- A=Y - B

as follows:

Al () (w)(8)()

t if L [l(w)(é)(o) =t

f otherwise

A[-PY(v)(w)(8)(0) = f if A[P](v)(w)(é)(o) =t

t otherwise

t if for all 3 € 0¥ we have
A Pe)(v)(w{B/2})(8)(0) =

f otherwise

A[Vzq P)(v)(w)(8)(o)

29

t if there is a 8 € (%) such that

A[Pe](v)(w{B/2})(8)(0) = ¢

f otherwise

A[3zg PeJ(v)(w)(6)(o)

A[Vzge PJ(w)(8)(o) = ¢ if for all @ € 0" such that

Vn € Z elt(a,n) € af)

Ac[Pe)(w{a/z})(é)(0) = ¢

= f otherwise

we have

A[Fzge PeJ(w)(8)(o) = ¢ if there is an a € O such that

Vn € Z elt(a,n) € af) and

AP w{a/ =) (6) (o) = ¢

= f otherwise

A few remarks should be made here.

o Note that the possible values of a boolean logical expression are t, f, and L. If
such an expression is viewed as an assertion, only t and f remain. If viewed as
an expression it yields 1, as an assertion it delivers f.

e It is very important to note that in assertions of the form Vzq P and 3zy4 P the
quantification ranges only over the ezisting, non-nil objects of the appropriate
type. In assertions of the form Vz, P and 3z, P (where a = d*, for some d €)
the quantification ranges over sequences of existing objects, possibly nil.

Example 4.13
The formula
v —— w

from (7] can be expressed in our new assertion language in the following way:
334-(:-1 ZvAz-jzlZwAYVR(0<nARn<|z]) = (z-n)x = z-(n+1))

Here n denotes a logical variable ranging over integers. This formula expresses that
the object w can be reached from v by a “z-path”.

Example 4.14
There are no logical expressions in the language to construct a sequence with one
specific element (a singleton). However, if we want to say that property P holds for

30

the singleton whose element is given by the logical expression /, we can do this as
follows:

Jzge |2] =1Az-1=1AP(2)

or equivalently:
Vzge (2| = 1A 2-1=1)— P(2).

A similar procedure is possible for the empty sequence and for the concatenation of
two sequences. Furthermore we can see whether two sequences are equal by checking
if they have the same lengths and whether their corresponding elements are equal.
(Direct ways of expressing the above things could be included in the assertion lan-
guage, but they would make the substitution operation [new/u| in definitions 5.13
and 5.15 much more complicated.)

Definition 4.15
Finally we define the notion of truth and validity of correctness formulae.

e We say that a correctness formula of the form P¢ is true with respect to a
valuation w, a context §¢, and a state o, written as w,8,0 = P, if OK(0,§,w)
and

AP)(w)(6)(o) = ¢

e We call a correctness formula of the form P° valid, written as |= P, if it is true
with respect to every w, 0¢, and o such that OK(o,§,w).

o A correctness formula of the form {P¢}p°{Q°} is called true with respect to an
environment v, a valuation w, a context §°, and a state o, written as y,w,§,0 |=

{P}p{Q}, if w,é,0 |= P implies that for the state o' = P[p](y)(8)(o) we have

o #1L=>wéd=Q.

¢ We define a correctness formula of the form { P}p°{Q°} to be valid with respect
to an environment v, written as vy |= {P}p{Q}, if we have v,w, 8,0 = {P}p{Q}
for every w, 6¢, and 0. We call such a correctness formula simply valid if it is
valid with respect to every environment.

31
5 The proof system

In this section we shall present a number of axioms and rules that can be used to
derive correctness formulae. For each axiom and rule we shall give its justification
by proving that it is valid. Note that axioms are correctness formulae so we have
already defined what validity means for them. We call a proof rule valid if for every
environment v the validity of the premisses of the rule with respect to v implies the
validity of the conclusion with respect to 7. The consequence of the validity of all the
axioms and rules will be that our proof system is sound, i.e., that if we can derive a
correctness formula (without any further assumptions), this correctness formula will
be valid. (There is one rule in the system that cannot be proved valid in isolation: the
recursion rule (MR) in definition 5.33. It will get a special treatment in the soundness
proof of the whole proof system (see theorem 5.40).)

5.1 Simple assignments

Definition 5.1
We shall call a statement a simple assignment if it is of the form £ — e or u — e (that
is, it uses the first form of a side effect expression: the one without a side effect).

5.1.1 Simple assignment to a temporary variable

Definition 5.2
Our first axiom deals with the case that the target variable is a temporary variable:

{Pc[eg/ud]} (Ule: ug — eg) {Pc} (SAT)

Here the notation Ple/u] means: P in which e is substituted for x. 'We shall formalize
that notion in the next definition. (Note that this definition merely asserts that the
name (SAT) refers to the class of formulae of the form listed above.)

Definition 5.3
We shall define the substitution operation [e/u] first for logical expressions:

r [efu] = =

u [efu] = e

v [efu] = o ifu #u

z [le/u] = :z

I [e/u] =1 if | = nil, self, true, false
n [e/u] = n

l.zle/u] = (le/u]).z

if Io then 1 else I, file/u] = if lo[e/u] then l1[e/u] else Iz[e/u] fi

(b = bL)e/u] = (Lle/u]) = (Lale/u])
(I +) [e/u] = (Lle/u]) + (I2[e/u])

(b <b)e/u] = (hle/u]) < (lzle/u])

1 leful = e/
(b b)lefu] = (hle/u]-lfe/u])

Now we define this substitution for assertions other than logical expressions:

(P — Q)le/u] = (Ple/u]) — (Qle/u])
(-P) le/u] = ~(Ple/u])

(V= P) [e/u] = Vz(Ple/u])

(3 P) [e/u] = 3z (Ple/u])

This definition can be summarized by saying that we can perform the substitution
"e/u] by replacing u by e everywhere in the expression or assertion at hand. However,
this will not be true for the notions of substitution that we will define in the sequel,
despite the fact that we use a very similar notation to indicate those substitutions.

In the following lemma we express the most important characteristic of the substitu-
tion [e/u]. Informally spoken, for any logical expression or assertion, the substituted
form has the same value in the state before the assignment as the unsubstituted form
has in the state after the assignment.

Lemma 5.4
Consider the assignment statement ugy — 5. Let ¥ € T, 0 € £ and § € A° be
arbhitrary, and let

o = S[u — €}(1)(6)(0).

Then we have the following facts:

1. For every logical expression IS, and every valuation w
LlUe/ull(@)(8)(0) = LUNw)(6)(").
2. For every assertion P¢, every valuation w

A[Ple/u])(w)(8)(a) = A[P](w)(6)(o")-

33

Proof
First we observe that ¢’ = S[u « e](7)(6)(c) means that ¢’ = o{3/u}, where

8 = €lel(6)(o).

Now we can prove the first part of the lemma by induction with respect to the structure
of I. The only interesting case occurs when [= u so that l[e/u] = e:

Le](w)(é)() E[e](é) (o)
B
= (3)a)(v)
= £[u](8)(a)
= L[u](w)(8)(c")

After that we can prove the second part of the lemma by a straightforward induction
on the structure of P.

Of course, this lemma is easily extended to the case where instead of an assignment
statement we take a program in which the statement is a simple assignment to a
temporary variable:

Corollary 5.5
The axiom (SAT) is valid, that is, for every environment y we have

= {Pe/u]} (Ule:u — e)‘ {P}

a

Note that the corollary uses only one direction of the lemma. The two directions
together say that Ple/u] is the weakest precondition of the statement u «— e with
respect to the postcondition P.

5.1.2 Simple assignment to an instance variable

Definition 5.6
In the case that the target variable of an assignment statement is an instance variable,
we use the following axiom:

{Peleg/agl} (Ule: g — e) { P} (3AD)

This looks very similar to our first axiom (SAT), but note that we have not yet defined
what substitution means if we substitute an expression for an instance variable instead

34

of a temporary variable. We shall do that now, and the difference will become clear
immediately:

Definition 5.7
The substitution operation [e/z] is defined as follows on logical expressions:

r [efz] = e

¢ [efz] = 2 ife' £z

u [efz] = u

z le/z] = =z

I [e/z] l if I = nil, self, true, false

n [e/z] n

l.z [e/zx] = if (I[e/z]) = self then e else (I[e/z]).z fi
l.2'[efz] = (lle/z]).2' if2'#=z

if lg then [y else [; filfe/z] = if lg[e/z] then l;[e/z] else I5[e/z] fi

(h = I2)[e/ =]
(h +12)[e/=]

(lh < Iy)[e/x]

1l

[e/z]
(h - 12)[e/ 2]

i

(hle/z]) = (Iz2[e/2])
(hle/z]) + (L2[e/=])

(hle/z]) < (L2[e/=])

|ie/=]|
(hle/z] - Lr[e/z])

The definition is extended to assertions other than logical expressions in the same
way as before:

(P — Q)le/z]
(=P) [e/z]
(Vz P) [e/z]
(3z P) [e/z]

(Ple/z]) — (Qle/=])
~(Ple/=])

Vz (Ple/z])

3z (Ple/z])

The most important aspect of this definition is certainly the conditional expression
that turns up when we are dealing with a logical expression of the form /.z. This
is necessary because a certain form of form of aliasing is possible: the situation that
different expressions refer to the same variable. In the case of [.z, it is possible
that, after substitution, [/ refers to the currently active object, so that [.z is the

35

same variable as ¢ and should be substituted by e. It is also possible that, after
substitution, [does not refer to the currently executing object, and in this case no
substitution should take place. Since we cannot decide between these possibilities by
the form of the expression only, a conditional expression is constructed which decides
“dynamically”.

Lemma 5.8
Consider the assignment statement z§ «— e5. Let vy € T, 0 € &, and § € A€ be
arbitrary, and let

o' = S[e — el(7)(8)(o).

Then we have the following facts:

1. For every logical expreséion % and every valuation w
Lllle/])w)(8)(e) = LIw)(6)(o).
2. For every assertion P and every valuation w

A[Ple/z][(w)(8)(a) = A[P](w)(8)(c").

Proof

Like in lemma 5.4 we first note that o' = o{3/6(;),2} where 3 = £[e](8)(o). The
first part of the lemma is now proved by induction on the complexity of [. We shall
only deal with the most interesting case: | = I’. 2. The induction hypothesis tells
us that L[l'le/z]J(w)(8)(o) = L[I'(w)(6)(c’). Let us call this object 3. Now if
Bo = b(1y then L[I'. 2}(w)(d)(0') = 0'('2)(5(1))(2:) = B = L[e](w)(8)(e). Otherwise
we have L[I". z](w)(8)(0”) = a(,5,(30)(x) = L](I'le/z]) . z)(w)(6)(c). So L[if I'e/z] =
self then e else (I'[e/2]) .z fi}(w)(6)(o) = L[I'. z](w)(8)(').

The rest of the lemma is proved in a way similar to lemma 5.4. a
Again we can extend this to programs instead of statements:

Corollary 5.9
The axiom (SAI) is valid, that is, for every environment 4 we have

= {P[e/a:]} (Ule:z —¢€) {P}
a
Note that this corollary also uses only one direction of the corresponding lemma.

Again the two directions together say that Ple/z] is the weakest precondition of the
statement r « e with respect to the postcondition P.

36

5.2 Creating new objects
5.2.1 Assigning a new object to a temporary variable

Definition 5.10
For an assignment of the form u — new we have a axiom similar to the previous two:

{Pc[newc:/uc:]} (Ule: upr — newc:)‘{Pc} (NT)

Again we still have to define what this notion of substitution looks like, but first we
shall define the substitution of an expression for a logical variable, because we shall
need that later:

Definition 5.11
We define the substitution operation [e/z] on logical expressions by:

e le/z] = @

u [e/z] = u

: lefz] = €

2o [efz] = £ ifz! #:

' lefz) =V if I’ = nil, self, true, false
n [e/z] = n

. .xle/z] = (I'le/z]). 2

if lo then I else I, file/z] = if lo[e/z] then l1]e/z] else ly[e/ =] fi

(h = la)e/z]
(lh + la)le/z]

(hle/=]) = (l2fe/2])
(Iile/z]) + (l2[e/=])

(L < la)le/z] (Iile/z]) < (l2]e/z])

1 le/2
(I - I2)[e/ 2]

e/]!
(Lle/2] - I2[e/z])

We extend this definition to assertions other than logical expressions as follows:

37

(P—Q)le/z] = (Ple/z]) — (Qle/z])

(=P) [e/2] = ~(Ple/2])

(Vz=P) [e/z)] = VzP ,

(Vz' P) [e/z] = Vz'(Ple/z]) if 2/ # =

(3z P) [e/z] = 3z P
(3z' P) [e/z] = 3 (Ple/z]) ifz/ # =

This definition can be summarized by observing that the substitution can be carried
out by replacing z by e everywhere except in the scope of a quantifier where z is
bound.

Lemma 5.12
Let 0 € B, 6 € A°, e € Erp§, and z € LVary be arbitrary, and let 8 = E[e](8)(0o).
Then we have

1. For all I € LEzp§ and for all w € (X
LU/ =]l(w)(é)(0) = LUYw{B/=})(8)(2)-
2. For all P € Ass®, for all w € Q:

A[Ple/z))(w)(8)(e) = A[P}(w{B/=})(8)(o).

Proof
A rather trivial induction on the complexity of / and P. a

Now we can define the substitution [new./u.]. We shall do this first for logical expres-
sions. As with the notions of substitution used in the axioms for simple assignments,
we want the expression after substitution to have the same meaning in a state before
the assignment as the unsubstituted expression has in the state after the assignment.
However, in the case of a new-assignment, there are expressions for which this is not
possible, because they refer to the new object (in the new state) and there is no ex-
pression that could refer to that object in the old state, because it does not exist yet.
Therefore the result of the substitution must be left undefined in some cases.

However we will show that we are able to carry out the substitution. The idea
behind this is that in such an assertion the variable u referring to the new object
can essentially occur only in a context where either one of its instance variables is
referenced, or it is compared for equality with another expression. In both of these
cases we can predict the outcome without having to refer to the new object.

38

Definition 5.13
Here comes the formal definition of the substitution [new/u] for logical expressions:

z [new/u] = =z

u [new/u| is undefined

u'[new/u] = wu ifu' #u

z [new/u] = =z

[[new/u] = I if I = nil, self, true, false
ninew/u] = n

¢ zlnew/u] = 2.2

u .z[new/u] = nil

v z[new/u] = vz ifu' #u

z .z[new/u] = z.z

l zlnew/u] = l.z if I = nil, self
l.2" z[new/u] = (I.2'[new/u]).2

(if lo then [else I3 fi. z)[new/u]

= if lo[new/u] then (I; . z)[{new/u] else (I5. z)[new/u] fi

if lo then Iy else I3 filnew/u]
= if lg[new/u| then l;[new/u] else Iy[new/u] fi
if the substitutions of the subexpressions are all defined,

otherwise undefined

(ll = 12)[new/u] = (ll[new/u]) = (lg[new/u])

if neither /; nor [y is u or of the form if ... fi

(11 = 12) [new/u] = false
if either I; = u and [, is not u or of the form if ... fi

or I, = u and [y is not u or of the form if ... fi

(ll_%lg)[new/u] = true

ifII:IZ:u

39

(i lo then Iy else Iy fi = Ig) [new /]
= if lo[new/u|T

then (l;;‘[)[new/u]

else if lp[new/u]
then (11 = 13)[new/u]
else <12 = 13)[new/u]
fi

fi

(1 = if lo then Iy else Iy fi) new /u]
= if lo[new/u|T

then (11 T)[new/u]

else if lp[new/u]
then (ll = l«_;)[new/u]
else (11 = 13)[new/u]
fi

fi

if 11 is not of the form if ... fi

(I1 + Iz)[new/u] = (Iy[new/u]) + (I2[new/u])

(I; < Iy)[new/u] = (l1[new/u]) < (l3[new/u])

U [new/u] = [ifnew/u]
(I - lp)[new/u] = ((l[new/u]) - (I3[new/u])

Lemma 5.14
Let u € TVary with d € C' (i.e., d # Int, Bool).

1. For every logical expression [we have that I[new/u] is defined if and only if [is
not of the form indicated by the following BNF definition:

lu == u
| if lg then luelse I fi
| if lp then [; else lu fi

40

22 IfoceX de A% weQ, and v € T are such that OK(o,d,w), and if o' =
S[u — new](7)(6)(o) then for every logical expression ! such that I[new/u] is
defined we have

L{i[new/u]](w)(8)(e) = L{(w)(8)(o").

Proof
The first part is easily proved by induction on the complexity of . For the second
part we first observe that

o = a{a(l)(d)u {8} / d} {,B / u}
where 3 = pickd(a(l)(-d)), so B ¢ a(1)a) U {L} (see definitions 3.13 and 3.14).

Now we can prove our lemma by induction on the complexity of I. In several places
we need the information that OK (o, §,w) together with lemma 4.11 in order to prove
that the result of an intermediate logical expression is not equal to 3. Let us deal
with one representative case: | = ¢'. 2. Then lrnew/u] =1 =2'.2. Now the induction

hypothesis tells us that L[2'](w)(8)(o) = L[2'](w)(8)(c’). If we put this equal to 3’
then we know 3’ # 3 because lemma 4 11 tells us that B' € ap1ya)U {J_} Therefore
we have L2 2[(w)(8)(0) = a(2)(3')(2) = oLy, (B')(2) = L[2". 2)(w)(8)(< 0

Definition 5.15
We extend the substitution operation [new/u| to assertions other than logical expres-
sions as follows (we assume that the type of uis d € C):

(P — Q)lnew/u] = (Plnew/u]) — (Q[new/u])

(-P) [new/u] = =(P[new/u])

(Vzq4 P) [new/u] = (Yz(P[new/u])) A (P[u/z][new/u])

(V2 P) [new/u] = (¥z VzBoo. 2 = 12/] = (P, u/=][new/u]))

(Vzqo P) [new/u] = (z(Plnew/u])) ifa#d,d*

(324 P) [new/u] = -([new/u])) V (P[u/z][new/ u])

(32 P) mew/u] = (3= 325 . |2 = || A (P[', u/=][new/u]))

(3z4 P) [new/u| = (3z(P[new/u])) ifa #d,d*
Here we choose for z' the first variable from LVargg,- that does not occur in P.
The idea is that z and =’ together code a sequence of objects in the state after the
new-statement. At the places where z’ yields t the value of the coded sequence is the

newly created object. Where =’ yields f the value of the coded sequence is the same
as the value of z and where 2’ delivers L the coded sequences also yields L.

We still have to define the substitution operation [z’,u/z] and we shall do that now:

41

Definition 5.16
Let d € C, u € TVarg, z € LVarg., and 2’ € LVargy, . For logical expressions we
define the operation [/, u/z] as follows:

e [z, u/z] = e

z [z',u/z] is undefined

z" (2 u/z] = 2" if 2" # z
l.z [Zu/z] = (I[Z,u/z]).z

FREAYE R

1 /e = i/ ifl# 2

(z-1p) [, u/z] = if 2/ (la[2',u/z]) then uelse = - (L[, u/z]) fi
(L) u/z] = (b u/2])- (L[/) ifh #2

e

if lo then Iy else I fi [2',u/z] =
if (Io[2', u/z]) then (112, u/z]) else (I5[z',u/z]) fi

(h = L)' u/z] (h[2',u/z]) = (I2[2", u/z])
(h+ L) u/z] = (L' u/2]) + (la[2', u/2])

(L < L) u/z] = (L2 u/z]) < (I2[z',u/z])

LERTE
URSERTE

1", u/z]]
(h{z,u/z]- L[u/z])

We extend this definition to assertions other than logical expressions as follows:

(P.— Q)" u/z] = (P[',u/2]) — (Q[,u/2])

(=P) [u/z] = ~(P[",u/z])

(Vz P) [,u/z]=(Vz P)

(V=" P) [, u/z] = (V2 ((=", u/2])) if 2" # 2
(32 P) [u/z] = (32

(3" P) [2',u/z] = (32 ((', u/z])) ifz/' £ =

Lemma 5.17
Let u, z, 2’ be as in definition 5.16. Let 0 € £, § € A¢, w € Q, and take a = wg-(2),

o = WiReel*)(2'), B = 0(3)(4)(u). Suppose that lend(a) = lenBoOl(a'). Define a” €
0% to be the sequence that satisfies (for all n € Z):

len(a") = len(a)

elt(a’',n) = B if elt(a/,n) =t
elt(a’,n) = elt(a,n) ifelt(a’,n)=f
elt(a’,n) = L if elt(a’,n) = L

and take v’ = w{a'/z}.

Then we have:

1. For every | € LEzpr{ such that [# z:
Lol w/2])(w)(8) (o) = LT (w")(8) (o).
2. For every P € Ass® such that z’ does not occur in P:

ALP[Z u/2])(w)(6)(0) = A°[P](w')(8)(2).

Proof

The proof consists of a quite easy induction on the complexity of [and P respectively.
Of course, the only interesting case is when [is of the form z - l;. Note that the
condition on z’ is necessary to exclude assertions of the form Vz' P or 3z’ P. a

Lemma 5.18
Let 0 € &, § € A°, w € Q such that OK(o,6,w). Let d € C,u € TVary, vy €T and
define o' = §¢[u — new](7)(8)(o). Then for every assertion P € Ass® we have

A[P[new/ul](w)(é)(a) = A[P](w)(6)(c").

Proof

Again we use induction on the complexity of P. The only case which is not yet clear
from the first approach is quantification over sequences, so let us consider the case
where P = Vz3. Q. Take 8 = f%(o(¥), so that (@ = gy {8} and B = 0'63)(4)(u),
and let z’ be the first variable from LVarg - that does not occur in Q.

Now suppose that
A[(Vza+ Q)[new/u]l(w)(8)(o) = ¢.
We shall prove that
AlVzge Ql(w)(8)(0') = ¢

so we have to show that for every a” € O% such that elt(a”, n) € o"(f) for all n € Z,
it is the case that A[Q](w{a"/z})(6)(o’) = t. If we have such an ", we can define

*

a € 0" and o' € 0B2°" a5 follows:

43

len(a) = len(a') = len(a")
elt(a,n) = L1, elt(a’,n)

elt(a,n) = elt(a",n), elt(a',n)

t ifelt(a”,n)=p
f if1<n<len(a")
and elt(a",n) # 8

Il

Now because
AVza ¥z 12 = 12'] = Q[u/z][new/u]J(w)(6)(a) = ¢

(d)
L

and because a and o' have equal length and do not have elements outside o’ and

a(LBOO‘) respectively, we know that

A[Q[Z, u/ z)[new/u])(w{a/z}{a'/'})(8)(0) = ¢.
The induction hypothesis then tells us that
ALQ[=' u/=])(w{a/zH{a'/})(8) (o) = t.

Finally we can apply lemma 5.17 and use the fact that z’ does not occur in @Q, to see
that

AlQN(w{a"/z})(8)(d) = ¢t.

To prove that A[Vzg QJ(w)(6)(0’) = t implies A[(Vzge Q)[new/u]l(w)(d)(c) = ¢t
involves reasoning in the other direction, in particular to find a suitable a” for each
pair a, o' that satisfies certain conditions. We omit further details. a

Again we extend this result to the case of programs:

Corollary 5.19
The axiom (NT) is valid, that is, for every environment y we have

¥ = {P[new/u]} (Ule : u — new) {P}

a
5.2.2 Assigning a new object to an instance variable
Definition 5.20
If our assignment is of the form 2 — new we have the following axiom:
{P‘[newcl/wi,]} (Ule : 25 «— new,r) {P‘} (NT)

Fortunately, after having worked through the previous subsection, this new axiom is
simple to define and to prove valid.

44

Definition 5.21
The substitution operation [new./z¢] is defined by:

Plnewy /28] = Plue /28] [newer [uq]

where u. is a temporary variable that does not occur in P. (It is easy to see that
this definition does not depend on the actual u used.)

Lemma 5.22
Let 0 € £, 6 € A® and w € Q be such that OK (o,6,w). Let y €', d e C, z € IVarg,
and define ¢’ = S[z — new](7)(8)(c). Then for every assertion P we have

w,d,0 = Plnew/z] = w,d,0' = P.

Proof

Choose some u € TVary which does not occur in P, so that we have Plnew/z] =
Plu/z][new/u]. Let ¢” = S[u — new;z — u](y)(6)(c). We have by lemma 5.8 and
lemma 5.18 that w, 8,0 |= Plu/z][new/u] — w,d,0" |= P.

Now if 3 = pick?(o(?) then we have ¢’ = o{8/8¢1),z} and 0" = o{B8/u}{B/61), ¢},
so that ¢” = ¢'{3/u}. Because u does not occur in P we have w,6,0' |= P —
w,8,0" |= P, and the result of the lemma follows. a

Corollary 5.23
The axiom (NI) is valid, that is, for every environment y we have

1= {P[new/.r]} (Ule: & — new) {P}

5.3 Sending messages

In this subsection we present some proof rules for verifying the third kind of assign-
ments: the ones where a message is sent and the result stored in the variable on the
left hand side. We start with a rule for a non-recursive method and later on we show
how to deal with recursion.

Definition 5.24
For the statement z « eg!m(ey,...,e,), where z € [Varg, m € MNamef;ol'_.,d
eo € Ezpl, and e; € Ezpg, for i = 1,...,n, we have the following proof rule:

{P" AN v =il s $){QTe/r]}, Qle/self, al[f/2] - Re[r/x]
{Ple/self, @[f/ZINUlc 2 — eolm(er, ..., ea)){ R}

TI.’

(MI)

45

where S € Stat® and e € Ezfpg; are the statement and expression occurring in the def-
inition of the method m in the unit U, u,, ..., u, are its formal parameters, v, ..., v
is a row of temporary variables that are not formal parameters (k > 0), 7 is a logical
variable of type dg that does not occur in R, f is an arbitrary row of expressions (not
logical expressions) in class ¢, and Z is a row of logical variables, mutually different
and different from 7, such that the type of each z; is the same as the type of the
corresponding f;. Furthermore, [€/self, @] stands for a simultaneous substitution hav-
ing the “components” [eo/self],[e1/u1],. .., [en/un] (a formal definition will follow).
We require that no temporary variables other than the formal parameters u;, ..., u,
occur in P or Q.

We still have to define precisely what [é/self, &] means, but before doing that let us
give some informal explanation of the above rule. When a statement as above is
executed, several things happen. First, control is transferred from the sender of the
message to the receiver (context switching). The formal parameters of the receiver
are initialized with the values of the expressions that form the actual parameters of
the message and the other temporary variables are initialized to nil. Then the body §
of the method is executed. After that the result expression e is evaluated, control is
returned to the sender, the temporary variables are restored, and the result object is
assigned to the variable z.

The first thing, the context switching, is represented by the substitution [eq/self]. A
little more precisely, an assertion P as seen from the receiver’s viewpoint is equivalent
to P[eq/self] from the viewpoint of the sender. Note that this substitution also changes
the class of the assertion: P[eg/self] € Ass® whereas P € Ass®’. Now the passing
of the parameters is simply represented by the substitution [eq,...,en/uq,. .., uy].
Therefore after the parameters have been transferred to the receiver, P from the
receiver’s viewpoint corresponds to P[&/self, @] as seen by the sender. (Note that we
really need simultaneous substitution here, because u; might occur in an e; with j < 1,
but it should not be substituted again.) In reasoning about the body of the method
we may also use the information that temporary variables that are not parameters
are initialized to nil.

The second thing to note is the way the result is passed back. Here the logical
variable 7 plays an important role. This is best understood by imagining after the
body S of the method the statement r «— e (which is syntactically illegal, however,
because 7 is a logical variable). In the sending object one could imagine the (equally
illegal) statement @ — r. Now if the body § terminates in a state where Q[e/r] holds
(a premiss of the rule) then after this “virtual” statement 7 « e we would have a
situation in which @ holds. Otherwise stated, the assertion Q describes the situation
after executing the method body, in which the result is represented by the logical
variable r, everything seen from the viewpoint of the receiver. Now if we context-
switch this Q to the sender’s side, and if it implies R[r/z|, then we know that after
assigning the result to the variable # (our second imaginary assignment z «), the

46

assertion R will hold.

Now we come to the role of f and 2. We know that during the evaluation of the
method the sending object becomes blocked, that is, it cannot answer any incoming
messages. Therefore its instance variables will not change in the meantime. The
temporary variables will be restored after the method is executed, so these will also
be unchanged and finally the symbol self will retain its meaning over the call. All
the expressions in class ¢ (and in particular the f;) are built from these expressions
plus some inherently constant expressions and therefore their value will not change
during the call. However, the method can change the variables of other objects and
new objects can be created, so that the properties of these unchanged expressions
can change. In order to be able to make use of the fact that the expressions f are
constant during the call, the rule offers the possibility to replace them temporarily by
the logical variables Z, which are automatically constant. So, in reasoning from the
receiver’s viewpoint (in the rule this applies to the assertions P and Q) the value of the
expression f; is represented by z;, and in context switching f; comes in again by the
substitution [f/z]. Note that the constancy of f is guaranteed up to the point where
the result of the method is assigned to z, and that z may occur in fi, so that it is
possible to make use of the fact that z remains unchanged right up to the assignment
of the result.

Definition 5.25
Now we define formally the substitution operation [e/ self]. First we do this for logical
expressions:

z [efself] =e.x

u [efself] =u
z [efself] =z
self[e/self] =e
l [efself] =1 if I = nil, true, false, n

l.z[e/self] = (l[e/self]).z

if lo then [, else I, file/self] = if Ig[e/self] then I;[e/self] else I;[e/self] fi
(h = b)e/self] = (Li[e/self]) = (Iz[e/self])

(I + 12)[e/self] = (li[e/self]) + (Iz[e/self])

(lh < Ly)e/self] = (Ii[e/self]) < (I2]e/self])

|1|[e/self] |l[e/self]|
(li-1)le/self] = (li[e/self] - Iy[e/self])

47

Now we extend this to assertions other than logical expressions:

(P — Q)[e/self] = (P[e/self]) — (Q[e/self])
(«P) [e/self] = ~(Ple/self]
(VzP) [e/self] =Vz(P[e/self])
(3zP) [e/self] = Iz(P[e/self])

Lemma 5.26
Let 0 € £, § € A°, e € EzpSi, and define 3¢ = E[e](6)(c). Let §' € A® be such that

6(1) = (3. Then we have

1. For every logical expression l;’ and every valuation w
L[(w)(&') (o) = L[I[e/sef]}(w)(6)()-
2. For every assertion P and every valuation w

A[P)(w)(8') (o) = A[Ple/self][(w)(6)(o)-

Proof
An easy induction on the complexity of [and P. a

Definition 5.27
Although the intention of simultaneous substitution is probably clear to the reader,
we give its definition for the case in which we really need it here, for completeness’
sake. Let € = €g,...,e, and @ = uy,...,u,. Then we define:

r [é/self, u]

u; [€/self,u

fori=1,...,n
ifué {uy,...,u.}

u [&/self,u

]
]
z [&/self,u)
]
]

self [é/self , @
[[é/self, @
[.z[é/self,u] =

€0
l if | = nil, true, false, n
(l[e/self,q]) .z

if [then [y else I fié/self, @] = if [o[€/self, @] then I, [&/self, @] else l5[&/self, @] fi

(I = L)[e/self, @] = (li]e/self,a]) = (I5[&/self, u])
(I, + I)[e/self ,u] = (Ii[e/self,u]) + (I2[E/self,])

(I, < L)e/self, @] = (li]e/self,a]) < (Iz[&/self, a])

48

|l|[e/self, a] = |l[e/self, d]|
(Lo -1p)[e/self, @] = (li[e/self,q] - I5[e/self, @])

Now we extend this to assertions other than logical expressions:
(P — Q)[&/self, @] = (P[é/self,a]) — (Q[e/self, u])
(=P) [e/self,u] = —~(P[e/self,q])
(VzP) [e/self,u] = Vz(P[e/self,u])
(3zP) [e/self,a] = Iz(Ple/self,u])

Of course we also have a corresponding lemma:

Lemma 5.28

Let 0 € £,6 € A¢ and ¢; € Ezpg, for i = 0,...,n (with do € C). Define g3; =
E[ei](8)(a). Let &' € A% be such that &, = Bo and let o' = o{Bi/w;}_,. Then we
have

1. For every logical expression lj" and every valuation w
LINw)(&)(0') = L]U[e/self, a]J(w)(6)(o).
2. For every assertion P% and every valuation w

A[P}(w)(8")(o') = A[P[e/self, u]](w)(6)(o).

Proof
Again a quite simple induction on the complexity of / and P. a

Example 5.29

Let us illustrate the use of the rule (MI) by a small example. Consider the unit
U=c:(m<« (up): 2y — up | z3) and the program p = (Ulc: 2, « uy'm(z;)). We
want to show

{ul L2y =2y Ay = self}p{ul LBy =2 ANy =y .mg}.

So let us apply the rule (MI) with the following choices:

P = 2=z A-self =z,

Q = 21 =ugAr=2zyA-self =z,

R = u.zy=2yAN2y =up. 2y

E =0 (we shall use no v;)

fi = =z, (represented by z; in P and Q)

fa = self (represented by z in P and Q)

49

Uy 4——— u 4

L1 Ty 1 T2 1 T2 1 T2

N > /
AN .

before after

Figure 2: The situation before and after sending the message (example 5.29)

First notice that Plu;,za/self, uo[z1,self/z1, 22] = w1 .21 = 21 A ~up = self so that
the result of the rule is precisely what we want.

For the first premiss we have to prove
{.131 = z; A —self = Zg}(UlC STy — u()>{.l'1 = ug A xg = 23 A —self = zz}.

This is easily done with the axiom (SAI) and the rule of consequence (which will be
introduced in definition 5.39).

With respect to the second premiss, we have

Qluq, zo/self, uo)[1,self/21,22] = uyp. @y =2 AT = wy. 22 A ~ug = self
R[r /2] = ifu; =selfthenrelseuy.zyfi=22Ar=1u;.2y

It is quite clear that the first implies the second, and we can use this implication as
an axiom (see definition 5.38).

Lemma 5.30
The proof rule (MI) is valid.

Proof

Consider the rule as listed in definition 5.24. Let ¥ € T and suppose that the premisses
are valid with respect to y. We shall prove that the conclusion is valid with respect
toq. Solet o € £, € A°, and w € Q be such that 0,6, w |= Ple/self, @][f/z]. Let
v = U[U](7) and let o' = P[(Ulc: & — eglm(eq,...,ex))}(7)(8)(0). So o' = S[z «
eo'm(eq, - .., en)](7")(6)(c). We have to prove ¢’,6,w |= R.

w{Eﬂfi](ﬁ)(a)/zi}!-ﬂl. Then lemma 5.12 gives us o,§,w' |= P[é/self, .

Let ' ;

Let B8; = &[e;](6)(o) for i = 0,...,n and suppose that B # L and Bo ¢ b(ay()
(otherwise we would have that ¢/ = L and the result would be trivial). Define
5' = <ﬂ0,5(2){6(2’)(c) U {6(1)}/C}> and o1 = <a'(1),0’(2),0‘1(3)> where g, (3)(d;)(ui) = ﬂi

and oy (3)(g)(ua) = L if u ¢ {u1,...,u}. Now because of lemma 5.28 and the fact

50

0,6, w |= Ple/self,u][f/z] = o,6,0'|= Plg/self,a] = 01,6 0 |=P

4
02,8, 0" |= Q[e/r]
Y
o’ b, wy |= Q[e/self,u)[f/z] = ", 6,wi |= Q[é/self,u] <« 03,6, wi = Q
U
o”,6,w |= R[r/z]
4
o, 6,w1 =R
Y
o, w= R

Figure 3: The structure of the proof of lemma 5.30.

that temporary variables other than the u; may not occur in P, we have oy, §', 0’ |= P.
We also know that 01,8 ,w’ |= v; = nilfori=1,...,ks0 01,8, w' = PAAL, v = nil.

Now because of the construction of 7' in definition 3.17 we know that v/(c/, d)(m) =
M[(@) : S 1 e](7') so we can refer directly to the method definition of m in U/ to
see what 7'(c’, d)(m) does. So let us take o3 = P[(U]c’ : S (7)(8")(e1), then oy =
S[S1(7')(6')(o1). Assume that o # L, otherwise we have 0/ = L and we are ready.
The validity of the first premiss with respect to 7 tells us that o, §',w’ |= Qle/r]. Let
B = E[e](8')a2), w1 = w{B/r}, and w} = w'{B/r}. Then because of lemma 5.12 we
have 7,,6",w] |= Q.

Let ¢ = (02(1),02(2),0(3)) (we restore the temporary variables). Now we appeal to
the reader’s understanding of the semantics of the language to see that the method
destination eq, the actual parameters e,..., e, and the expressions f are unchanged
in 0" in comparison with ¢. Otherwise stated, £[e;](6)(c) = £[e;](6)(o") and the
same for f;. (Of course, this can also be proved formally.) Then we know from
lemma 5.28 that ¢”,§,w] |= Q[é/self, 4] and from lemma 5.12 together with the ob-

servation that w] = wl{é'l[fi]](ﬁ)(a)/zi}iill we get 0,6, w; = Q[&/self, @[f/z].

From the second premiss we can conclude that ¢”,6,w; = R[r/z]. Now for the final
state o/ we know that o' = o"{B/8(1),}, so lemma 5.8 tells us that o/,8,w; = R.
Finally, because r does not occur in R, we have ¢',6,w |= R. O

Definition 5.31
For the statement u « eg!m(ey,...,e,), where u € TVary,, m € MName,j;'_“'d

n?

51

eo € Ezpl and e; € Expj, for i = 1,...,n, we have the proof rule (MT) which
is identical to the rule (MI) introduced in definition 5.24, except that the instance
variable z is replaced everywhere by the temporary variable u.

Lemma 5.32
The proof rule (MT) is valid.

Proof
This can be proved by a slight adaptation of the proof of lemma 5.30. a

Now we come to the issues of how to handle recursive and even mutually recursive
methods. For this we use an adapted version of the classical recursion rule (see for
example [3]). The classical rule goes as follows (in the notation of [3]):

{p}P{q} F {p}So{q}
{p}P{q}

The idea is to prove (the operator - expresses provability) the correctness of the body
(So) from the assumption that the procedure call (P) itself satisfies its specification.
If that has been done we can conclude the correctness of the procedure call without
assumptions. The validity of this rule can be proved as follows: the meaning of the
procedure call is the limit of a increasing sequence starting with L, in which every
element is obtained from the previous one by assuming the previous as the meaning
of the procedure call and calculating the meaning of the body from that. From the
premiss of the rule we can prove that every element in the sequence satisfies the
specification and by a continuity argument we conclude that the procedure call itself
satisfies the specification.

There are several remarks to be made. One is that in proving the premiss of the
rule we may not make use of the declaration of P, because otherwise we are not sure
that the implication also holds for the intermediate elements in the approximating
sequence. The second remark is that if we have a non-recursive rule like our rules (MI)
and (MT), then we could change the conclusion of the recursion rule into {p}S{q},
from which we could infer {p} P{q} by the non-recursive rule. We do that in our proof
system to be able to use the outcome of the recursion rule for different values of the
parameters. Finally it is clear how to extend the rule to several, mutually recursive
procedures.

Definition 5.33
For mutually recursive methods my, ..., m, we have the following rule:

F,..,F, F,..,F,-F,. . F
F

where

{PE (& self, @[F /21 MU i 2 2 ehtm(e,, .. en) {RE}
Fo= (P AN o = il (U Il $){ Q5 [es/mi]}

Fi = Qi[&/self, @][f'/7'] = Ri[ri/;]

Fo= {PiAA o =nill (U1, - $){ Q5 er/m]}

@*, S;, and e; are as they occur in the definition of m; in U

e
I

z; are instance or temporary variables
U~ results from U by deleting the definitions of m;,..., m,
P, Q;, R;, fi, 7, @, k;, and r; are just like in definition 5.24

We cannot prove the validity of this proof rule on its own, because it depends on what
the other rules can prove (the operator + occurs in the premiss).

5.4 Other axioms and rules

Finally in this subsection we shall list the remaining axioms and rules of our proof
system. They will deal with the more ordinary statements and therefore they are not
very new (most of them can already be found in [4]).

Definition 5.34
For a side effect expression s functioning as a statement we have the following rule:

{Pc}(Ulc fug — sg){Qc}

(ES)
{PHUIc:5){Q}
where uy is a temporary variable not occurring in P or Q.
Definition 5.35
For the sequential composition of statements we have the following proof rule:
{Pyuisn{ec} {ehwisp{r} 50)
{P}(U151; 52){ R}
Definition 5.36
For the conditional statement we have this rule:
(P AegoatWisn{ec) (P n-ehisper) ©

{P}(Ulif e then S, else S, fiy{Q}

53

Definition 5.37
For the while loop we have the following rule:

[P negoq }(UISH{ P}

(W)
{P}(U/while ¢ do 5 od){ P A e}
Definition 5.38
For every valid (see definition 4.15) assertion P¢ we have the axiom:
P (TR)
Definition 5.39
Finally, we have the so-called rule of consequence:
P - P {RJUle: {0} @5— Qs (RC)

{P}Ule: $){Q:}

Theorem 5.40

The proof system consisting of the axioms (SAT), (SAI), (NT), (NI), and (TR), plus
the rules (MI), (MT), (MR), (ES), (SC), (C), (W), and (RC) is sound, that is, for
every row of correctness formulae Fy,..., F,, and for every environment ¥ we have if
F,...,F,F Fpandy|= F,fori=1,...,n then vy | Fo.

Proof

For all rules except (MR) the validity can be proved individually. For some we have
already done that, for the others it is very easy. The rest of the proof runs by induction
on the length of the proof of Fy from Fj,..., F,. The only interesting case occurs if
the last rule applied is (MR). From now on let us use the notation of definition 5.33
and forget about the old Fy,..., F,.

In the premiss of the rule (MR) we first have Fy,...,F,, and these are valid because
the only way to get them is by using the axiom (TR). The second premiss says
that Fy,...,F, F F{,..., F. This must be provable by a shorter proof than our
current one so the induction hypothesis says that for every environment v such that
v |= Fi,..., F, wealsohave that y |= FY,..., F,. Let us take a particular y and define
v" = U[U](7). Now 7’ is the limit of an increasing sequence 7g,7{,... Where 7y =
7'{,\B A8 Ao (L, L) / mi}n . and v/, is obtained from v/ by calculating and filling

i=

54

in the meanings of the method definitions of m,,..., m,. Furthermore we observe
that for every i and for every m € {my,...,m,} we have that U[U~](y})(m) = vi(m)
because m is not defined in U~.

Now for yo we have quite trivially that v{ |= Fj,..., F. (the send-expression never
terminates). Furthermore from ¥/ |= F} we can get to 7/,; = F; by an argument
analogous to that in lemma 5.30. ;From the validity of the second premiss we can
then conclude that y;,, |= Fj for j = 1,...,n. By induction we get 7! |= F},..., F!
for every i, so by continuity we get in particular 9/ = F!. And this in turn implies
¥ F. a

55

6 Completeness

6.1 Introduction

We prove in this section that every valid correctness formula about an arbitrary closed
program is derivable from the proof system based on the assertion language with
quantification over finite sequences of objects. To this end we use enhanced versions of
the standard techniques for proving completeness. These techniques are based on the
expressibility of the strongest postcondition, or, alternatively, the weakest precondition.
Using the assertion language with quantification over finite sequences of objects we
know how to express the strongest postcondition. However, we conjecture that we
cannot in general express the strongest postcondition or the weakest precondition
within the assertion language with recursive predicates. We think this is due to the
inexpressibility within this assertion language of the notion of finiteness.

In order to get a complete proof system, however, we have to modify the rules (MI),
(MT), and (MR) so that we can reason about deadlock behaviour. Regardless of the
assertion language we use these rules are incomplete. Consider the following example:

Example 6.1

Let p = (Ulc: ¢ « self!m()) be closed and m() < nil T nil occur in U. We obvi-
ously have |= {true}p{false}T But we do not have the derivability of this correctness
formula. For otherwise there would exist assertions P,Q and R such that:

Lo {P AN =il {Ule: nil){Q[nil/r]}
2. = Q[self/self][f/z] — R[r/z]
3. |= true — P[self /self][f/Z] and |= R — false

for some sequence of expressions f, sequence of corresponding logical variables Z and
logical variable r of the same type as the instance variable z. Now, as |= R — false,
we have |= R[r/z] — false. So from clause 2 it then follows that |= Q[self /self][f/2] —
false. Furthermore we have |= Q[self/self] — Q so we infer |= Q[f/z] — false. From
clause 1in turn it is not difficult to deduce that |= P — Q[nil/r] (use 5;nTVar(P,Q) =
0 and the truth of the correctness formula of clause 1). So we have = P[f/z] —
Q[nil/)[f/Z]. Note next that |= Q[f/2] — false implies |= Q[nil/r][f/Z] — false, from
which we infer that |= P[f/z] — false, which in turn, using |= P[self/self] — P, would
imply by clause 3 |= true — false. We thus have reached a contradiction. So we
conclude that / {true}p{false}.

56

Note that adding the conjunct —(self = eg) to the precondition of the conclusion of
the rules (MI) and (MT) does not solve the general case of longer cycles in the calling
chain.

To reason about deadlock in the proof system based on the assertion language contain-
ing quantification over finite sequences we introduce a collection of logical variables
with special roles.

Definition 6.2
We fix for each class name ¢ a logical variable b, € LVar... Furthermore we define
BVar = {b.: c€ C}.

We will interpret the variable b, as denoting a sequence of all the blocked objects of
class c. Formally, we redefine the notion OK (0,6,w) as follows:

Definition 6.3
For arbitrary o,6,w we define OK (0,6,w) iff o is consistent, § agrees with o, w is
compatible with o and for an arbitrary ¢ we have

6(2)(‘:) = {Q =) € N(elt(bc,n) =« # .L)}

So we have OK (a,6,w) if additionally b., for an arbitrary ¢, consists precisely of all
the blocked objects of class ¢. Note that we have thus introduced in the assertion
language a means to refer to the second component of a context. Given this fixed
interpretation we do not allow the variable be to be quantified. It is a straightforward
exercise to check that under this definition of OK (,8,w) the soundness proofs given
still hold.

Next we modify the rule (MI) as follows:

Definition 6.4

(]
For the statement z — eo'm(ey,...,e,), where z € IVarg , m € MNamej,o ’’’’’ dn
eo € Expl, and ¢; € Ezpy fori=1,...,n, we have the following proof rule:

{P' A AL 5 = il A ~(self € br) (U’ .S'){Q"'[e/r]}, Q' — R[r/z]
{P’}(Ulc 12— eg!m(ey,.. .,en)){R}

where P’ = P[é/self, @[f/z][b. o (self)/bc], Q' = Qle/self, u|[f/Z][be o (self)/b.], S €
Stat® and e € E.tp;; are the statement and expression occurring in the definition
of the method m in the unit U, u,...,u, are its formal parameters, vy,..., v is
a row of temporary variables that are not formal parameters (k > 0), r is a logical
variable of type dy that does not occur in R, fis an arbitrary row of expressions (not

(MI)

57

logical expressions) in class ¢, and Z is a row of logical variables, mutually different
and different from 7, such that the type of each z; is the same as the type of the
corresponding f;. We require that no temporary variables other than the formal
parameters uy,...,u, occur in P or Q. The boolean expression l; € l; abbreviates
3i(l; = I, - i), where i is some fresh logical integer variable. P[b. o (self)/b.], for an
arbitrary assertion P, equals the assertion

F2(P[z/be) A |z| = |be| + LAVI(Z < |be] = 27 = be 1) A(z - |z] = self))
where z € LVare.,i € LVar|,; are some fresh variables.

The idea of this substitution [b. o (self)/b.] can be explained roughly as follows: Oc-
currences of the variable b, in the assertions P¢ and QC', which describe the input
state and the output state of the receiver of the method call, denote the set of blocked
objects of class ¢ belonging to those states. When we want to describe the input state
and the output state of the receiver from the point of view of the sender we have to
take into account that this set of blocked objects can now be viewed as the set of
blocked objects of class ¢ belonging to the input state and the output state of the
sender of the method call plus the sender itself.

The rules (MT) and (MR) are modified accordingly. The soundness proofs of these
new versions of (MI) and (MT) are straightforward modifications of the proofs of the
soundness of the original ones (in the proof of 5.30 the substitution [b. o (self)/b.] can
be considered simply as part of the simultaneous substitution [f/Z]). The proof of the
soundness of the new version of (MR), assuming the soundness of the new versions of
(MI) and (MT), does not need to be modified.

We note that with respect to the proof system based on the assertion language con-
taining recursive predicates this proof method does not apply. To incorporate some
reasoning mechanism about deadlock behaviour in this system one could add to it
some notion of auxiliary variables, which can be used to code the relevant control
information.

It will appear to be technically convenient to introduce another modification of the
rule (MR). This modification consists simply of replacing every occurrence of U~ in
this rule by U itself. We denote the resulting rule by (NMR). The main difference
between the rules (NMR) and (MR) is that the rule (NMR) allows nested applications
to some method name. However, in appendix A it is shown that a proof using the
rule (NMR) can be transformed into a proof using (MR), and vice versa.

To be able to prove completeness we have to add the following rules to the proof system
(based on the assertion language containing quantification over finite sequences).

Definition 6.5

58

Conjunction rule:
{Pe}e{@s} {Ps}ec{@s)
(CR)
{7t n Ps}or{as nQs}

Definition 6.6
Elimination rule 1:

{Pjer{e}
- (ER1)
{szPc v P[nll/zd]}pc{Q“}
where z; ¢ LVar(Q°)U BVar. Due to the interpretation of the quantifiers as ranging

only over existing objects we have to express explicitly that the precondition also
holds when the value of the quantified variable is undefined (nil).

Definition 6.7
Elimination rule 2:

(el -
Gr (o]

where a = d*, for some d, and z, ¢ LVar(Q°) U BVar.

Definition 6.8
Initialization rule 1:

{Peefor))
{P°[l/~’]}p°{Q°}

where z and [are of the same type, and z ¢ LVar(Q°) U BVar.

Definition 6.9
Initialization rule 2:

(prfer) -
{Peli/ul}oc{Qc}

where u and [are of the same type and u ¢ TVar(p, Q).

Definition 6.10
Substitution rule:

{r}r{e} .
{Pel=/21} e @2/}

where 2/, z are logical variables of the same type, and z ¢ BVar.

The soundness of these new rules is a straightforward exercise. We illustrate the
necessity of the condition z ¢ BVar by the following example:

59

Example 6.11
Let p = (U|¢' : y «— z!m()). By the new definition of OK (o, d,w) we have, assuming
the type of the variable z to be ¢,

= {= € b} p{false},

where z € b, abbreviates the assertion Ji(z = b.-7). If we would allow the initialization
of the variable b., or allow it to be substituted, we could derive from this formula by
an application of the rule (SR) or (IR1) the following:

{2 € z}p{false}.

Applying next the elimination rule (ER2), assuming z ¢ BVar, then gives us the
derivability of the formula:
{3.:('1: € z)}p{false}.

Finally, we apply the consequence rule:

{true}p{false}.

But this last formula is not valid in general!

Finally, for technical convenience we would like to assumne that the sets C, IVar, and
TVar are finite. This assumption can be justified as follows: Let C'’ be a finite subset
of C', and IVar' be a finite subset of |J, 4, IVarg, where c ranges over C', and d ranges
over the set C't = ¢ U {Int, Bool}. Next we fix the temporary integer variables u, ¢/,
and for every d € ('t the temporary variables rey, re/,. Let e denote a sequence
of these variables. Now let TVar’ be a finite subset of |J; TVary (again, d ranging
over C'*), such that 7e C TVar'. Given these sets C’, [Var', and TVar’ we have the
following definition.

Definition 6.12

We define an expression [5 to be restricted iff ¢ € C', a = d,d*, with d € C't,
IVar(l$) C IVar', and TVar(l5) C TVar’. We define an assertion P¢ to be restricted
iff ¢ € C' and every expression occurring in P¢ is restricted. We call a program
p = (Ulc : §) restricted iff ¢ € C’, every expression occurring in p is restricted,
u,u' ¢ TVar(p), and, finally, the temporary variables reg, re!, are only allowed in the
main statement S itself, where S = req — sgor § = relj — sq, with TVar(s)nre = 0.
A correctness formula {P}p{Q} is called restricted iff P, @, and p are restricted.

We will prove that an arbitrary valid restricted correctness formula is derivable by a
derivation in which there occur only restricted correctness formulae. Such a derivation
we call restricted too. The extra variables e are used in applications of the rules
(W) and (ES): The variables req, rel; are used to store temporarily the result of the
execution of a statement syq; the variables u,u’ are needed to express the invariant

60

of a while statement. However applications of the consequence rule in a restricted
derivation are based on a different notion of validity of assertions and correctness
formulae. This new notion of validity consists of restricting all the semantic entities
to the sets C’, IVar', and TVar’. As an example of the restriction of a semantic entity
we define that of a state.

Definition 6.13
We define the restriction of a state o, which we denote by o |, to be an element of

si=[[Px [I (0°— tvar§—o01)x] (TVary— 0%)
ceC! ceC' deC't deC'+

such that

oo |D=0gld ceC.
¢ 0| (a)(z)=o(a)(z),a€ O force C’, and ¢ € [Var'.
e 0| (u)=0o(u),u€e TVar'.
In a similar way we have corresponding restricted versions of all our semantic entities.

We have the following lemma, which states that the meaning of a restricted program
depends only on those parts of a state specified by the sets C’, IVar', and TVar'.

Lemma 6.14
For an arbitrary restricted program p, and o, ¢, 4,7 such that

1. of?) = g'9), c g C".

)

og(a) = d'(a),fora e O, c g C".
o(a) = o'(a), for a € O°\ ¢, c € C".
o(a)(z) = o'(a)(z), for a € 0'9, c € €', & ¢ IVar'.

o'(a)(z) = L,fora € a9\ ol ceC' 2 ¢ IVar'

S o e W

o(u) = o'(u), u g TVar'.

we have
o' = Ple](v)(6)(o)iff o' = P'[pl(y L)(& 1)(e L),

where P’, v |, and § | denote the restricted versions of P, v, and §, respectively. (Here
o(a) denotes the local state of @ and o(a)(¢), * an instance variable, denotes the
value of the variable z of the object a, finally, o(u), v a temporary variable, denotes
the value of u in state o.)

61

The first condition above states that o and o’ agree with respect to the existing objects
of class ¢, ¢ € C'. The second condition states that ¢ and o' agree with respect to
the local states of objects belonging to a class ¢, ¢ ¢ C’. That the states o and o
agree with respect to the local states of objects belonging to a class ¢, ¢ € C', which
do not exist in o', is expressed by the third clause. The fourth clause states that o
and o' agree with respect to the variables not belonging to I Var' of objects of a class
¢, ¢ € C', which exist in o. The fifth clause then states that the value of a variable
not belonging to IVar' of an object of a class ¢, ¢ € €', which exist in o' but does
not exist in o, is undefined in the state o’. The last clause states that o and o’ agree
with respect to the temporary variables not belonging to TVar’. These conditions
are necessary to prove that if o' | = P'[p](y [)(é 1)(o |) then &' = Pp](7)(6)(o).

Proof
Induction on the structure of the program p. a

By the following two lemmas we have that applications of the consequence rule occur-
ring in a restricted derivation also apply with respect to the original notion of validity,
thus justifying our assumption of the finiteness of the sets C', IVar, and TVar. These
lemmas state that the truth of a restricted assertion and that of a correctness formula
only depend on those parts of a state specified by the sets ¢, IVar’, and TVar'.

Lemma 6.15
For an arbitrary restricted assertion P¢, and o, §,w such that OK(o,6,w) we have

0,0, w l: Peiff o 1,5 Lyw H: P,

where w |€ [], LVar, — 0%, with a ranging over the set {d,d* : d € C'*t}, and
wl(2)=w(z).

Proof
Straightforward induction on the structure of P¢. a

Furthermore we have

Lemma 6.16
Let o,8,w such that OK(o,d,w). We have for an arbitrary restricted correctness

formula {P}p{Q}
o, 8,w = {P}p{q} iff o 1,6 |,w = {P}p{Q}.

Proof
Straightforward, using lemmas 6.14 and 6.15. a

62

So in the sequel we may assume the sets C, IVar, and TVar to be finite. Further,
we assume given a set of temporary variables re as defined above. A program p from
now on will denote, when not stated otherwise, a program such that the temporary
variables re, re’ are allowed to occur in it only in assignments re «— s, re’ «— s, with
re,re' ¢ TVar(s), and u,u’ ¢ TVar(p). This concludes our discussion concerning the
justification of the assumption of the finiteness of the sets C, IVar, and T Var.

6.2 The strongest postcondition

To be able to prove completeness we first have to analyze the notion of a strongest
postcondition and its expressibility in the assertion language. As noted already in
the introduction, the expressibility of the strongest postcondition in the assertion
language with recursive predicates is still an open problem and so is the completeness
of the proof system based on this assertion language.

For the analysis of the notion of a strongest postcondition we need some definitions
and a theorem. We start with the following definition:

Definition 6.17
An object-space isomorphism (ost) is a family of functions f = (fd)dec+ , where f4 €
O‘i — O‘i is a bijection, f¢(L) = L and f¢, for d = Int, Bool, is the identity mapping.

Given an os: f we next define the isomorphic image of an arbitrary state.

Definition 6.18
Given an os: f we define for an arbitrary state o the state f(o) as follows:

o For every c: f(a)(©) = fe(al9).

o For every ¢,d,a,z5: f(o)(a)(25) = fUo(f*(a))(z5)), where the osi f1
denotes the inverse of f: f~ = ((f4)~1)q.

o For every d,ug: f(o)(ua) = f4(o(ua)).

Here f¢(X), for some X C O¢, denotes the set {f(a): a € X}.

The following theorem essentially expresses that states which are isomorphic cannot
be distinguished by the assertion language.

Theorem 6.19
Let f be an osi and o, §,w be such that OK(c, §,w). Then for every logical expression
IS and assertion P¢ we have:

63

o FLIENw)(8) () = LUENf(@D(F(0))(F(2)),
o A[P)(w)(8)(a) = A[PN(f(w))(£(6))(f(2))-

where f(8)(1) = f*(61));
f(&)yey = il (8(2)(c"))» for an arbitrary ¢’, and

F@)(za) = fUw(za)s (F7 (s oy an)) = (Fen), -, fan)).

Proof
Straightforward induction on the structure of IS, P°. We only treat the case [= z:
LI=)(F(@)(F(E)(f(e) = F(@)F(Sa)@) = FHo(80)(2) = FA(LI=)(w)(@E)(e)

a

We are now sufficiently prepared to analyze the notion of a strongest postcondition.
Given a program p° and an assertion P¢, we denote by sp(p°, P¢) the set of final
states of executions of p¢ starting from a state satisfying P°. An assertion, defining
this set of states sp(p°, P¢) is called the strongest postcondition of P¢ with respect to
p°. As established by the previous theorem, the set of states defined by an arbitrary
assertion is closed under isomorphism. However, in general, given a program p° and
an assertion P¢, the set of states sp(p°, P¢) is not closed under isomorphism. Consider
the following example:

Example 6.20
Take p = (Ulc:z « new) with p¢ closed, and o,0’,8 such that ') = {a, 8},
{a} b1y = a and o' = P[p](7)(6)(c). Let P° = true. So we have that
pzck"' {a}) = 3. Let f be an arbltrary ost such that pick® ({f°)}) # f(B) and
pick*({f(B)}) # fé(a). So we have that f(o Nl = {f(a), f°(B)}. Now suppose
that there is a oy such that f(o') = Plp](7)(f(6))(f(O'o)). Then we would have
a(()c) = {f(a)} or ol = {f°(8)}, but both cases lead to a contradiction. Therefore
such a o does not exist and f(o') ¢ sp(p®,true).

This discrepancy between the assertion language and the semantics of the program-
ming language is solved by closing this set sp(p°, P¢) under isomorphism. Of course
it is not immediately clear that this will work! We will see later that we indeed
encounter some difficulties in the completeness proof due to this. These difficulties
require some additional reasoning not present in the standard completeness proofs.
The following theorem states the existence of an assertion defining the closure under
isomorphism of the set sp(p¢, P°).

Theorem 6.21
Let p¢ be closed (not necessarily restricted), BVar C L C LVar (L finite), P¢

64

such that LVar(P°) C L. Then there exists an assertion SP%(p, P°) such that
LVar(SP%(p, P¢)) C L and for 0,6, w such that OK (o, §,w) we have:

o,0,w |= SPL(p, P°)

iff there exist an osi f and a state o9 such that:

o f(o) = Plpl(7)(8")(a0), 7 arbitrary,

[} 00,6',w’ !: Pc,

where ¢’ = f(6) and ' = f(w) | L. Here we define

(flw) L L)(2) = flw(z)) z€
= 1 z € (LVarnUy LVarg)\ L
= € z € (LVar nYy LVarg.) \ L.

Note that in the above theorem we cannot take f(w), where f(w)(z) = f(w(z)), for
w’. This would require that f(w) and oy are compatible, which cannot be expressed
by our assertion language. For suppose there exists an a € o(¢"), for some ¢, such
that f<(a) ¢ a'f,c'). Let z ¢ L, it then follows that o,8,w{a/zs} |= SP%(p, P°),
but on the other hand it is not the case that f(w{a/z~}) and oo are compatible, so
we do not have o9, d’, f(w{a/z+}) = P°. Note that the above argument essentially
boils down to the fact that we cannot describe by one assertion the values of infinitely
many logical variables. Thus we have to specify a finite set of logical variables L such
that the restriction of f(w) to this set L is compatible with op.

Proof
See appendix B. a

The following two lemmas together state the correctness of our definition of the notion
of strongest postcondition.

Lemma 6.22
For an arbitrary BVar C L C LVar (L finite), closed program p¢ and assertion P¢
such that LVar(P¢) C L, we have

= { P SPie. P)}-

Proof
Let 0,0',6,w (0,0’ # L) be such that OK(a,§,w), o' = P°[p](7)(6)(o) (y arbitrary),

65

and 0,8,w = P°. We have that ¢',§,w |= SP{(p, P¢), for take for the osi f the family
of identity mappings, for oo the state o, and note that because LVar(P¢) C L we
have o,§,w’ |= P, where o’ =w | L. a

Lemma 6.23
For an arbitrary closed program p¢, assertions P¢,Q¢, BVar C L C LVar (L finite)
such that LVar(P¢,Q¢) C L we have

= { P} pc{Q°} implies |= SPE(p, P) — Q.

Proof
Assume |= {P}p{Q} and let ¢, §,w such that OK (o, é,w) and o,6,w |= SPL(p°, P°).
So there exist an osz f and a state o such that:

e f(o) = PIp)(7)(8')(00), 7 arbitrary.

[Uo,&’,w' !: Pe.

where §' = f(§) and w’ = f(w) | L. From |= {PC}pC{QC} we then infer that
f(o),8,w' |= Q°. By LVar(Q°¢) C L we have f(c),d’, f(w) |= Q°. So by theorem 6.19

we conclude o,8,w = Q€. =

6.3 Freezing the initial state

An essential notion of the standard technique for proving completeness consists of
what is called freezing the initial state. To explain this notion, let, only in this para-
graph, p denote a program of some simple procedural language (like the ones treated
in [3] or [10]) and o, ¢’ denote some simple functions assigning values to program
variables. Let £ denote the set of program variables occurring in p, Z denote a corre-
sponding sequence of logical variables and & = Z abbreviate A;(z; = z;). Furthermore
let SP(p,z = %) be an assertion describing the set of final states resulting from exe-
cutions of p starting in a state satisfying # = Z. In the standard completeness proof
an important consequence of the definition of the notion of strongest postcondition is
that the assertion SP(p,Z = Z) in the following sense describes the graph of p:

e If the execution of p starting from the state o results in the state ¢’ then
SP(p,% = %) holds in ¢’ when the logical variable z; is interpreted as o(z;), the
value of z; in o.

66

o If SP(p,z = Z) holds in a state o', assuming the logical variable z; to be inter-
preted as some value d;, then there exists an execution of p starting from the
state o’'{d;/z;}; which results in o’.

Note that the logical variables Z are used to “freeze” the initial state.

Now one of the problems in applying the standard techniques for proving completeness
to our proof system consists of how to store a state in a finite set of logical variables. A
simple assertion like = Z does not make sense, because a variable z can be evaluated
only with respect to some object. To be able to construct an assertion which expresses
how a state is stored in the logical environment we introduce some special logical
variables. First we fix for each class name ¢ the logical variables cr., bl. € LVar,..
Every existing object belonging to class ¢ is supposed to be a member of the sequence
denoted by cr.. For convenience, we also include nil in cr.. The sequence denoted
by bl. on the other hand is supposed to contain all the blocked objects belonging to
class ¢. Furthermore for each instance variable r; we fix a logical variable iv, € LVarg.
and, finally, for each temporary variable uy we fix a logical variable tv, € LVary. The
sequence denoted by v, 2 € IVar®, will store the value of the variable z for every
existing object belonging to class ¢ in the following way: Every existing object of
class ¢ occurs at least once in the sequence denoted by cr.. Now the ith element of
the sequence iv, is the value of the variable in the object that is the ith element of
the sequence cr.. The value of tv,, u € TVar, just equals that of u.

All these newly introduced logical variables we assume to be distinct. We let st
denote a particular sequence (without repetitions) of these logical variables. Now we
are ready to define formally the assertion init, which expresses that the current state
is represented by st. In other words, init is our analogue of the assertion 7 = Z.

Definition 6.24
We define the assertion init as follows:

nit = A.cre-1=nil AVz iz, = cre-i) A
A Vi(Azerve((cre -) .2 = vz -3)) A
Averv(u = tvy) A
Ac(bc = blc)

where IV¢ = U, IVarg, TV = Uy TVarg, and the logical variable i is supposed
to range over the integers. Note that in our assertion language we do not have
equality between logical expressions of type d*, for an arbitrary d. However, these
equalities can easily be expressed in the assertion language: If /; and I, are two logical
expressions ranging over sequences, then /; = I, can be expressed as Vi(l; -7 = [- 7),
where ¢ is some logical integer variable. Furthermore we remark that for every class
name ¢ we have init € Ass®.

67

In the following two definitions we define a transformation of a logical expression and
an assertion such that the transformed versions only refer to the logical environment.
Expressions referring to the state will be translated into expressions which refer to
the corresponding part of the logical environment st used to reflect the state. The
problem such a transformation poses can be best explained by the following example:

Example 6.25

Suppose we want to transform the expression consisting of the instance variable z.
This expression denotes the value of 2 with respect to the object denoted by the
expression self. But to look up this value in the logical environment one has to know
where the object denoted by self occurs in the sequence denoted by cr,, assuming z €
IVary for some d. However, this cannot be determined statically! Note also that we
cannot force the existing objects of a class, say class ¢, to occur in a particular order in
the sequence denoted by cr.. Our solution to this problem consists essentially of using
a second logical expression, of type Bool, to describe under which conditions the first
expression correctly translates the original one. We will also need a number of logical
variables that range over integers, more precisely, over indices in the sequences cr,.
In our example above, the expression x is then translated into the triple ((7),self =
cre - 1,10, - t), where 7 is some logical integer variable. This is interpreted as follows:
Whenever the variable i takes such a value that the Boolean expression self = cr. - i
is true, then the expression v, - ¢ takes the desired value.

The analogue of these transformations in the standard completeness proof is the
substitution [Z/Z], where Z is the part of the logical environment which is used to
store the part of the state as specified by z.

Definition 6.26
We define I5[st] = (7,l1). l25) for an arbitrary logical expression IS by induction
on the structure of [S. Let € denote the empty sequence. We treat the following cases:

o z5[st] = ((2),self = cre - i, 1v, - 1)
where ¢ is some fresh logical integer variable (it does not occur in st).

o ug[st] = (e, true, tvy,)

o [[st] = (e, true,l)
where [= nil, self, true, false, n, or =.

. (lc.rg)fs—t_] = (i
where [[st] = (
(

_O<j>:ll/\12 = cre - j, Wy J)

7, 11,12) andj §Z-Z‘

° (11 + lz)fs_tT = 21111 A 1517112 + 1122) B S
where I1[st] = (21,h,,11,), l2st] = (i2,02,,12,), 2 = 1 0], j is some sequence
of fresh logical integer variables of the same length as is, I, = I3,[j/is], and
b, = b, [/5.

68

o (if lythen Iy else I3 fi)[st] = (3,11, Al Alg,if I3, then [else I3 fi)
where ll I—St_l = (11, ll, , 112) l') I-S—t] (’L'; 121, 122 13 I-St] = (13, 131) 132) :L‘ = ;1 032 o
j3, j2 and Js are mutually disjoint sequences of fresh logical variables of the same
length as 75 and i3, respectively, l; =, [J2/%2], 15, = = Iy, [J2/32), 15, = 13,[J3/%3),
and Iy, = I3,[j3/13].

L (ll 12]‘St.l - l lll /\1217112 '1122_) _ - - - =
where 13 [st] = (i1, l1,, 11,), l2[st] = (22,03,,12,), © = 41 0, J is some sequence
of fresh logical integer variables of the same length as iz, I}, = lg,[j/%,], and
Iy, = l2,[j/%2].

o (L =b)[st] = (@ Al Ly =1,) e 4 L
where U1[st] = (i1,l,,l1,), l2[st] = (32,13,,12,), ¢ = i1 0 J, j is some sequence

of fresh logical integer variables of the same length as iz, Iy, = Iy, [j/2], and

Note that in (£[st] = (7,l1,[2), the expression [y describes where the relevant existing
objects, with respect to the evaluation of I, are stored in that part of the logical
environment as specified by cr., ¢ € C. An object is said to be of relevance with
respect to the evaluation of an expression if it requires the values of some variables of
this object. The expression /5 then uses this information to select the relevant values
in that part of the logical environment where the values of the variables of the existing
objects are stored.

Example 6.27
Consider the expression z.z.y, where z € LVar., © € IVarl,. We have

(z.z.y)[st] = ({(3,5), 2= cre TNV, -1 = cPor -], ivy - §)

where ¢ and j are distinct logical integer variables.

Definition 6.28
Next we define the transformation P¢|st| for an arbitrary assertion P¢ by induction
on the structure of P°. We treat the following cases:

* IBool lst] = Fi(lh A ly)
where l‘éoolfst] = (2,11, 13).

o (P, A Py)|st] = Py|st] A Past],

(Vzq P)|st] = Vz, P|st],
where a = d, d*, d = Int, Bool.

o (Vz.P)|st| = Vz.(zc € cre — P|st]).

69

(VzaP)|$t] = Vza(2a C cre — Plst]),

where a = ¢*.

(32, P)|st] = 3z, P|st],
where a = d,d*, d = Int, Bool.

(3z.P)|st] = Fz(zc € cre A Plst]).

(3zaP)|5t] = Iz4(2a C cre A Pst]),

where a = c*.

Here [; € I abbreviates 3i(l; = lp - i) and Il; C I, abbreviates Vi(l; - i € l3). Note
that, although nil € cr., the quantification in (Vz.P)|st] and (3z.P)|st] excludes nil,
because quantification always excludes nil.

The following theorem states that the above transformation as applied to assertions
preserves truth. It can be seen as an analogue of the substitution lemma of first-order
predicate logic.

Theorem 6.29
Let P° be an arbitrary assertion. Furthermore let o,8,w such that OK (o, §,w) and
o,6,w |= init. Then:

o, 6,wl= PCiff 0,8,w = P°st].

Proof

The proof proceeds by induction on the structure of P¢. The case that P equals
[Bool 18 treated as follows: We prove that for every logical expression [there ex-
ists a sequence of integers 7 such that o,8,w{n/i} |= /1 and that for all such 7 we
have L[IS](w)(6)(0) = L[L](w{R/i})(c), where I5[st] = (i,13,12). This is proved by
induction on the structure of [§. o

6.4 Invariance

In this section we formulate a syntactic criterion for an assertion to be invariant over
the execution of an arbitrary program. First we note that not allowing program
variables to occur in an assertion does not guarantee this invariance property! This
is due to the restriction of the range of the quantifiers to existing objects. Consider
the following example:

Example 6.30
Let P denote the assertion 3zVz/(z = z'), where z, 2’ € LVar, for some class name c.

70

This assertion P expresses that there exists precisely one object of class ¢. Let p¢ =
(Ulz — new), U arbitrary and € IVar{. Then it is not the case that |= {P}pC{P},
because there exist two objects of class ¢ in the output state.

However, the standard technique to prove completeness relies heavily on the invariance
of assertions in which no program variables occur. To be able to apply this technique
we define the notion of quantification-restricted assertions.

Definition 6.31
We define an assertion P¢ to be quantification-restricted if

Peu= cBool

| dz, P |Vz, P
where a = d, d*, d = Int, Bool
| Jzc(2c € zeo A P€)
| Jzea (20 C 2L A PO)
| Vze(2e € zeo — P€)
| Vzee(2e» C zle — P€)

Here we assume the variables z.. and z.. to be distinct and the assertion P at the
right-hand side of the symbol ::= to be quantification-restricted.

An important property of such a quantification-restricted assertion is that its truth
is not affected by the creation of new objects:

Lemma 6.32
For every quantification-restricted assertion P and every variable v such that v ¢
IVar(P)U TVar(P) we have |= P « P[new/v].

Proof
Induction on the complexity of P. We treat the representative case of P = 3z.(z, €
ze» A Q), assuming the type of the variable v to be ¢: Now Plnew/v| = Jz.(z. €
ze» A Q[new/v]) V (v € ze» A Q[v/z])[new/v]. But as (v € z.-)[new/v] can be easily
seen to be equivalent to false the second disjunct will be equivalent to false too.
Furthermore we have by the induction hypothesis that Q[new/v] is equivalent to Q.
Putting these observations together gives us the equivalence of P and P[new/v|. The
case P = Vz.(z. € zl. — Q) is treated analogously. The cases of P = Jz.+(z.» C
2l A Q),Vze(ze» C zl. — Q) are slightly more complex due to the complexity of
the substitution operations involved, but the reasoning pattern is basically the same.
a

71

A consequence of this lemma is the following invariance property of quantification-
restricted assertions:

Theorem 6.33
Let p¢ = (Ulc: S) be closed and P be a quantification-restricted assertion such that

IVar(P®) N [Var(p°) = § and TVar(P)n TVar(p) = 0. Then: - {P*}p{ Pc}.

Proof
The proof proceeds by induction on the complexity of S. We consider the case of

S = v« eo!'m(ey,...,e,): Let M be the smallest set such that

e pe M,
o if p = (Ulc' 1 v" & eglm/(ey, .) €M
then p; = (Ulc; : v; — ep!my(el,...,ey,)) € M,
where v; — ej!m;(el,... e,.) or enlm;(el,. .., el.) occurs in S, S’ being the

body of the method m'. In the latter case we have v; = req;, assuming d; to be
the type of the result expression of m;.

Let M = {p1,...,px}, p = p1, assuming the following notational conventions: p; =
(Ule; = vy « eé!mi(e’i,...,e;i)) € M and mi(u‘i,...,u;i) < S; T e; occurs in U,
i = 1,...,k. Furthermore, & denotes the sequence ej,...,e;, and @' the sequence
uf'l,. . .,uih.. Next we introduce for every class name ¢ a new variable z... We let
7 denote a sequence (without repetitions) of these variables and b denote the cor-
responding sequence of the variables b, € BVar. Finally we put for ¢ = 1,...,k:

F, = {P’}pi{P’}, where P’ = P¢[Z/b][z./self], z. being a new variable.

Now we have that

Fi,....Fo- {P'HUI: $){P'}

(¢! being the type of eb). This is established by induction on the complexity of 5.
The only slightly less straightforward case of §; = v « new is taken care by the
previous lemma.

Putting P;,Q;, R; = P’ and introducing some logical variable r; ¢ LVar(P') (of the
same type as the variable v;), ¢ = 1,...,k, and observing that P'[&/self, @] [b,, o
(self)/b.,] = P' we infer by (NMR) that:

H{P Ul s P}
Next we put P;,Q; = P/ and R, = P<[2/b]. We have that:

k= P&t /self, @ |[self / 2, |[be, o (self)/bc,] — P°[2/b]

and
= Ql[él/self,1‘L1][self/zcl][bc1 o (self) /be,] = Ri[r1/v1].

Thus applying (MI) (or (MT)) gives us that:
- {Pelz/b)}oc{ Poz/0)}

Finally an application of the substitution rule gives us the derivability of the correct-
ness formula {Pc}pc{Pc}. a

6.5 Most general correctness formulae

Now we are able to prove that for an arbitrary p¢ = (U|c : v «— eq!m(ey,...,m,))
the correctness formula {init}pc{SPi(pc,init)}, for some L C LVar, is a most
general one in the sense that an arbitrary valid correctness formula can be de-
rived from the proof system which results from adding these correctness formulae
as additional axioms. Completeness then follows by establishing the derivability of

{init}p"{SPCL(p‘, init)}, for an arbitrary p¢ = (Ulc: v — eg!lm(eq,...,my,)).

But first we need to introduce some new logical variables corresponding to those of st.
This is necessary because the variables of st have a fixed interpretation as specified by
the assertion :nit. But every valid correctness formula in which variables of st occur,
implicitly provides these variables with some possibly different interpretation. To
avoid a clash between these different interpretations we must temporarily substitute
in the correctness formula, of which we want to establish its derivability, every variable
of st by some corresponding new variable.

So we introduce for each ¢ fresh logical variables cril.,bl1, € LVar... For each
instance variable ¢ € IVary we introduce the fresh logical variable ivi, € LVarg.,
and with each temporary variable v € TVary we associate the fresh logical variable
tvl, € LVary. We assume again that all these newly introduced logical variables are
distinct. We let st/ denote a sequence (without repetitions) of these variables. We
can thus assume that st N st! = 0.

Furthermore we introduce for every temporary variable rey (defined in the introduc-
tion to justify the assumption of the finiteness of the sets C, IVar, and TVar) a fresh
logical variable lre,. Let Ire denote a sequence of these logical variables. We will use
the variable Ire when applying the rule (ES): Applications of this rule will make use
of the variable re to store temporarily the result of the expression s. Therefore we
have to substitute occurrences of re in the precondition and the postcondition by the
corresponding variable lre. We will see later how to restore the original precondition
and postcondition after such an application of the rule (ES).

73

We start with the following lemma stating the derivability of valid correctness formu-
lae about simple assignments.

Lemma 6.34
For an arbitrary program p = (U|c: v «— e) we have

- {pe)ofar} mpts - {P}ofe)

Proof

Let v = u, u some temporary variable. (The case of v being an instance variable is
treated similarly.) By lemma 5.4 (note that we actually mean here the corresponding
lemma for the proof system based on the assertion language with quantification over

sequences) and the assumption that |= {Pc}p{Q} it follows that |= P¢ — Q°¢[e/u]. So
an application of the axiom (SAT) and the consequence rule gives us the derivability
of the correctness formula {Pc}p{Q}. a

We have a similar lemma for the creation of new objects:

Lemma 6.35
For an arbitrary program p = (U|c: v «— new) we have

= {Pf}p{Qf} implies F {Pc}p{Qc}.

Proof
Let v = u, u some temporary variable. (The case of v being an instance variable is

treated similarly.) By lemma 5.18 and the assumption that |= {Pc}p{Q} it follows
that |= P° — Q°[new/v]. So an application of the axiom (NT) and the consequence
rule gives us the derivability of the correctness formula {Pc}p{Q}. a

Next we have the following lemma stating the derivability of an arbitrary valid cor-
rectness formula about sending messages:

Lemma 6.36

Let p = (Ulc : v — eq!m(ey,...,e,)) be a closed program. Furthermore let P¢, Q¢
and BVar C L C LVar (L finite) such that LVar(P,Q) C L\ st1, and st U st1 C L.
Then:

= {P*}p{Q°} implies {init}p{ SP5(p, init) } - {P"}p{Qc}.

T4

Proof
Let P' = P[st1/st] and Q' = Q[st1/st]. Furthermore we introduce the following
abbreviation: P” = P'|st|. We start with the assumption:

{init}p{spi(p, im't)}.

By theorem 6.33 (note that P” is quantification-restricted, [Var(P") = 0, and TVar(P") =
0) we have the derivability of the following formula:

(#}o().

Applying the conjunction rule gives us:

{P" ninit}p{ P" A SP(p, init)}.

We next prove that |= P” A SP{(p,init) — Q':
Let 0,6,w |= P" A SP{(p, init). So there exist a state og and an ost f such that

o f(o) = Plpl(7)(¢')(a0), 7 arbitrary,

e 09,8 W |= init,

where §' = f(d) and o' = f(w) | L.

By theorem 6.19 we have that f(c), f(6), f(w) = P”. It is not difficult to check
that LVar(P"”) C L, so we have f(o),8',w’ |= P"”. Furthermore we have that |=

{—-P”}p{—xP”} (by theorem 6.33 we have {—IP”}p{ﬁP"}, so the truth of the above

correctness formula follows from the soundness of the proof system). It follows that
00,8, w’ |= P". By theorem 6.29, note that o9, §’,w’ |= init, we then infer o9, ', 0’ |=
P'. By the soundness of the substitution rule (SR) we have that |= {P}p{Q} implies

the truth of the correctness formula {P’}p{Q'}. So we infer that f(¢),8,w' |= Q.

But as LVar(Q') C L we have f(¢), 8, f(w) |= Q. Finally an application of theorem
6.19 gives us the desired result o,6,w |= Q'.

Now we return to our main argument. By the consequence rule we thus infer:

{P" A im't}p{Q’}.

Next we apply the initialization rule (IR1):

{(P” A -init)[ﬂ/t_v]}p{Ql},

75

where 1 is a sequence of all the temporary variables and fv denotes the corresponding
sequence of logical variables tv,, u € &. Now we use the elimination rule (ER2):

{32(P" A init)[a/B] }o{Q'},

where z/ is a sequence of the logical variables {cr.,bl. : ¢ € C} and {iv, : z € [Var}.
Note that instead of initializing the variables v we could also eliminate them by rule
(ER1). However, applying the rule (ER1) would require some additional notational
machinery in order to deal with the extra case of nil.

Next we prove |= P’ — 3z/(P" A init)[@/fv]: Let 0,8, w be such that OK (o, §,w) and
o,0,w |= P'. It is not difficult to see that there exists an w’ such that w’ differs from
w only with respect to the variables of st and o, §,w’ |= init. As LVar(P')Nst = 0 we
have o,6,w’' |= P'. Applying theorem 6.29 then gives us 7,6,w’ |= P’|st]|. For every
temporary variable u we have o(3)(u) = w'(tv,), so we infer 0,6, w’ |5 (P"Ainit)[a/t].
So we conclude ¢, 8, w = 32/(P" A init)[u/ tv].

We thus have by the consequence rule:

{Fele}
Finally an application of the substitution rule finishes the proof. Note that since
LVar(P¢,Q°)Nst1 = 0, we have that P'[st/st1] = P¢ and Q'[st/stl] = Q¢, so we get

{P}eie}-

a

We next have lemmas 6.38 and 6.39 stating the derivability of valid correctness formu-
lae about statements S = s, where s is a side-effect expression. In these two lemmas
we make use of the following lemma:

Lemma 6.37
Let p = (Ulc: s) and p’ = (U|c: re — s) be restricted programs (see definition 6.12).
We then have for arbitrary assertions P and @ that

= {P}o{@} implies = {P}1@},
where P’ = P[lre/re] and Q' = Q[lre/re].
Proof
Let 0,6,w |= P’ and o' = P[p'](7)(6)(¢). We have that o' = o"{8/re}, with
(a",8) = Z[s](v")(&)(o), v' = U[U](7). As re ¢ TVar(s) (p being restricted) we

have (01,8) = Z[s](7")(8)(00), with o1 = o"{w(lre)/re} and oo = o{w(lre)/re}).
This being intuitively clear we feel justified in stating it without a proof. Now,

76

as 0,6,w |= P' we have that ¢¢,6,w = P. So from |= {P}p{Q} we then infer
o1,6,w |= Q, or, equivalently, ¢”,§,w |= Q'. Finally, as re ¢ TVar(Q'), we conclude
that o', 0,w |= Q'. a

Lemma 6.38 _
Let p = (Ulc : s), where s = e, new. Furthermore let P, Q such that LVar(P,Q)Nlre =

. T = {P}o{0} smpiis - {P}o{e}.

Proof
Let P' = P[lre/re] and Q' = Q[Ire/re], where lre and re are of the same type as the

expression s. By lemma 6.37 we have |= {P’}p’{Q’}, where p’' = (Ulc: re — s). By
lemma 6.34, in case s = ¢, and lemma 6.35, if s = new, we then have

- ()l
- {Phle)

Furthermore we have |= {lre = re}(U lc: re! — s){lre = -re}. So again by lemmas
6.34 and 6.35 we have

So by rule (ES) it follows that

F {lre = re}(U]c: re’ — s){lre = re}.
Applying again the rule (ES) then gives
H {l‘re = -re}p{l-re = re}.
Next we apply the conjunction rule
I— {lre = re A P'}p{lre = re A Q'}.
Now |= (lre = re AQ') — Q and = P — (3lre P" v P"[nil/lre]), where P" = lre =
re A P'. (Note that lre ¢ LVar(P).) So applying first the consequence rule for @, then

the elimination rule (ER1) (note that lre ¢ LVar(Q)), and finally the consequence
rule for P, gives us the derivability of

- {7)ofa}

O

We have a similar lemma for valid correctness formulae about a program p of the
form (U|c: eglm(ey, ..., en)).

77

Lemma 6.39
Let p = (Ulc : eg!m(ey,...,en)) be a closed program. Furthermore let P,Q, and
BVar C L C LVar (L finite) such that LVar(P,Q) C L\ (st1 Ulre), stUst1 Ulre C L.
Then we have

= {P}o{Q} implies {init}o'{ SPL(s', init)} - { P}o{@Q},

where p' = (Ulc: req — eq!m(ey, ..., e,)), assuming the type of the result expression
of m to be d.
Proof

Let P’ = P[lreq/req) and Q' = Q[lreq/req). An application of lemma 6.37 gives us
I= {P'}p’{Q’} (remember that p is assumed to be restricted). By lemma 6.36 we

have
{init}p'{SPL(p', init)} F {P'}p'{Q'}.
Applying next the rule (ES) gives us ‘

{init}p'{SPL(p, init) } {P}e{@}.
By theorem 6.33 (observe that rey ¢ TVar(p)) we have the derivability of the formula
- {lred = red}‘p'{lred = red}.
So by an application of the conjunction rule we have
.{-init}p{SPL(p, init)} - {P' Alreg = -red}p{Q' Alreg = reg}.

Now we have |= (Q'Alreg = req) — Q. Furthermore for P” = P'Alrey = rey we have
= P — (3lregP" v P"[nil/lrey]) (note that lreq ¢ LVar(P)). So first applying the
consequence rule for Q, then the elimination rule (ER1) (note that lreg ¢ LVar(Q)),
and finally the consequence rule for P finishes the proof. a

Next we have the following main theorem of this section stating the derivability of an
arbitrary valid correctness formula using as additional axioms the correctness formulae

of the form {init}p{SPL(p, -im't)}, where p = (Ulc: v « eg!m(ey, ..., e,)).

Theorem 6.40
Let p = (Ulc: §) be a closed program. Furthermorelet P¢, Q% and BVar-C L C LVar
(L finite) such that LVar(P¢,Q°) C L\ (st1 Ulre), st U st1 Ulre C L. Then:

= {P*}p{Q°} implies Fy,.. . F, {P‘}p{QC},
where F; = {init}p;{SP% (pi,init)}, pi = (Ule; : v; « s;), with s1,...,5, being all

the send-expressions occurring in S such that v; «— s; occurs in S or v; = reg4, and s;
occurs as a statement in S. Here d; is assumed to be the type of s;.

78

Proof
The proof proceeds by induction on the complexity of S.

S = v « s: Depending on the structure of s, by one of the lemmas 6.34, 6.35, 6.36.
S = s: Depending on the structure of s, by one of the lemmas 6.38, 6.39.

S = 51; Sz: _
Let L= = L\ (st1 U lre). We have by lemma 6.22

= {PC}PI{SPL—(PlvPc)},

and

= {SPL-(p1, P) }02{ SPL-(p2, SPL-(p1, P)) },
where p; = (Ulc: S;). By the induction hypothesis we have
Fi,....Fa+ { P} {SPL-(p1, P},

and
Fi,...,FF {SPL-(Pla Pc)}Pz{SPL-(Pz, SPr-(p1, Pc))}~

It thus suffices to prove that |= SPp-(p2, SPr-(p1, P°)) — Q°: An application of
the rule for sequential composition (SC) and the consequence rule then gives us the
desired result.

So suppose that o,8,w |= SPr-(p2, SPr-(p1, P¢)), with OK(o,6,w). By theorem
6.21 there exist a state o9 and an osi f such that

e f(o) = P[p2](7)(¢')(00), v arbitrary,

e 09,0 ,w' = SPp-(p1, P°),

where ¢’ = f(6) and W’ = f(w) | L™.
Now 09,8",w' |= SP—(p1, P¢) in turn implies that there exist a state ¢, and an ost g
such that

¢ g(o0) = Plea](v)(8")(o0), 7 arbitrary,

° 0,6’611, wll |: PC’

79

where 6" = g(¢') and " = g(w') | L.
To relate these computations of p; and p, we apply corollary C.8 of appendix C:
There exists an osi h such that h° | cr((f) =g°| cr(()c), for every ¢, and h(f(o)) =

Plp21(7)(9(8"))(g(00)), where 7 is arbitrary.

Since g(48') = §" it follows that h(f(c)) = Plp](7)(6")(og), with 4 arbitrary. So by

04,8",w" |= P¢ and |= {Pc}p{Q“} we infer h(f(0)), 8", " = Q°.

Now note that OK(do,6'). So we have h(4(;)) = ¢ (6{) = 8(;) and h(éfz)(c)) =
9(8(3y(c)) = 6(2)(6), for every ¢. Thus we mfer that §” = h(48') = h(f(6)). Moreover

for z € L~ we have h(f(w(2))) = h(w'(2)) = g(w'(z)) = w'(z). Note that the

second identity is justified by OK (oo, ¢’,w’). So by theorem 6.19 and the fact that

LVar(Q°) C L~ we conclude o,8,w |= Q°.

S = if ...fi: Straightforward.

S = while e do §7 od:

In order to deal with this case we construct a loop invariant R as follows. Let L™ =
L\(st1Ulre) and Lt = L~ U{zy, 2}, where z, and z, are some new logical integer
variables. We define P’ = P[z,,zy/u,u’] and Q' = Q[zy, 2w /u, u']. Let p' = (Ulc:
while e A u < u' do S;;u — u+ 1 od). Furthermore let R' = SPp+(p',P' Au = 0)
and define R = 3z R'[z, z/u,u'], where z € LVar|,; is a new variable. Note that
LVar(R) C L*. Furthermore we have |= {P’}p{Q’} (note that u,u’ ¢ TVar(p), p
being restricted).

We have |= P/ — R:

Let 0,6,w |= P', with OK(0,8,w). We prove that for w’' = w{0/z} we have ¢,6,0' |=
R'[z,z/u,v]. Now o0,8,0' |= R'[z,z/u,u] iff ¢/,6,w]: R' by a straightforward
extension of lemma 5.4 (note that z ¢ Erp), where o' = ¢{0, O/u u'} (note that
z ¢ LVar(R')). Because u,u’ ¢ TVar(P') we have 0/,6,w |= P'Au = 0. Furthermore
it is easy to see that o/ = P][p’]]((8) ("), w1th 7 arbitrary. Finally, as LVar(P') C L*
we have by theorem 6.21 ¢/,8,w = R'.

Next we prove = R A —e — Q"
Let 0,6,w |= R A —e. Solet a € N such that ¢/,6,w |= R’, where o' = o{a, a/u,u'}.
So there exist f, oo such that

(') = Plp'](7)(8")(00), 7 arbitrary,
® 09,0, w' =P ANu=0,

where §' = f(§) and v’ = f(w) | L*. Now u,u’ ¢ TVar(e) so o,6,w |= e implies
o',8,w |= —e. By theorem 6.19 we have f(o'),8’, f(w) |= —e. So from LVar(e) = 0

80

it follows that f(o'),8’,w’ |= —e. From this it is not difficult to derive that f(o') =
Plel(7)(8")(e§), where oy = go{a, a/u,u'}. Now as u,u’ ¢ TVar(P') it follows that
04,0',w' |= P'. So by |= {P’}p{Q’} we have f(0'),8",w' = Q'. By LVar(Q') C L™
and theorem 6.19 we have ¢/,8,w = Q'. So that from u,u ¢ TVar(Q') we finally
conclude 0,6, w |= Q'.

Finally, we have |= {R A e}pl{R}, where p; = (Ulc: S1):

Let 09,8,w |= R A e, with OK (09, 0,w), and o1 = P[p1](7)(6)(e0), with v arbitrary.
Let a € N such that ¢j,8,w = R’, where o = oo{a, a/u,u'}. So there exist f,o
such that

o f(o0) = Plp'l(7)(&') (@), 7 arbitrary,

e 0,0, Ww=P ANu=0,

where §' = f(6) and o' = f(w) | L.
So we have the following situation:

ao,) - o0

08 2 f(ah)

Here 0,8 5 o' should be interpreted as o' = P[p[(7)(§)(o), ¥ arbitrary. We have
0y,8,w |= e because u,u’ ¢ TVar(e). So by theorem 6.19 and LVar(e) = 0 we
infer f(op),6',w’ |= e. Now let o] = o1{a,a/u,u'}. It then follows that o] =
Ploal(7)(6)(e5). We now have the following situation:

0y, 06 — o1

p
0,6 = o

0,8 2 f(ob)

An application of corollary C.8 then gives us an osi g such that g¢ | a’f)c) =f| a"gc)
for every ¢, and g(o1) = Plp1](7)(9(8))(f(o5)), with v arbitrary. Note that from
OK (0},) it then follows that g(§) = f(6) = ¢’. Finally, we thus have reached the

81

following situation:
00,6 — 01

!
ag, 0 = 0]

| |
0,8 5 fah),6 2 g(oh)

Now it follows that for o5 = o{a+ 1/u'} and o3 = g(of){a+1,a+ 1/u,u’} we have
o3 = P[p'](7)(6')(o2), with y arbitrary. (Of course this can be proved formally, but
as the intuition behind a formal proof is quite obvious, the main idea being simply
that the temporary variable u counts the number of loops, we think we are justified in
omitting such a proof.) Now ¢,8,w' |= P', u,u' ¢ TVar(P'), so 02,8, w' = P, from
which in turn it follows by lemma 6.22 that o3,68’,w’ |= R'. So we infer g(01),6',w' |=
R. Now LVar(R) C L* and for z € LT we have g(w(z)) = f(w(z)) = w'(2) (the
first identity follows from OK (o),w)) so we have g(o}), 8, g(w) = R. It follows by an
application of theorem 6.19 that o1,8,w |= R. Finally, as we have u,u’ ¢ TVar(R)
we conclude ¢1,48,w |= R.

Now by |= {R A e}p1{R} it follows that |= {R" A e}pl{R”} (note that u,u’ ¢
TVar(p1)), where R" = R[u,u'/zy, zs]. As LVar(R") C L~ we can apply the induc-
tion hypothesis:

Fi,...FF{R" ne}p{R"}.

By theorem 6.33 we have
F {zu ZUANy = u'}pl{:u ZuUNzy = u'}.

Furthermore we have = (R" Az, = uAzy = u') > Rand R — (R" Az, =
UA 2y = t)[2y, 2w /u, '] (note that w,u’ ¢ TVar(R)). So applying the conjunction
rule, the consequence rule for the postcondition, the initialization rule (IR2), and the
consequence rule for the precondition gives us

F,... F.F {R A e}pl{R}.

From an application of the rule (W) and the consequence rule, using the truth of the
implications P/ — R and R A ~e — @', it then follows that:

Fy,... F.F {P'}p{Q'}.
Now again by an application of theorem 6.33 and the conjunction rule we have
F,...,F, {P' Ty S UNA Zg = u'}p{Q'/\ Zy = UNA Zyg = u'}.

We have = (Q' Az, = uAzy = u) - Qand | P — (PPAzy = uhzy =
w')[u, u'/ 2y, zw]. So applying first the consequence rule for @, then the initialization
rule (IR1), and finally the consequence rule for P gives us the desired result. a

82
6.6 The context switch

In this subsection we prove the derivability of the correctness formula { init}p{SPE(P, z'm't)},
for p = (Ulc : v « eglm(eq,...,e,)) closed and BVar C L C LVar such that

st U st1 U lre C L. From now on until the end of this section unless stated otherwise

we assume p and L to be fixed. We want to apply the rule (NMR) and theorem 6.40.

To apply the rule (NMR) we need the following definition:

Definition 6.41
Let M be the smallest set such that

e pE M,
o if p) = (U|c' : v eo!m/(el, ..., ;) E M
then p; = (Ule; : v; - eo'mz(eh o en)) € M,
where v; — eilm;(el,. .., €, ,) or e dtmy(el, ..., €, .) occurs in S’ as a statement

(in this latter case we have v; = req;, assuming d to be the type of the result
expression of m;), S’ being the body of the method m’.

Let M = {p1,...,pc}. p = pl, assuming the followmg notational conventions: p; =
(U|c, DU e eo'm,(el,.. ,€n,)) € M, and m,(ul, . up) < S; T e; occurs in U,
i = ., k. We let & denote the sequence ey,..., e:,i. Furthermore let @ be a

sequence of all the temporary variables, and let the formal parameters of the method
m; be denoted by @'.

We start with a sketch of the proof strategy. To apply theorem 6.40 and the rule
(NMR) we_have to define assertions P;,Q;, ¢ = 1,...,k, such that LVar(P;,Q;) C
L\ (st1 U lre), and

= { P A A\ vd = nil A self ¢ b HUel; si{@ilei/r}, (6.1)
i

where @ = @\ @’ and c! is the type of ¢},

k= init — P;[&/self, @'][g'/ "] [b, o (self)/b,] (6.2)
and

= Q;[e"/self, @'][g"/ 2 ’][bc, o (self)/b;;] — SPT (pi, init)[r;/vi], (6.3)
for some sequence of expressions §* and corresponding sequence of logical variables
7', Herer;fori=1,...,kis a logical variable of the same type as v;. By 6.1 an

application of theorem 6.40 then gives us

.. B {Pin \vi = nil Aself @ by H(Ulel = Si){@iles/il}
j

83

where
F! = {init}pi{SPCL" (pis init)}.

Furthermore by an application of the consequence rule, using (6.2), we have F; - F/
where

F; = { P& [self, @'][g"/ '|[be; o (self) /b }oi{ SPE (s, init) }.

So we have

Fi,... Bt {PA A\ = il A self ¢ by }Ulch = Si){Qiles/ril}

An application of (NMR) plus (MI) or (MT) and the consequence rule, using (6.2)
and (6.3), then concludes the proof.

We start with the considering equations (6.2) and (6.3): We define a substitution
which neutralizes the context switch. To do so we first introduce some new logical
variables. ‘

Definition 6.42

We associate with u € # a new logical variable tv2, of the same type and with
each ¢ € C' a new logical variable id.. We define tv2 to be the sequence of logical
variables tv2, corresponding to the sequence %. Finally let W', i=1,...,k, denote
the sequence consisting of the variable id,, followed by the elements of tv2.

We have the following lemma about the neutralizing capacity of the substitution
[id"/self,u] with respect to the context switch:

Lemma 6.43 :
For any i € {1,...,k} and every assertion P € Ass we have

Pe[id' [self, @)[&* [self, '] = P {id' /self, .

Proof
Straightforward induction on the complexity of P%. . a

Note that the substitution [id'/self, &] transforms the assertion P into an assertion
in Ass® for arbitrary c. Furthermore it is easy to see that if LVar(P) N W =0
then |= P% « P<[id"/self, @][f/id"], where f denotes the sequence consisting of the
expression self followed by the elements of 4. Note that in general we do not have
that P% is syntactically equal to P<[id"/self, @][f/:d'], as is shown by the following
example:

84

Example 6.44 _)
Take for P% = z = z.y, where z ¢ id'. We have P%[id"/self, @] = id.,.z = z.y and
(ide;.x = 2.y)[f/id'] = self.x = z.y.

Next we consider the substitution [b., o (self)/b.;]. It is not difficult to see that for
every assertion P% we have

= (PS[ble, /be,] A be; = b, 0 (self))[be; o (self)/be;] — P,

But note that we do not have the other way around! However, as |= init — bl., = b,
we do have

|= init — ((init[bl., /be,] A be; = bl; o (self))[b; o (self)/bc,]).

To summarize the argument above we introduce the following definition:

Definition 6.45
Forany i € {1,...,k} and any assertion P € Ass we define its reverse context switch
R(P) as follows:

R(P%) = (P%[ble, /bei] A be, = bl o (self))id'/self,]

We have the following lemma about this reverse context switch:

Lemma 6.46
For any i € {1,...,k} and every assertion P € Ass“ we have

= R(P%)[&/self, a][f/id"|[be; o (self) /be,] — P<i.
and if |= P% — b,, = bl,, then

= PS — R(P%)[& /self,][/ id'][be, o (self)/b.,]).
Here f = self, .

Proof
Clear from the above. o

So at this stage candidates for P;,Q;, 7 = 1,...,k, satisfying equations (6.2) and (6.3)
are the assertions R(init) and R(SPF (p;, init)[r;/vi]), i = 1,..., k. We now proceed
by analyzing equation (6.1). Suppose we are given that for some P and we have
= {P}pi{Q}. In general we do not have

= {R(P) A A\ vj = nil A self ¢ by ULt = S {R(Q")]es/ i1},

85

where Q' = Q[r;/v;]. This is because it is possible that the object executing S; is not
the object which is sent the message and furthermore nothing is said about the values
of the formal parameters. So we add to R(P) the information self = ei[id'/self,u]

and uj = ej[zd /self, @], j = 1,...,n;. We have the following lemma:
Lemma 6.47

= (f = (¢i[id’ self, @) (€' /self, a][f/d']

where f' = self, @' and f = self, u.

Proof
Easy. a

Note that from lemma 6.46 and lemma 6.47 it follows that for every P¢ such that
|= P — b, = bl we have

= P — (R(P)A A fi = (ellid’ [self, a])) [/self ,][F/id"][be; o (self) /be,].

Now we are ready for the following lemma which shows how to transform a valid
correctness formula about sending a message into a valid formula about the execution
of the body of the message by the receiver:

Lemma 6.48
For any i € {1,...,k} and every P,Q € Ass® such that |= {P}pi{Q} we have

= {P'A N\ vi = nil Aself & b MU $:){Q'les/] 1
J

where P! = R(P) A A; f;: = (eg[izii/self,ﬁ]) and Q' = R(Q[r;/vi]), with r; a fresh
logical variable of the same type as v;. Here o =a\@.
Proof ’
Let 0,6,w |= P' A N; v' = nil A self & by, for o,6,w such that OK(c,d,w), and
o' = P[{U]ct: Si)](7)(6)(e), with v arbitrary and o’ # L.
We define 07 = o{w(tv2,)/u}ueca and 6(1) = w(d,,), 6(2)(«:) = §(2)(c) for every c.
It follows from lemma 5.28 that o1,8’,w |= P[bl.,/b.;] A be; = blc; o (self).
Next we define §” as follows: 6(1) = 6(1), §a)e) = 6'2)(C 3\ {w(id.,)}, and 6(2)(c) =

6(2)(c) for any ¢ # ¢;. Furthermore we put wy = w{w(bl,,)/be;}. It then follows that
0K(0'1,6",(u'1) and 0'1,6“,(4)1 |: P

86

o,8,wkE P o', 8w = Q'le;/ri]
4 fr
01,0 ,w |= P[ble;[be;] A b, = bl o (self) o, 8 w3 |= Q[ble;,ri/be;, v;] A be, = bl o (self
Y ft
01,8" ,w = P = 02,0" w1 = Q

Figure 4: The structure of the proof of lemma 6.48.

Let on the other hand ¢” = ¢'{w(tv2,)/u}uca and

_ a"{B/v:}) if v; € TVar
B o"{B/w(id,),v;} if v; € IVar,

where 8 = E[e;](6)(o’) (remember that e; is the result expression of the method
m;). Now from o,6,w | A; f]’ = (e;'-[izl’/self,ﬁ]) it follows from lemma 5.28 that
81) = Lleg[id’ /self, a]](w)(8)(0) = L[eb](w)(6")(01) and o(5)(u5) = L]ei](w)(8")(a1)-
Furthermore from o,6,w |= self ¢ b, ¢ it in turn follows tha.t 6(1) ¢ 6(2)(c Now

putting this together with the assumption that o' = = P[(U]c: : S:)](7)(8)(e), using
o,8,w |= A; v} = nil, enables one to infer that o3 = P[p;](7)(6”)(01).

Furthermore we are given that |= {P}p,{Q} so from 01,6",w; |= P and oy =

Plp:](7)(6")(o1) we infer that 02,8", w1 = Q. Now let wy = w1{3/r;}. It then
follows by lemma 5.8 that ¢”,6",ws |= Q[ri/v]]. Next we note that as ws(b,,) =
wi(be;) = w(bl;) we have 0", 8', w3 |= Q[r;, bl,, [v;, be,], where w3 = w{B/r;}.

From ¢,4,w |= R(P) we infer that w(b.;) = w(bl,;) o (w(id,)). But w(id.,) = 6(1) S0
we have 0,8, w3 |= Q[r;, bl,, /vi, be,) A b, = bl; o (self).

Now an application of lemma 5.28 gives us ¢’, §,ws = R(Q[r;/v;]). From this in turn
it follows that ¢/, §,w = Q'[e;/7;]. m]

Now we want to apply lemma 6.48 taking init for P and SP{(p;,init) for Q. Note
that by lemma 6.22 we have |= {init}pi{SPZ‘(pi, i-nit)}. Now taking for P; the asser-
tion R(init) A A; f; = (éj-[z"'/self,ﬁ]) and for Q; the assertion R(SPF (p;, init)[r;/v;])
we have by lemma 6.46 and lemma 6.47 that equations (6.2) and (6.3) are satis-
fied. However since in the assertions P; and Q; new logical variables occur which are

not contained in L, we must apply theorem 6.40 for F; = {z‘nit}pi{.S'P‘ZJr (ps, z'm't)},
where Lt = LU {id. : c € C}U{tv2, : u € a}. But to apply the rule (NMR)
we then have to take for Q; the assertion R(SPZ, (p;, init)[r;/v;]). An application

87

of (NMR) and (MI) or (MT) would then give us the derivability of the correctness
formula {init}p{SPf,ﬁ(p, init)}. However, as |= SP$4(p, init) — SP{(p,init) (use
LVar(init) C L C L*), we have by an application of the consequence rule the deriv-
ability of {init}p{SPi(p, im't)}.

But there is one problem we did not discuss yet. As si1 Ulre C LVar(SP, (pi, init))
we can not apply theorem 6.40! This problem is solved as follows: First we define
L~ = Lt \ (st1 Ulre). Next we define the following abbreviation:

Definition 6.49
Let Subs(lre, st1, ¢r) abbreviate the assertion:

/\(cr]c CcreAbll. Ccr.Alre. € cre A /\ /\ wly Ccerg A /\ tvl, € cre).
c deC z€lVar§ u€ TVar,

The assertion Subs(lre,stl,cr) states that all the objects which are denoted by a
variable of Ire or st1, or which occur in a sequence denoted by some variable of st1,
are stored in the corresponding variable of ¢r. We have the following proposition:

Proposition 6.50 .
Let P, = R(init) AA; fi = (ei[id" [self, 4]), Q7 = R(SPF_(pi,nit)[r;/v;]) and Qf =
R(SP, (pi, init)[r;/v;]). We have

= P; A Subs(l';e, st1,cr) « P;

and

= Q; [ei/r:] A Subs(lre, st1, ér) — Q7 lei/r:).

Proof
The first assertion follows immediately from the fact that the assertion init (and so
the assertion R(init)) implies the assertion Vz.(z. € cr.), for every c.

Now we prove the second assertion. Let o,8,w |= Q7 [e;/r;] A Subs(lre, st1, ¢r). For
wy = w{&[e;](6)(c)/r:}, we then have ,6,w; |= Q7 A Subs(lre, st1,cr).

Next we define ¢/ = o{wi(tv2,)/u}ueca, and 6{1) = ‘”l(i_dq)’ 6(2)(c) = §(2)(c), for
every c. It then follows by lemma 5.28 that: o', §', w1 |= SP{_(p;, init)[ri, blc, /vi, be;] A
be, = bl,, o (self) A Subs(lre, st1,cr).

For wy = wi{wq(bl.;)/b,;} and 6(’1) = 5(1), for ¢ # ¢ 6(”2)(c) = 562)(_6), ?therwise:
66’2)(0) = 6(2)(‘:) \ §,), we have o', 8", wy |= SP{_(pi, init)[r;/v;] A Subs(lre, st1, cr).

88

Next, let
" 01{“"2("'1’)/6{1), v;} ifv; € IVar
o =
o'{wa(r;)/vi} if v; € TVar.

It follows that o, §",w, |= SP{_(p;, init) A Subs(lre, st1, ér).

So by theorem 6.21 there exist f and g such that:

o f(0") = Plpl(7)(£(6"))(o0), with y arbitrary,

e 09, f(8"),w' |= init,

where w' = f(wy) | L~. Let oy = f(¢”). Now by theorem 6.19 we have that
a1, f(8"), f(wz2) |= Subs(lre, st1, ér). So from {cr.: ¢ € C} C L~ and the compati-
bility of w’ and oo we then infer the compatibility of f(ws) | L* and o¢. Let w” =
f(wz) | L*. We have that gy, f(§"),w"” |= init, so we have ¢”, §",w; |= SP{, (pi, init).
From this it follows, by “reversing” the part of the above argument which led to the
statement 0", 6", ws |= SP}_(p;, init), that 0,6,w = QF [e:/ri]. a

Now we are ready for the following theorem.

Theorem 6.51
Let the program p = (Ulc : v — eg!m(ey, ..., en)) be closed and let BVar C L C LVar
such that st U st U lre C L. Then we have

- {init}p{SP‘i(p, i-m't}.

Proof
Let P; = R(enit) A A\; f;f = (ej-[i?i'/self,ﬁ]), Q7 = R(SP}_(pi,init)[r;/vi]) and QF =
R(SP{,(pi, init)[r;/v;]). Now by lemma 6.22 we get

= {init}pi{ SPG_(ps, init)}
So we have, by lemma 6.48,

E{Pn A\ v = nil A self ¢ bey Ut = $:){ Q7 [es/ i}

An application of theorem 6.40 then gives us (note that the restrictions on the logical
variables are satisfied)

Fi,...,FF {P,- A /\v; = nil A self ¢ bc:}(Ulcﬁ : S;){Qi"[e,-/ri]},
J

89

where

F! = {init}p:{ S (pi, imit) }.
Now by lemma 6.46 and lemma 6.47 an application of the consequence rule gives us
F, + F! where

F; = { Pi[&'self, @|[f/id][be; o (self) Jbe)}oi{ SPE, (piy init) .
So we have

Fi,.. Fe b {Pin \v} = nil Aself ¢ bot H(Uc} : $:){Q5lei/ml}-
‘ J

By theorem 6.33 we have
- {Subs(l;e, stl, c‘-r) HUle: - Si){Subs(l;e, st1, c‘-r)}.
So by the conjunction rule we infer

{P,- A N; v = nil Aself ¢ b A Subs(lre, st c-r)}
Byoonbab e (Vlet: S5)
{Q,-_[ei/ri] A Subs(lre, st1, c'r)}.

By proposition 6.50 an application of the consequence rule gives us

Fi,. F b { P A \ v} = nil A self ¢ bt HU e} : $:){QF [es/ril}-
j

We now can apply rule (NMR), making use of lemma 6.46, yielding the derivability
of the correctness formula:

{PA Av} = nil Aself ¢ bey J (U<} s{Qfler/ml}-

Applying next (MI) or (MT) gives us the derivability of

{ Pu[E* /self, @)[F/2"][be, o (self) [bei]}or{ SPL+ (o1, init) }.
So an application of the consequence rule (the assertion init by lemma 6.46 implies
the precondition, and |= SPp+(p1,init) — SPr(p1,init)) gives us the desired result
(note that p; = p by definition)

- {init}p{ SP(p, init) }.

We conclude with the completeness theorem:

90

Theorem 6.52
Let p¢ = (U|c: S) be a closed program. We have for an arbitrary correctness formula

{hofa

- (efar) impte + {P)or{e).

Proof v

Let P’ and Q' result from substituting for every variable of st and lre a corresponding
new variable (new with respect to the sets LVar(P¢,Q°¢), st, st1,lre). Let L C LVar
(L finite) be such that BVar C L, LVar(P',Q') C L and st U st1 U lre C L. By the
soundness of the substitution rule we have |= {P' }p {Q } so applying theorem 6.40
gives us

R,...F.-{P}p{Q'},

where F; = {init}p;{SPF (pi, init)}, p; = (Ule; : v; — eflm(el, ..., €}.)) and eh!m;(el, ..

t = 1,...,n, are all the send-expressions occurring in S, and if such an expression
ef,!m,-(e‘i, .. .,ef,i) occurs in § as a statement we have that v; = req,, assuming d; to
be the type of the result expression of m;. By theorem 6.51 we have the derivability
of F;, so we infer that I { P’ }p“{Q’ } Finally an application of the substitution rule

gives us the derivability of {P"}p‘{Q‘ } ‘ a

et

2 Cn;

91

7 Conclusions

In the previous sections we have given a proof system for SPOOL that fulfills the
requirements we have listed in the introduction:

o The only possible operations on object references (pointers) are testing for equal-
ity and dereferencing.

e In each state of the system only the existing objects play a role in assertions
about that state.

In fact, we have given even two proof systems fulfilling these requirements: one with
recursively defined predicates and one with the ability to reason about finite sequences
of objects.

The technique which we have given for computing the weakest precondition for an
assignment with respect to a given postcondition, a generalized version of substitu-
tion, seems very powerful. Especially the fact that is possible to do this for a new
assignment, in the situation that it is not possible to mention the newly created object
in the state before the statement, is a little bit surprising.

The proof rule for message passing, incorporating the passing of parameters and
result, context switching, and the constancy of the variables of the sending object, is
a very complex rule. It seems to work fine for our proof system, but its properties
have not yet been studied extensively enough. It would be interesting to see whether
the several things that are handled in one rule could be dealt with by a number of
different, simpler rules.

We have proved completeness for the proof system based on the assertion language
containing quantification over finite sequences using the standard techniques (see 3],
for example). But how to apply these techniques to the proof system based on recur-
sive predicates remains an open problem.

Therefore we must conclude that there is still some work to be done on these issues.
In addition, in the present proof systems the protection properties of object are not
reflected very well. While in the programming language it is not possible for one object
to access the internal details (variables) of another one, in the assertion language this
s allowed. In order to improve this it might be necessary to develop a system in
which an object presents some abstract view of its behaviour to the outside world.
Perhaps techniques developed to deal with abstract data types are useful here.

Finally it is clear that the work on SPOOL is meant as a preparation for the study
of POOL, the parallel language. In the following two chapters of this thesis we show

92

how to combine a system like the one presented here with the known techniques for
reasoning about parallel programs.

93

References

[1] Pierre America: Definition of the programming language POOL-T. ESPRIT
project 415A, Doc. No. 0091, Philips Research Laboratories, Eindhoven, the
Netherlands, September 1985.

[2] Pierre America: A proof theory for a sequential version of POOL. ESPRIT
project 415A, Doc. No. 188, Philips Research Laboratories, Eindhoven, the Nether-
lands.

[3] Krzysztof R. Apt: Ten years of Hoare logic: a survey — part I. ACM Trans-
actions on Programming Languages and Systems, Vol. 3, No. 4, October 1981,
pp- 431-483.

[4] J.W. de Bakker: Mathematical Theory of Program Correctness. Prentice-Hall
International, Englewood Cliffs, New Jersey, 1980.

[5] Herbert B. Enderton: A Mathematical Introduction to Logic. Academic Press,
1972.

[6] Adele Goldberg, David Robson: Smalltalk-80, The Language and its Implemen-
tation. Addison-Wesley, 1983.

[7] Joseph M. Morris: Assignment and linked data structures. Manfred Broy, Gun-
ther Schmidt (eds.): Theoretical Foundations of Programming Methodology.
Reidel, 1982, pp. 35-41.

[8] Dana S. Scott: Identity and existence in intuitionistic logic. M.P. Fourman, C.J.
Mulvey, D.S. Scott (eds.): Applications of Sheaves. Proceedings, Durham 1977,
Springer-Verlag, 1979, pp. 660-696 (Lecture Notes in Mathematics 753).

[9] Joseph R. Shoenfield: Mathematical Logic. Addison-Wesley, 1967.

[10] John V. Tucker, Jeffery I. Zucker: Progrzixn Correctness over Abstract Data
Types, with Error-State Semantics. CWI Monograph Series, Vol. 6, Centre for
Mathematics and Computer Science/ North-Holland, 1988.

94

A A generalisation of the rule (MR)

In this section we show that in the recursion rule (MR), as introduced in definition 5.33
and adapted in definition 6.4, we can replace U~ by U itself, thus allowing nested
applications of (MR) to the same methods. Let (NMR) denote the recursion rule
resulting from (MR) by replacing all occurrences of U~ by U. Furthermore let |+
denote the derivability using (NMR) (- denotes derivability using (MR)). We have
the following theorem:

Theorem A.1
For every correctness formula F' we have |- F iff - F.

Proof

=: We prove that if Fy,..., F,|F F then F,..., F, I F by induction on the length
of the derivation. We treat the case that the last rule applied is (NMR). So let the
following be an instance of (NMR):

F,..,E, F,....F|FFl,. .. F
31

where F{ = F. Let U be the unit occurring in this application of (NMR). We may
assume without loss of generality that all the methods declared by U are specified by
one of the F;. (Otherwise, let {p1,..., pr}, where p; = (Ule¢; : v; — ef,!m,-(e’i, ceey ef,._)),
be all the send statements occurring in U. Now simply add to Fy,...,F, for i =
1,...,k,G; = {true}pi{true}, and note that

Gy, ...,GrF {true}(Ulcf : S.-){true}

where ¢! is the type of ¢} and S; denotes the body of m;.) We shall prove by induction
on the number of applications of (NMR) in the derivation Fy,...,F,| - Fj,..., F,
that for some H,,..., Hy, Hy,...,Hp, H{,...,H; such thatfor 1 < i<k

H! H;

1

H;

is an instance of (MI) or (MT), we have:

Fov FosHy G F B P H. R

where, for G = {P}(U|c : S){Q}, G denotes {P}(Elc : S){Q}, E being the empty
unit. Having proved this we apply (MR) thus yielding - F{(= F). Here we go:

Induction basis: Assume that no application of (NMR) occurs in the derivation
Fy,...,F|F F],...,F}. So we have that Fy,...,F, = F{,..., F. where I~ denotes

95

derivability from F without (MR). It is not difficult to see that it suffices to prove by
induction on the length of the derivation that for an arbitrary correctness formula G
if Fy,...,F, " G then for some Hy,...,H, Hy,...,Hy, H{, ..., H, we have

Fi... P, He+ G H,... AL,
where for: =1,...,k
H! H;
H;
is an instance of (MI) or (MT). We treat the only interesting case that the last rule
applied is an instance of (MI) or (MT). So suppose Fi,...,F, -~ G',G, where
¢ 6
G
is an instance 9f (MI) or (MT). Now by the induction hypothesis we know that for
some Hy,...,Hy,Hy,..., Hy, Hy,..., Hy:
F,...,F, Hy,...,H, -G H,,..., H,
such that fori =1,...,k i
H! H;
H;

is an instance of (MI) or (MT). Now let Hyq = G, Hepr = G, and H{,, = G'. We
then have that
Fr oy Hesa v G HL... AL,

Induction step: Let for ¢ = Al, co.,m

!

Y, Gh Gl GRIFGY, LG
Gi'
be all the applications of (NMR) in the derivation Fi,..., Fy|F Fy,..., F}, such that
Fi,...,F,GY,GV Fi,. .. F.

By the same induction argument as used in the basis step above we have for some
Hi,...,Hy, Hy,...,Hy, H,...,H} (such that fori =1,...,k

is an instance of (MI) or (MT)) that

Fi,...,Fo,Hy,...,He,GY,...,G™M V= Fl,...,FL,Hi,... H,

96

where = denotes derivability from I minus the rules (MR), (MI), and (MT). Now,
applying the induction hypothesis gives us fori = 1,...,m: H,..., H,’;‘,, Hi,...,Hg,,
H{,, cen, H};‘,' such that

oG H L HL GG BB
Now it follows by a straightforward induction on the length of the derivation
! 1 =
F,...,F, Hy,...,H,G{,....GM V= F{,...,F. Hy{,..., H,

that
FulJgulUnir FulJgiulJH:

where

o F = {Fly---,Fn-}-k}s Fn+1f = Hi,i: 1,...,k,
o F' = {F',...,F’,’,+k}, F,.,=H,i=1,...,k,

gi = {Gzl,,é:!'}. 1 Szi m,

=il =i ! .
Gl ={G{,....Gn, 1,1 <i<m,

Hi={fi,.. Bi},1<i<m,

o Hi={H{,. . H'},1<i<m

«=: This is proved in a similar way as the other direction. a

97
B Expressibility

In this section we show how to formulate the assertion SP¢(p, P¢) in our assertion
language, for an arbitrary closed program p¢, BVar C L C LVar (L finite), such that
LVar(P¢) C LVar.

As in section 6 we assume the sets C', [Var, and TVar to be finite.

B.1 Coding mappings

Assumption B.1
We assume the existence of the following coding mappings:

e For every instance variable or temporary variable v € ITVar we have [v] € N,
and for an arbitrary program p we have [p] € N.

o For every d € C*, []s € O — N denotes an injection such that [L]; = 0. In
addition, we assume that the function [.]},; is surjective.

e For every state o € ¥ such that OK (o), [o] € N.

e For every context §° € A°: [§°] € N.

Furthermore we assume that the mappings [.]|,; and [.]gyo| are definable in our as-
sertion language. That is, we regard the following function symbols as abbreviations
for assertions that are expressible in our assertion language:

e Ic(n) = m (mnemonic: integer coding) iff [n]),¢ = m.
e Bc(b) = m (mnemonic: Boolean coding) iff [b]gyol = m.
e Id(n) = m (mnemonic: integer decoding) iff [m}}¢ = n.
To be precise, with the first assumption above we mean that there is an assertion

Ie(z1) = z,, where z; and z, are integer logical variables, such that for every o €
2,6 € A,we N with OK(o,6,w) we have ’

o bwll(n)=2 iff [w(z1)]jp = w(z2)

In fact from now on for every ¢ € C and a € O° we identify [a]. with a. So we
assume O° C N.

In the same say we assume the following predicates and functions to be expressible
in our assertion language:

98

e E°(n,m) (mnemomic: erists) iff there exist a ¢ € £ and a € ¢{(¢) such that
[a]c = n and [o] = m.

e A°(n) = m (mnemonic: active) iff there exists a § € A° such that [§] = n and
[6(1)]c =m.

¢ B°(n,m) (mnemonic: blocked) iff there exist a § € A and an a € §(3)() such
that [a]. = n and [§] = m.

o Val§(k,l,m) = n (mnemonic: value) iff there exist ¢ € B, a € ¢{°), and 2§ €
IVarg such that [a]. = k, [z5] = [, [0] = m, and [o(a)(29)]q = n.

o Valy(l,m) = n iff there exist a ¢ € £ and a ug € TVarg such that [ug] = [,
[o] = m, and [o(ug)]q = n.

e T¢(n,m,l, k) (mnemonic: transforms) iff there exist a closed p € Prog®,§ € A€,
and 0,0’ € ¥ such that OK(s,9), [p] = n, [§] = m, [¢] = I, [¢'] = k, and
o' = P[pl(7)(6)(o) (where v is arbitrary).

The above assumptions may appear quite implausible at first sight, but they can be
justified by Church’s Thesis, which states that every function or relation that can be
effectively calculated is recursive, together with the (mathematical) fact that every
recursive function is representable in the standard Peano theory of natural numbers
and therefore it is certainly definable in our assertion language. (For a discussion of
these issues, see [5] or [9].)

B.2 Arithmetizing Truth

To express the strongest postcondition we have to arithmetize the truth of an assertion
in a state. More precisely, we will define a translation which transforms an arbitrary
assertion into an assertion in which no instance variables or temporary variables occur.
The idea of this translation is similar to the one given in the definitions 6.26 and 6.28.
But instead of transforming an assertion into an assertion referring to a sequence
of logical variables used to store the state, we now transform it into an assertion
referring to the code of a state. This is necessary to be able to use the predicates of
assumption B.1, in particular the predicate T'.

To get started we introduce some new variables: Let bij denote a sequence of some
variables bij° € LVar., ¢ € C. We shall use these variables to store the essential
parts of the bijections that constitute an os: (see definition 6.17). The way in which
this is done will be made precise in definition B.3, but here we can already explain
how the bij can be used as a kind of decoding tables. To that end we assume that we

99

have a certain state ¢ such that for every ¢ € C' and a € O

a ifacqal®

elt(B, [a]e) = {

1 otherwise.

where 3 € O is the value of bij° in a certain w. So every existing object of class ¢
occurs in the sequence denoted by bij¢ at a position which equals its code number. It
is important to note that we cannot express this property of the sequence denoted by
bij¢ in the assertion language: There exists no assertion P(b¢°) such that for every
o,8,w with OK (0, §,w) we have o, §,w |= P(bij°) precisely if the above property holds.
This is because at the level of the assertion language objects simply are not integers.
Fortunately we shall not need the expressibility of exactly this property, but only of
this property modulo an osi. This is the subject of section B.3.

Definition B.2

Let 2%,2° be some logical integer variables. We assume that the value of z7 equals
the code [0] of some state o, and that the value of z* equals [a]. for some a € ole),
For every logical expression [we define 15[z, 2] as a triple (z,lchool, l5],¢), Where
i denotes a sequence of logical integer variables, and I; and l5 are logical expressions.
Note that we do not define this transformation for logical expressions of type d* with
d € C*. The idea behind this transformation I5[2%, 7] = (3,11,13) can be described
as follows: The expression [y is constructed such that it is only true if the variables i
contain the code numbers of certain objects that are relevant for the evaluation of 3.
To do this, /; can consult the variables bzj as a translation table from code numbers
to actual objects. Using this information, I, is a translation of I such that every
operation on objects described by [§ is translated into a corresponding arithmetical
operation on code numbers.

Here is the formal definition:

¢ 1g§|'za,za] = (€, true, Valgy(2", ¢, 2%)),
where k = [z5] and € is the empty sequence.

o ugz%,2%] = (e, true, Valy(k, 27)),
where k = [ug].

e nil[z%,z7] = (e, true, 0).
o self[z%, 2] = (e, true, 2%).

o I[z%,27] = (€, true, Be(l)),
where [= true, false.

e n[2%,27] = (¢, true, [n]|nt)-

100

o el 27] = (¢, true, Ie(2i),

Next

ZBool [2%, 27] = (€, true, Be(2Bgol)-
ze[2%,27] = ((3),if z. = nil then i = 0 else bij® - i = z fi, 7).

(15 29)[=%,27] = ((3, b, Valg (Ia, k, %)),
where k = [25] and IS, [2%, 2] = (3,11, 12).

(e - Unt) [2%, 271 = (2 I, Ie(lygye - 1d(12)),
(IBool* “ lint)[=%: 271 = (i, 11, Be(lgggpr - 1d(12))),
where {4 [2%,27] = (3,11, 12).

(Ige - Yop)[2%,27] = (0 {j),l1 Nif lge - Id(I3) = nil then j = 0 else bij?

lge - Id(I2) fi,),
where d € C, l|4[2%,27] = (,11,12) and j is a fresh integer logical variable.

(h+12)[=%,27] = (3, b, Ay, Te(Td(1y,) + Td(1,)))

where [;[z%,27] = (i1, h,,l,), 12[2%,27] = (22,02,,12,), & = 11 oj, j is some
sequence of new logical integer variables of the same length as i3, [= Iy, [7/72),
and l 2 122[]/12]

if 1, then [, else I3 fi[2%,27] = (3,5, A l' Ay, if Iy, then Iy, else I, fi)

where [[2%, 27 (11,111,112) Ia[2%, 2] = (i2,la,, 12,), lsf« ,27] = (i3, 13y, 13,),
i1 =10]9 o Js3, j2 and j3 are sequences of new 1og1cal variables of the same
length as i, i3, respectively, such that i1, j2 and j3 are mutually disjoint,

Iél = 12 [32/;2], 1122 = 122[52/-1:2], lél = l3l [;3/-2_3], and 1:132 = 132[33/23]_
(h = B)[z%,27] = (i, i, Ay b, = 13)
where ;[:z%,29] = (i1, l,, ;) l2[2%,27] = (22, 12,,12,), T = 21 0j, j is some

sequence of new logical integer variables of the same length as i3, I, = 1,[7/32),
and I, = l2,[7/72]-

we define for every assertion P€ its transformation P¢|z%,27].

Booll2%:27] = 3i(ly A ly = Be(true)),
where [ll',."‘,,"] = (3,11, 15).

(P A Pp)|2%,27| = Py[2%,27] A Py|2%,27].
(324 P)[2%,27] = Fz,P|z%, 27|

for a = Int, Bool, Int*, Bool*.

(324P) |2, 2%] = Fz4(2q4 € bij¢ A P|2%,27])
for every d € C. Here z4 € bij? abbreviates 37 zg = bij? - (cf. definition 6.28).

(3z4-P)|2%,2°] = Fz4- (24~ € le A P|2%,27])
for every d € C. Here z4» C bij¢ abbreviates Vi zg+ -7 € bij¢ (cf. definition 6.28).

101
o (Vz,P)|z%,27] = Vz, P|z%, 27|
for a = Int, Bool, Int*, Bool*.

o (Vz4P)|2%,27] =Vz4(2q € bij¢ — P|z%,27])
for every d € C'.

o (Vzgo P)|2%,2%] = Vzge (24+ C bij? — P[2%,27])
for every d € C.

In this transformation we assume that the quantified variables are distinct from any of
the variables of bij. Note that the result of this transformation applied to an arbitrary
assertion is a quantification-restricted assertion.

To describe the semantics of this transformation we need the following definition.

Definition B.3
Let w € Q,0 € &, and let f be an osi (see definition 6.17). Then we write
Code(w, o, f) iff for every ¢ € C' we have
o o\ = {elt(8°,n): n € N}
o for all @ € ¢ and for all n € N we have

elt(B,n)=a if f(alpha)=n

where 3" = w(bij¢).

We write Coder(w, a, f) if Code(w, o, f) and additionally for every ¢ € C we have

o w(z) € w(bij®) for every z € L N LVar,

o w(z) C w(bijc) for every z € LN LVar,.

In a sense Code(w, g, f) can be interpreted as saying that w(b#j¢) codes the restriction
of the osi f to the existing objects of o.

Now we are ready for the following semantical interpretation of the transformation
described above.

Theorem B.4
Assume to be given the states o,0’,0" such that o
f(a19)) = ¢'(®) for every ¢ € C'. Furthermore let w

" and an ost f such that

<0
€ Q and § € A° be such that

102

OK (w,$,0") and Coder(w,o, f), where BVar C L C LVar. Then for every assertion
P¢ such that LVar(P¢) C L and LVar(P°) N bij = O we have

WP iff o 8,w{n,m/z% 2} = P°|2%,27],

where §' = f(§), ' = f(w) | L, n = [f(§1))]e, m = [0], and 2%, 27 are new logical
integer variables.

Proof

Induction on the complexity of P¢. The case P° = Ig_ , is treated as follows. For
every logical expression 1§ such that LVar(l3) C L and LVar(I3) N bij = 0 we prove,
by mductxon on the complexity of 5, the following: Let I5[2%,27] = (E l,15) where
1=1,.. . Then there exists a unique sequence of natural numbers k=ky,..., kq
such that

LlL](w{k,n,m/[i,z%, 7})(6)(c") = ¢

and for this k& we have

(£} (@) (oN)]a = LU (w k. n, m/[3, 2%, 27})(6)(o").

B.3 Expressing the coding relationship

In this section we show how to express in the assertion language the relationship
between a state and its code number. In definition B.6 we shall define the assertion
Bij(27), which expresses, as accurately as possible, that the current state is coded by
the value of z% and that the logical variables bsj form a correct decoding table. How-
ever, it is only possible to express this up to isomorfism, as we shall see in lemma B.7.

Definition B.5
First we define the following auxiliary assertions:

o Cling(#py: 2%, 2%) = Ie((by” - =) . afyy) = Valjo (=%, k, %),
Clgo ol (Fgoop 2% 27) = Te((bif° - 2%) . 250)) = Valgog) (2%, k, 27),
where k = [z].

o CI§(z5,2%,2°) =
((b3j - z%) . 25 = nil — Valgy(z*,k,27) = 0)A
(B35 - %) . 25 # nil — Vp((bij© - 2%) . 2§ = bij? - p — Val§(z%,k, z%) = p)),
where d € C and k = [z§]

o CTnt(Un> 27) = Ie(uygy) = Valiy(k, 2%),

CTBool(uBool» 27) = Ic(uool) = Valggoi(k, 27),
where k = [u].

103

o CT4(uq,2%) =
(ug = nil = Valg(k,z7) = 0)A
(ug # nil = Vp(bij* - p = ug — Vala(k,z%) = p)),
where d € C and k = [u4]

Definition B.6
Next we define the assertion Bij(z?), where z7 is some logical integer variable, as
follows. -

Bij(z7) = A Vz3N(byc i =z)A
A Vi(ES(i, 27) & bij® - i # nil) A
AV (515 i # 0l = Ag Aervars CI3(272%)) A
Aa Avervary CTa(u, 2%)

The first conjunct states that for every c the sequence denoted by by stores each
existing object of class ¢ exactly once. The second conjunct then can be interpreted as
stating that every existing object of class ¢ occurs in the sequence denoted by bij© at
a position which equals the code of some object that exists in the state coded by :z.
The third conjunct relates the local state of every existing object with the one of its
corresponding code. Finally, the fourth conjunct relates the values of the temporary
variables with their coded versions.

In the following lemma we show how this assertion B#j(z) can be used to describe the
isomorphism between two states.

Lemma B.7
Let o,w, f such that OK(w,), Code(w, o, f) and w(z) = [o'].
Then:

0,6,w |= Bij(z)iff f(o) =o',

for an arbitrary § such that OK (o, §,w).

Proof
Straightforward. : |

B.4 Expressing the strongest postcodition

Finally we are ready for the theorem stating the expressibility of the strongest post-
condition.

104

Theorem B.8

Let p° be closed, BVar C L C LVar, P¢ such that LVar(P¢) C L and byNL=0.
Then: SP$(p¢, P°) = 3bij, ..., bij°", 21, 23, 23(Q) (assuming C = {e1,...,¢n}),
where @ = A;¢,<5 Qp, and

o Q1 =T([p%], 21, 22, 23),

* Q2 = Bij(z3),

o Qs = bij° - A%(z1) = self,

o Q4= A Vi(B(i,21) o bij° i € be),

° Q5 = 3.’.’,;‘, <oy Zey /\1< <4 RP’
1 sps
where

Ry = Adze C b3°)

Ry = A Vi(E(i,22) & 2o -1 # nil)

R3 = Ac(AziEL(zé € ze2) A /\z:.eL(zé‘ C z-))
R4 P¢|z,2'|[2/bij, A°(21)/ 2, 22/ 2]

where Iy, C Iy, for a = d*, abbreviates the assertion Vi(l1 -2 = nil V lj4 - i = Iy, - 7),
and Z denotes a sequence Z,. .., Z, of fresh logical variables.

The quantification 3b3j, ..., bij* will correspond to the phrase (in theorem 6.21)
“there exists an osi f”. The variables z;, z;, z3 will correspond to §’, 09, and f(a),
respectively. The conjunction A;<;<4 Q: then expresses f(o) = P[p](7)(8')(00). Fi-
nally, the assertion Q5 expresses g, §’,w’ |= P, where w’ = f(w) | L. Let us look into
this more closely. The conjunction R; A R, states that the variable z.;, 1 <7 < n,
stores all the existing objects of o (of class ¢;) at a position which equals its code.
The assertion R3 then states that w’ is compatible with oy. Finally, the assertion R4
expresses that gy, ,w’' |= P.

Proof
Let 0,8,w |= SP{(p, P°). So there exists fori = 1,...,n, a; € 0°¢, and fB1,0,,8s €
N such that 0,8,u’ |= Q, where w’' = w{a;/bij*}:{B1, B2, B3/ 21, 22, z3}.

As 0,6,w' |= Q, there exists o9, 07,8’ such that o1 = P[p°](7)(é’)(o0), v arbitrary,
and [5'] = B, [0'0] = B2, [0'1] = fBs.

Now let f be an osi such that for a € o{%) we have: f(a) = 3 iff elt(w'(bij), 8) = a.
(Note that as 0,4,w’ |= Q2 we have that for a € o'¢) there exists some 8 € N
such that elt(a;,3) = a, furthermore we have E(3,33) so B € a&ci).) So we have
Code(w', 0, f) and by lemma B.7 we infer f(o) = ;.

105

From o, 4,w' |= Q3 it follows that 6{1) = f(8(1)). Furthermore from o,4,w’ |= Q4 it
follows that 62._,)(c) = {f(a) : a € w(b;)}. Note that OK(w,d,0o) so we infer that
8 = f(9).

Finally, we have 0,6,0w’ |= Qs. So there exists for i = 1,...,n, af € o, W' =
w'{c}/zc+}: such that 0,6,w" |= Ajcjcq Ry Let o' such that, for an arbitrary c,
o) = f‘lc(a((,c)). It then follows that ¢/ <X ¢ and by 0,6,w” |= Aicjc3 R we
have Coder(w", o', f), where w"" = w{a’;/byj* }J{é'l),,@o/z,z’} Furthermore we have
o,8,w" |= P¢|z,2'|, so we have by theorem B.4: 09,8',@ |= P¢, where & = f(@") |
L = f(w) | L. This finishes one part of the proof.

On the other hand, let o, 09,8, w, f such that:

o f(o) = Plp](y)(&' , 7 arbitrary.

o 0p,8 W' = P°.
where ¢’ = f(8) and o’ = f(w) | L.
Let 8, = [8'], B2 = [oo), B3 = [f(o)] and «a; € O¢<, for i = 1,...,n (assuming
C = {c1,..-,¢n}), such that elt(a;;m) = o(# L) iff a € ol¢) and f%(a) = m.
Furthermore let " = w{a;/bij% }:{B1. B2, B3/ 21, z2. 23}
Now f(o) = P[p](7)(6')(a0) so we have o,6,u" |= Q1.
We have Code(w", o, f), and w"(z3) = [f()], so by lemma B.7 we have o, §,w"” |= Q».

From &' = f(8), OK(o,6,w) and OK (09, 8') it easily follows that o, 4, w' = Q3N Q4.

Let, for i = 1,...,n, a} be a subsequence of a;, such that cr((,c‘) = {a: elt(a},a) #
L}. Furthermore let w" = w"{a,/zc;}p. Now from aj being a subsequence of a; it
immediately follows that o,§,w" |= R;.

From 00 = {a € 0% : elt(al,a) # L} it in turn follows that o,6,w" = R,.
Furthermore we have that ¢ and w' are compatible, and w’ = f(w) | L = f(v") | L,
from which it follows that: ¢, 6é,0"” |= R3.

Finally, let ¢’ be such that for an arbitrary ¢ we have o) = f"lc((c)) and @ =
w"{al b7} {5(1),/69/@”'} We then have that Coder (@, ', f) and ¢’ < . So from
00,8',w' |= P¢ and o' = f(@) | L applying theorem B.4 it follows that 0,6,& =
P¢|z,2’|. So we infer that 0,8, w" |= Ry4.

Summerizing we conclude that: o,§,w |= SPL(p¢, P°). a

106

C A closure property of the semantics

In this appendix we prove a closure property of the semantics with respect to object-
space isomorphisms. To get started it it turns out to be convenient to have the
following definition.

Definition C.1
Let ,B‘Ii‘,...,ﬁg" be some sequence of objects. We define OK (f‘,.. ., B8, 0) iff
OK (4, 0) and additionally 3; € old) i=1,...n

Definition C.2
For

o Fc (o O‘j_‘) - A X, — (EL X O'i"),for some c,n,dp,...,dn,

e GEA - X, — (EJ_ xO‘i),for some c, d,

e He A®* - ¥, — X, for some ¢,
we define

o CI(F) iff for an arbitrary Bg°, ...,B% 6, 0,0, f such that OK(Bi,...,PBn,6,0):
if F(B,-..,8)(6)(e) = (d',Bo)

then there exists an osi g such that f¢ | o(9) = g¢ | (%), for an arbitrary ¢, and

F(f4(Br), - - -, F(Ba))(£(8))(£(2)) = (g(0), g% (Bo)),

e Cl(G) iff for an arbitrary 8,6, g, 0’, f such that OK(§,0):
if G(8)(o) = (o', 8)
then there exists an os¢ g such that f¢ | o(e) = g¢ | o(°), for an arbitrary c, and

G(f(9)(f(2)) = (9(a"), g%(B)),

e CI(H) iff for an arbitrary 8, 0,0’, f such that OK (4, o):
if H((6)(e) =o'
then there exists an osi g such that f¢ | o(©) = ¢° | o(9), for an arbitrary ¢, and

H(F(8))(f(o)) = g(o’).

(Here | denotes the restriction operator.)

Now we are ready to analyse this closure property denoted by CI. We start with the
following lemma which states that the meaning of an arbitrary expression s € SEzp
satisfies this property assuming it holds for the meaning assigned to an arbitrary
method:

107

Lemma C.3
Let v be an environment such that for an arbitrary method name m we have Cl(y(m)).
Then for every expression s € SEzp we have CI(Z[s](7)).

Proof
The proof proceeds by induction on the complexity of s:

s = e: Note that we have by theorem 6.21 £[e](6)(o) = E[e](f(6))(f(o)) for an
arbitrary 8, o such that OK(4,0).

s = newg: Let Z[new,](v)(6)(o) = (¢',8). So we have pick¥(o¥) = B. Let g’ =
pzck(d)(f(a)(¥) and g be an osi such that f¢ | o(©) = g¢ | o(9), for an arbitrary ¢, and

g%(B) = B'. Tt follows that Z[newa](7)(f(8))(f(o)) = (g(c"),B').

s =eo'm(eq,...,en): Let for i =0,...,n E[e;](8)(o) = B; (OK(4,0)) and
7(m)(:317 s ,ﬂn)(ﬁl)(a') = (0',, ,B), where

51y = Po
§ayen = eyt {5(0)(&) Udy/c'} o =c
8ayen =) ¢ #e,

assuming s € SEzp], for some d.

As we have Cl(y(m))it follows that y(m)(f(B1), - - ., F(B-)(F(8)(f(o)) = {g(a’), 9(B)),
for some osi g such that ¢g¢ | o(¢) = f¢ | o(9), ¢ arbitrary. (Note that by lemma 3.21

and OK (8, 0) we have OK (B, ...,Bn,8',7).) By theorem 6.21 we have E[e;](f(8))(f(o)) =
f(B;). Furthermore we have

f(8") 1) = £(Bo)
F(8)2yen = £ Bayen) S Bayen) U £ (6ay) e} ¢ =¢
F(8) ayen = £ (8(2)en) c#c.

So we conclude E[s](7)(f(8))(f(o)) = (9("), 9(5))- O

Next we prove the closure property Cl for the meaning assigned to statements assum-
ing it holds for the one assigned to expressions.

Lemma C.4

Let 4 be an agreement-preserving environment such that for an arbitrary s € SEzp
we have CI(Z[s](7)). Then we have CI(S[S](7)) for an arbitrary § € Stat.

Proof :
The proof proceeds by induction on the complexity of 5. We treat the following cases:

108

S = 25 — 5 Let S[S](7)(6)(0) = ¢"” (OK($,0)) and f be some ost. So we have
Z[s](7)(6)(¢) = (o', B) such that 0" = o'{B/§(1),z}. By Cl(Z[s](y)) it then follows
that there exists an ost g such that g¢ | ol = fc | o(¢), for an arbitrary c, and
Z[sI((F(E)(f(@)) = (9(e"),9(B)). Now g(o") = g(o"){g%(B)/9°(é(x), 2}, so we
conclude S[S](7)(f(8))(f(o)) = g(o”).

S = 51;S2: Let S[S](7)(6)(¢) = o' (OK(6,0)) and f be some osi. So there ex-
ists a ¢’ such that S[S$1](7)(8)(¢) = " and S[S2](7)(6)(¢") = ¢'. By the in-
duction hypothesis we have for some osi g such that g | ole) = fo | o(®) for an
arbitrary ¢ and S[S1](7)(f(8))(f(c)) = g(c"). Another application of the induc-
tion hypothesis gives us an osi h such that A° | ") = g¢ | ¢, for an arbi-
trary ¢, and S[S2](7)(9(6))(9(c")) = h(c’). Putting these applications of the in-
duction hypothesis together gives us h¢ | o©) = fe¢ | o(9, for an arbitrary ¢, and
S[SI()(F(8))(f(a)) = h(c'). (Note that by lemma 3.21 o =< 0" and, as OK(4,0),

f(8) = 9(8).)

S = while e do S; od: Let S[S](7)(6)(¢) = o’. So we have u®(6)(s) = o', where
® is as defined in definition 3.14. Now it suffices to prove that for an arbitrary ¢ €
A° — (£ — T,) such that CI(p) we have CI(®(p)). So assume for some ¢ we have
Cl(yp). Let ®(p)(6)(c) = o' (OK(4,0) and f be some osi. We consider the case that
£[e](6)(¢) = t. By theorem 6.21 we then have E[e](f(6))(f(v)) = t. Furthermore we
have ¢(8,S[S1](7)(8)(0)) = o'. Let S[51](7)(6)(a) = o”, by the induction hypothesis
it then follows that for some osi g we have g° | o) = fe | o(9) for an arbitrary c, and
S[S10(7)(£(8))(f(2)) = g(a”). By assumption there exists also an osz h such that
he | 0" = g¢ | ¢"9), for an arbitrary c, and ¢(g(é),g(c")) = h(c’). Putting this
together gives us h°(a(®)) = f¢(o(°)) for an arbitrary ¢ and &(p)(f(6))(f(v)) = h(c").
(Note that by lemma 3.21 ¢ < ¢” and, as OK(6,7), f(8) = g(4).) o

We proceed with the following lemma which states the closure property of the meaning
of class definitions assuming it holds for the meaning of statements:

Lemma C.5

Let v be an agreement-preserving environment such that CI(S[S](7)) for an arbitrary
statement S. Then we have for every method name m defined by D CI(C[D](y)(m))
for an arbitrary class definition D.

Proof
Let 4’ = C[D](7) and f be some osi. Now let the method name m be defined by
D, say m is declared as pj ;. We have y/(m) = Mg, a0 1(r)- Let pg 4 =

11111111

(u1,---,uk) : S Te. Moreover let

109

M[(uy,...,ue): S Te)(7)(B,-- -2 Be)(8)() = (", B)

where o' = (0(1),0(2),0(3))
oay(u) = B if u=u
= 1 otherwise
o = S[S1(v)(é)()
B = E[el(6)(a")
o = {001, 9(2)9(3))

Note that we assume ¢ # L and §(;) not to be blocked. If one of these do hold we have
o' = 1 from which follows that ", 3 = L. By the assumption about y we have for
some osi g g¢ | 0’® = f¢ | o'(9), for every arbitrary c, and S[S](7)(f(8))(f(o)) =
g(c”). (Note that OK(B,...,Bk 6,0) implies OK(é,0).) As o'?) = {9 for an
arbitrary ¢ we have g¢(c{(®)) = f¢(o(°)) for an arbitrary c. By theorem 6.21 we have
9(83) = E[el(9(6))(g(c")). (Note that as v is agreement-preserving we have by lemma
3.21 o < ¢", and so OK(8,¢").) Putting this together gives us

M(ur, .. we) 2 S TeJ(NF(B, - -, FB)F(8))(f() = (9(c™), 9(B))-

O

In the next lemma we prove that the meaning of units satisfies the closure property

Cl.

Lemma C.6

Let U = D,..., D, be an unit such that every method occurring in it is defined by
it. Then for every method name m we have Cl(vy'(m)), where U[U](v0) = 7' and 7o
is the “empty” environment defined by

70(8)(6)(e) = (L, L).

Proof

We have 7/ = |; 7, Yo being the “empty” environment and C[D;]o---oC[Dn](y:) =
~vit+1. We prove by induction that Cl(y;i(m)), m arbitrary. From this it is not difficult
to prove that CI(y'(m)).

i = 0: Evident.

i = j + 1: By the induction hypothesis we have Cl(7;(m)). Furthermore by lemma
3.21 we know that 7; is agreement-preserving. From this follows by applying the
lemmas C.3, C.4 and C.5 that Cl(7;41(m)). (Note that lemma C.5 can be applied
only for method names defined by U, but as we have y;(m) = yo(m), for ¢ € N and
m not defined by U this suffices.) a

110

We conclude this appendix with the following theorem which states the closure prop-
erty of the meaning assigned to closed programs:

Theorem C.7
For an arbitrary closed program p = (Ul|c: S), environment v we have CI(P[p](7)).

Proof

First note that as p is a closed program we have P[p](7) = P[pl(70). We have by
definition 3.18 that P[p](ye) = S[S](9’), where 4’ = U[U](y0). By lemma C.6 we
have Cl(y'(m)) for every method name m. So applying the lemmas C.3 and C.4 gives
us CI(S[S](7"). (Note that by lemma 3.21 4’ is agreement- preserving.) a

Corollary C.8 | .
For an arbitrary closed program p, o,0”,4, f such that o' = [p](7)(é)(o) there exists
an osi g such that ¢° | o(©) = £° | o(© and g(o’) = [p)(v)(F(6))(f()).

