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Abstract

Branching bisimulation is a behavioral equivalence on labeled transition systems which has been
proposed by Van Glabbeek and Weijland as an alternative to Milner’s observational equivalence.
This paper presents an algorithm which, given two branching bisimulation inequivalent finite
state processes, produces a distinguishing formula in Hennessy-Milner logic extended with an
‘until’ operator. The algorithm, which is a modification of an algorithm due to Cleaveland,
works in conjunction with a partition-refinement algorithm for deciding branching bisimulation
equivalence. Our algorithm provides a useful extension to the algorithm for deciding equivalence
because it tells a user why certain finite state systems are inequivalent.
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1 Introduction

It is a well-known fact that descriptions of concurrent systems often are incorrect, in the
sense that the behavior of the implemented system does not correspond to the behavior the
designer had in mind. To overcome this problem a lot of research has been directed towards
the development of formal verification methods for concurrent systems.

At the moment behavioral equivalences are one of the most popular criteria for guaranteeing
correctness of concurrent systems. In this approach, concurrent systems are modeled as
transition graphs, and verification amounts to establishing that the graph representing the
implementation of the system is equivalent to (behaves the same as) the graph representing
the specification of the system. The main advantage of this approach is that behavioral
equivalences can be decided fully automatically on finite transition graphs and that several
equivalences can be decided efficiently.

A number of equivalences have been proposed in the literature [2, 5, 9, 14, 15, 19, 23, 25],
and several automated tools include facilities for computing them [4, 8, 13, 17, 18, 24].

One particularly interesting equivalence is bisimulation equivalence [25], which is a platform
for a number of other equivalences that can be described in terms of it [7]. Bisimulation
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equivalence has a logical characterization: two systems are equivalent exactly when they
satisfy the same formulas in a simple modal logic due to Hennessy and Milner [20]. This fact
suggests a useful diagnostic methodology for tools that compute bisimulation equivalence:
when two systems are found not to be equivalent, one may explain why by giving a formula
satisfied by one and not by the other.

Hillerstrom was the first who came with the idea to compute Hennessy-Milner formulas
effectively. In his thesis [21] he describes respectively a “maximal” and a “minimal” algorithm
for generating distinguishing formulas. The maximal algorithm runs in polynomial time and
usually generates very large formulas. The minimal algorithm is back-tracking based, but
returns formulas that are considerably smaller. The latter has been implemented in the TAV-
system (Tool for Automatic Verification) [17], which is up to now the only bisimulation tool
known that explains why two systems are not equivalent.

Recently, Cleaveland developed a more advanced technique to generate distinguishing for-
mulas. His method works in conjunction with a partition-refinement algorithm for computing
bisimulation equivalence and is described in [6]. The formulas generated by this algorithm
are often minimal in a precisely defined sense.

As a number of other behavioral equivalences may be characterized in terms of bisimulation
equivalence, the technique of Cleaveland may be used to generate appropriate distinguishing
information for these relations also. We mention here the well-known observational equiva-
lence [25], this equivalence may be defined in terms of bisimulation equivalence on a suitably
transformed transition system [3]. Observational equivalence has also a logical character-
ization, namely the Weak Hennessy-Milner Logic [20]. The method of Cleaveland can be
used to generate distinguishing formulas for observational equivalence, just by applying the
algorithm to the transformed transition system.

As an alternative for observational equivalence, branching bisimulation equivalence has been
proposed in [15]. This equivalence resembles, but is finer than observational equivalence. In
fact, the definition of branching bisimulation is just a natural restriction of the definition of
observational equivalence, in the sense that all intermediate states have to be related as well
[15]. Besides the naturalness of definition, there are a number of recent results that indicate
that branching bisimulation has very nice properties. The following list of properties is taken
from [18].

* The axiomatization of branching bisimulation is simpler than the axiomatization of ob-
servational equivalence [15].

Unlike observational equivalence, the axiomatization of branching bisimulation can be
transformed easily to a complete term rewriting system [1].

Branching bisimulation is characterized by Hennessy-Milner Logic extended with a kind
of until operator [10].

Branching bisimulation may be characterized by back and forth bisimulations [10]. This
characterization leads to a second modal characterization of branching bisimulation
which is a variant of Hennessy-Milner logic extended with backward modalities [10].

Branching bisimulation is the natural analogue of stuttering equivalence in case the
transitions rather than the states are labeled. In this setting CTL and CTL* without
the nexttime operator can be viewed as logics for branching bisimulation [10]. In [11]



action based versions of CTL and CTL* without nexttime operator are proposed which
also correspond with branching bisimulation.

* In contrast with observational equivalence, branching bisimulation is preserved under
refinement of actions [16].

* Branching bisimulation is computed by an algorithm that has been implemented [18] and
turns out to be more efficiently computable than observational equivalence in practice

(12, 18].

* For a large class of processes, branching bisimulation equivalence and observational
equivalence are the same [15]. We do not know any real life protocol that can be verified
by observational equivalence and not by branching bisimulation equivalence.

In this paper, we take Hennessy-Milner Logic extended with an Until-operator [10] as a
characterization of branching bisimulation to compute logical formulas to differentiate be-
tween branching bisimulation-inequivalent systems. For this purpose, it is not possible to
apply the algorithm of Cleaveland directly, because the efficient algorithm [18] to decide
branching bisimulation is not based on bisimulation equivalence on a transformed transition
system.

The intention of this paper is to develop a technique for determining a Hennessy-Milner
formula with Until-operator that distinguishes two branching bisimulation inequivalent finite-
state systems, using the idea of the advanced method of Cleaveland. To this end, we show how
to use information generated by an adapted version of the partition-refinement algorithm of
Groote and Vaandrager [18] to compute such a formula efficiently. On the basis of this result,
tools using branching bisimulation may be modified to give users diagnostic information in
the form of a distinguishing formula when a system is found not to be equivalent to its
specification.

The remainder of the paper is organized as follows. The next section defines branching
bisimulation equivalence and examines the connection between it and the Hennessy-Milner
Logic with Until. Section 3.1 describes the algorithm of Groote and Vaandrager to compute
branching bisimulation equivalence on the states of a transition graph. Then section 3.2
describes how to generate a block tree which retains information computed by the equivalence
algorithm. Finally, in section 3.3 it is shown how to compute distinguishing formulas on the
basis of this block tree; a small example is also presented to illustrate the working of the new
algorithm.

A nice property of our algorithm is its unexpectedly simple presentation. In contrast with
this, its correctness is not quite straightforward and even tricky at some places. A detailed
proof is included as an appendix.

2 Transition Graphs, Branching Bisimulation and HMLU

Concurrent systems are often modeled by transition graphs. Vertices in these graphs corre-
spond to the states a system may enter as it executes, with one vertex being distinguished
as the start state. The edges, which are directed, are labeled with actions and represent the
state transitions a system may undergo. The formal definition is the following.



Definition 2.1 A labeled transition graph is a quadmple <S, s, Act, —>, where:
e S is a set of states;
e 5 € S is the start state;
e Act is a set of actions; the silent action T is not in Act; and

e —»C S x Act; x S is the transition relation where Act, = ActU {r}. An element
(p, e, q) €— is called a transition, and is usually written as p 4.

The silent action 7 is unobservable for the environment and is used to symbolize the internal
behavior of the system.

When a graph does not have a start state indicated, we shall refer to the corresponding
triple as a transition system. A state in a transition system gives rise to a transition graph
in the obvious way: let the given state be the start state, with the three components of the
transition graph coming from the transition system.

Transition graphs are often too concrete for representing concurrent systems. Mostly one is
only interested in the observational behavior of a complicated system and one is not interested
in the internal (low-level) computations. Branching bisimulation, which is an interesting al-
ternative for the well-known observational equivalence [25], remedies this shortcoming. In [15]
several definitions of branching bisimulation are given, which all lead to the same equivalence.
The following definition is in our setting the most suitable one.

Definition 2.2 (Branching bisimulation)

e Let <S5, Act, —> be a transition system. A relation R C S x S is called a branching
bisimulation if it is symmetric and satisfies the following transfer property:

IfrRs and r == 7/, then either a=r and v'Rs or; 3sg,..,5n,8 € S :s = s,
Vo<i<n : Si—1 s ;] and s, — s’ such that Yo<i<n TRs; and 7'Rs’.

e Two states 7 and s are branching bisimilar, abbreviated r =p s or s =p r, if there
erists a branching bisimulation relating r and s.

The arbitrary union of branching bisimulation relations is again a branching bisimulation;
&~ p is the maximal branching bisimulation and is an equivalence relation.

Let Ty =< 84, 51, Act, —1> and Ty =< 59, s9, Act, —2> be two transition graphs satisfying
S1 NSy =0. Then T and Ty are branching bisimilar exactly when the two start states, s;
and sp are branching bisimilar in the transition graph < S1US2, Act,—1 U —9>. In [10] it is
proved that branching bisimulation has a logical characterization in terms of the Hennessy-
Milner Logic with Until (HMLU): two states are equivalent exactly when they satisfy the
same set of HMLU-formulas. This logic is a simple modal logic; the syntax of formulas is
defined by the following grammar, where o € Act..

:u=1tt| D |PAD| P()®

The formal semantics of the logic is given with respect to a transition system T = (S, Act, —)



[ty = S
-2l = S-I[2lr
[21 A ®2lr = [21]r N[22]r
[1(c)®2]; = {s€S|(a=randse [®]y)or

(350, ...,8, € |I‘§1]]T, s’ € [[(I’gﬂT 189 =25,
Vo<i<n : si-1 — si] and sp — §')}

Figure 1: The semantics of formulas in Hennessy-Milner Logic with Until.

and appears in Figure 1.

In Figure 1 each formula is mapped to the set of states for which the formula is “¢rue”. In
the remainder of the paper we shall omit explicit reference to the transition system used to
interpret formulas when it is clear from the context.

Intuitively, the formula #t holds in any state, and —® holds in a state if ® does not. The
formula ®; A @2 holds in a state if both ®; and ®; do. The until-proposition ®;(a)®2 holds
in a state, if this state can reach via @, a state in which ®; holds while moving through
intermediate states in which ®; holds. .

Let H(s) be the set of HMLU-formulas that are valid in state s:

H(s) = {®|s € [®]}-
The next theorem is a specialization of a theorem proved in [10].

Theorem 2.3 Let < S, Act,—> be a finite-state transition system, with si,s2 € S. Then
H(s1) = H(s2) if and only if s; =p s3.

It follows that if two states in a (finite-state) transition system are inequivalent, then there
must be a HMLU-formula satisfied by one and not the other. This is the basis of our definition
for distinguishing formula, although we shall in fact use the following, slightly more general
formulation taken from [6].

Definition 2.4 Let < S, Act,—> be a transition system, and let S; C S and Sp C S. Then
HMLU-formula ® distinguishes S from Sa if the following hold.

1. S C [8].
2. S9N H‘I’H =0.

So ® distinguishes S; from Sy if every state in Si, and no state in So, satisfies . Theorem 2.3
thus guarantees the existence of a formula that distinguishes {s1} from {s2} if 51 =p so.

Finally, we take the following criterion from [6] to indicate whether a distinguishing formula
contains extraneous information.



Definition 2.5 Let ® be a« HMLU-formula distinguishing S1 from Sa. Then ® is minimal if
no ® obtained by replacing a mon-trivial subformula of ® with the formula tt distinguishes
S1 from Ss.

Intuitively, ® is a minimal formula for S; with respect to Ss if each of its subformulas plays
a role in distinguishing the two.

3 Computing Distinguishing Formulas

In this section, we describe a partition refinement algorithm for computing branching bisim-
ulation equivalence and show how to alter it to generate a block tree. Then given such a
block tree, we describe how to generate distinguishing formulas. Finally, a small example is
given that illustrates the use of the algorithm.

3.1 Computing Branching Bisimulation

Nowadays, “partition-refinement” is the most efficient method to compute bisimulation equiv-
alences [22, 26]. A partition-refinement algorithm exploits the fact that an equivalence rela-
tion on the set of states may be represented as a partition, or a set of pairwise-disjoint subsets
(called blocks) of the state set whose union is the whole state set. In this representation blocks
correspond to the equivalence classes, so two states are equivalent exactly when they belong
to the same block. Beginning with the partition containing one block (representing the trivial
equivalence relation consisting of one equivalence class), the algorithm repeatedly refines a
partition by splitting blocks until the associated equivalence relation becomes a bisimulation.

In [18] the refinement strategy to obtain branching bisimulation is described. To refine the
current partition, the algorithm of Groote and Vaandrager looks at each block in turn. If
a state in block B can reach via «, possibly after some initial stuttering, a state in block
B’ ! and another state in B does not, then the algorithm splits B into two blocks. The first
block contains all the states which can reach via «, possibly after some initial stuttering, a
state in block B’. The second block contains all the other states. When no more splitting
is possible, the resulting equivalence corresponds exactly to branching bisimulation on the
given transition system.

Below we present the definitions and the algorithm in more formal notation; the description
is a slight modification of the one in [18].

Definition 3.1
Let (S, Act,—) be a transition system.

1. A collection {Bj|j € J} of nonempty subsets of S is called a partition if U;c; Bj = S
and fori # j : BN Bj = 0. The elements of a partition are called blocks.

2. If P and P’ are partitions of S then P’ refines P, if any block of P’ is included in a
block of P.

3. The equivalence ~p on S induced by a partition P is defined by: r ~p s & IB € P :
r€ BAs€ B.

!When B = B', a is assumed not to be equal to 7.



4. For B, B' we define the set poso(B, B') as the set of states in B from which, after some
internal T-stuttering, a state in B’ can be reached:
posq(B, B') = {s € B|3sg,...,sn € B,3s' € B' : 59 = s, [Vo<i<n : Si-1 — si] and s, — s}

5. We say that B' is a splitter of B with respect to action o iff
B# B or a# 1, and 0 # poss(B, B') # B.

6. If P is a partition of S and B’ is a splitter of B with respect to a, then Refy (B, B') is
the partition P where B is replaced by posq(B, B') and B — poss(B, B').

7. P is stable with respect to block B' if for no block B and for no action o, B’ is a splitter
of B with respect to . P is stable if it is stable with respect to all its blocks.

Algorithm 3.2 The algorithm to compute branching bisimulation maintains a partition P
that is initially Py = {S}. It repeats the following step, until P is stable:

Find blocks B, B’ € P and a label o € Act, such that B’ is a splitter wrt. a;
P :=Ref;(B, B').

The next theorem guarantees that the equivalence induced by the last partition computed

by algorithm 3.2 corresponds exactly to branching bisimulation equivalence and is proved in
(18].

Theorem 3.3 Let (S, Act,—) be a finite transition system. Let Py be the final partition
obtained by the algorithm above. Then ~p, = =p.

In [18] the following complexity bounds are given.

Theorem 3.4 The time complexity of algorithm 3.2 is O(|S|*| —|). And the space complexity
s O(] — ).

These complexity measures are not obvious from the conceptual description of the algorithm
above. Therefore a more implementation oriented view of the algorithm is given in [18].
However in this paper these details are not relevant.

3.2 Generating The Block Tree

In addition to computing the partition as described above, we now retain information about
how and why the blocks are split by construction of a labeled block “tree”. The following
definitions are used to describe the generation procedure of such a block tree.

Definition 3.5 (Parent and its children)

P(B) is the parent of block B in the block tree. L(B) is the left child of block B. R(B) is
the right child of block B. In case block B has a copy of itself as single child then L and R
are applied to the highest 2 copy (B*) of B in the tree. This means that L(B) = L(B*) and
L(B) = L(B*). When P has no children then L(B) and R(B) are undefined.

2See definition 3.6.



Definition 3.6 (Height of a block)
The height of a block B in the block tree is defined as follows:
h(B) :=0 where B is the root block.
h(B) :=1+ h(P(B)).

Definition 3.7 (Parent Partition)

The Parent Partition of block B in the block tree, is the partition where B is created.
PP(B) :={C| h(C) = h(P(B))}. ,

Definition 3.8 (Blocks that can be reached from block B)
Let B be a block in the block tree.

e 74(B):={C € PP(B)|3s € B,s' € C:s —> s'}; r4(B) contains all the blocks in the
parent partition of B that can be reached from a state in B via a.

e r2(B):={C € PP(B)|3s € B,s' € C:s — s’ A\C # P(B)}; r2(B) contains all the
blocks in the parent partition of B that can be reached from a state in B via 7. The

[

superscript “p” indicates that the parent of B is not included.

Algorithm 3.2 is modified as follows. Rather than discarding an old partition after it is
refined, the new procedure constructs a tree of blocks as follows. The children of a block
are the new blocks that result when the algorithm splits the block; accordingly, the root
is labeled with the block S, and after each refinement the leaves of this tree represents the
current partition.

When a block P is split due to splitter block B’ and action «, we position the new block
L=pos,(P, B') as the left child and the new block R=P — pos,(P, B') as the right child, and
we label the arc connecting P to L with o and B’. We label the arc connecting P to R
with 72(R) and 74(R), these block-sets are given in definition 3.8. The blocks in r2(R) bear
witness to the states in R that cannot evolve in internal stuttering. The blocks in 7 (R) bear
witness to the states in R that cannot reach the splitter block by an a-step.

Recall that every state in L can reach via «, possibly after some initial stuttering, a state
in B’ and no state in R does. If a block is not split during a refinement, it is assigned a copy
of itself as its only child Figure 3 contains an example of such a tree.

The construction of the block tree during the partition-refinement algorithm does not
influence the time complexity. The space complexity has changed slightly from O(| — |)
to O(|S|?) due to the following theorem (note that |P¢| < |S]).

Theorem 3.9 The space requirement of the labeled block tree is O(|S| + | Py|?).

Proof. Strictly speaking, only the leaves in the tree need to be labeled with the corre-
sponding sets of states, and therefore the recording of state-sets requires O(|S|) space.

The space requirement of the labels on the arcs is bounded by O(|P;|?), due to the following
observation. The number of left and right arcs is always O(|Pf|), because the nodes that have
a single child may be left childless 3. The labels on a left arc always require a constant amount
of memory. A right arc may contain at worst all the blocks of the current partition for each

3We included spurious children in the definition to simplify our inductive argument of correctness.



label; this means a space requirement of no more than 2 * |Pf| block-pointers. Hence, the
space requirement of the labels on the arcs is bounded by O(|P¢[?).

All together we have a total memory requirement of O(|S| + |Pf|?) for the labeled block
tree. O

3.3 Generating Distinguishing Formulas

Given a block tree computed by the extended partition-refinement algorithm above, and two
disjoint blocks By and By, the following postprocessing step builds a formula A(Bi, Bg) that
distinguishes the states in B; from those in Bs.

First we compute the lowest common ancestor of By and Bj (and call it P). By lemma 3.11
we know that a formula distinguishing the children of P, also distinguishes B; from Bj.

Definition 3.10 (Lowest Common Ancestor)
The function LCA returns the Lowest Common Ancestor of two disjoint blocks By and B in
the block tree.

Lemma 3.11
P = LCA(B1, Bs)

A .. .
& distinguishes L(P) and R(P) } = © distinguishes Biand By.

Proof. Bj; and Bs are subsets of respectively £(P) and R(P).

For the sake of short notation, let L = L(P) be the left child and R = R(P) the right
child of P. The arc connecting blocks P and L is labeled with a and B’; and the arc connect-
ing blocks P and R is labeled with respectively the block-sets r2(R) and 74(R) (call these
block-sets respectively 71 and 7).

From the way that the block tree is generated, we know that every state in L can reach
via «, possibly after some initial stuttering, a state in B’ and that no state in R does.
Accordingly, one recursively builds formulas that distinguish P and blocks in 71, and takes
their conjunction (call it ®;). And, if one also recursively builds formulas that distinguish
B’ from each block in 79 and also takes their conjunction (call it ®3), then every state in L
satisfies ®1 ()P (call this formula ®) and no state in R does. In case a = 7, one has to add
the extra conjunct A(B’, R), to ensure that ® is a distinguishing formula; this is caused by
the first disjunct at the right hand side of the last mapping in figure 1. The details are given
below.

Algorithm 3.12
When B; and By are disjoint, A(B1, By) can be computed recursively as follows.

1. Compute P := LCA(Bi, Ba).

2. Let L := L(P); R :=R(P).
(Notice that By C L and By C R, or By C L and B; C R.)

3. Let o and B’ be the labels on the arc connecting P and L; and
let 11 := 12(R) and g := 74(R) be the labels on the arc connecting P and R;
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o ifr1 =0 then @1 :=tt else @1 := A\¢e,, A(P,C);
o if rg =0 then Oy :=tt else Py := /\Cer;A(B,’C)'

4. Ifa#t then @ :=1(a)ds.
else ®3:= A(B',R);
o = (I>1<7')(‘1>2 A @3).

5. If By C L then return ® else return —®.

We now have the following theorem.
Theorem 3.13 BN By =0 = A(By, By) distinguishes By and Bs.

Proof. By induction on the depth of B; and Bj in the block tree (see appendix).

It should be noted that exponential length formulas may be generated. However, one may
present such a formula (as a set of propositional equations) in space proportional to |’P_f|2,
where Py is the final partition computed by the algorithm (note that |P¢| < |S|). This
results from the fact that there can be at most [Pf| —1 recursive calls generated by the above
procedure and the fact that each distinguishing formula is of the form (=)®; (a)®2, where ®;
and @ contain together at most |Pf| — 1 conjuncts, each of the form A(B;, B;) for some B;
and B;.

Theorem 3.14 An equational representation of A(By, B3) may be calculated in O(|Ps|?)
time, once the tree of blocks has been computed.

Proof. At each recursive call, computing the lowest common ancestor requires at most

O(|Py|) work. O

In general a formula A(si,ss) will not be minimal in the sense of definition 2.5. In [6]
the following straightforward procedure is proposed to minimize A(s1, s2) once it has been
computed. Repeatedly replace subformulas in the formula by ¢t and see if the resulting for-
mula still distinguishes s; from sg. If so, the subformula may either be omitted (if it is one of
several conjuncts in a larger conjunction) or left at ¢¢. The result of this would be a minimal
formula. The computational tractability of this procedure remains to be examined.

We close this subsection with a general remark about our method. Our method generates a
formula that distinguishes blocks that may contain more than one state, but mostly one is only
interested in a formula that distinguishes two particular states. In this case, algorithm 3.12
can also be used to construct a formula distinguishing two inequivalent states s; and so; first

locate the disjoint blocks By and Bj such that s; € B; (¢ = 1,2), then build A(Bj, Bs).

3.4 An Example

To illustrate our algorithm we consider two transition graphs that are not branching bisim-
ulation equivalent. Figure 2 shows the transition system that includes the two transition
graphs. It is interesting to notice that these two graphs are an instance of the second 7-law
of observational equivalence (see e.g. [25]); so they are not differentiated by HML without

10
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o
————

Figure 2: Two branching bisimulation inequivalent transition graphs.

B = {31) 52, 83, 54, S5, 86, 57, 58, 39}

N

Bl = {51,52,35, Sﬁ} B2 = {33754, s7, 58)39}
b,]% w
B3 = {s1,s5} By = {s2,56} {s3,54,57,58,59}
a, By {B4},0
|
B5 = {55} Bﬁ = {81} {52,86} {33154:37:58739}

Figure 3: The generated tree of blocks.
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Until-operator. State s; is the start state of one graph, while state s5 is the start state of the
other. Figure 3 contains a tree of blocks generated by the altered partition-refinement algo-
rithm. Notice that s; #p ss, as they are in different blocks. In order to build a formula that
s, satisfies and s5 does not, it suffices to generate A(Bg, Bs), the formula that distinguishes
block Bg and Bs. To do so, the algorithm first locates the lowest common ancestor of the
two blocks (Bs, in this case). The left child is Bs and the right child is Bg. The labels on the
left arc indicate that the action causing the split is a, and the splitter block is By. The labels
on the right arc indicate that r2(R)={Bs} and r,(R)=0. The formula that will be returned,
then, will be
~(A(Bs, Bs)a) t);

this formula holds of s; and not of s5. By repeating this process, it turns out that
A(B3,Bs) = it(b)tt
So the formula distinguishing s; from ss5 is

~((H{b) tt) {a) th).

This formula explains why s; and sy are inequivalent because s5 may engage in an a-transition
while in all the intermediate states (only s5 here) a b-transition is available. This is not the
case for state s;. Note that this formula is minimal.

4 Conclusions and Future Work

This paper has shown how it is possible to alter the partition-refinement of Groote and
Vaandrager for computing branching bisimulation equivalence to compute a formula in the
Hennessy-Milner Logic with Until that distinguishes two inequivalent states. The generation
of the formula relies on a postprocessing step that is invoked on a tree-based representation
of the information computed by the equivalence algorithm. The postprocessing step has no
effect on the worst-case complexity of the equivalence-checking algorithm, only the space
complexity has changed slightly from O(]—|) to O(|S|?).

The most important direction for future work is tackling the problem of generating minimal
formulas and moreover its complexity. Clearly, the complexity of the minimization procedure
mentioned in passing at the end of section 3.3 needs to be analyzed fully; if this procedure
is efficient enough, then it may be incorporated into the distinguishing formula generation
procedure.

Another area of investigation would be an implementation of our technique, as an ex-
tension of the equivalence-checking algorithm of Groote and Vaandrager which is already
implemented successfully.
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Appendix: Proof

The main theorem 3.13 will be proved by induction on the minimal height of B; and Bs.

Definition 1
The minimal height of two blocks in the block tree is defined as:
hm(B1, B2) := min(h(By1), h(Bz2)).

The following lemmas are simple, but crucial for our proof. The first lemma is used to show
that recursive calls are at least one level lower in the tree.
Lemma 1
e h(LCA(B1, Bz)) < h(B1)
e h(LCA(Bi, By)) < h(B3)
Proof. By construction of the block tree.

Lemma 2
hm(B1,B2) =0 = Bj or By is the root block.

Proof. By construction of the block tree.

Lemma 3
& distinguishes Biand Bs A
s € [a] } s ¢ Be.

Proof. Directly by definition 2.4.

Lemma 4
BiNBy=0 A
P = LCA(Bi, By) } = L(P) and R(P) are defined.

Proof. By construction of the block tree.

Lemma 5
Let P be a block in the block tree and L = L(P) and R = R(P).
Vs € R: s s impliess’ ¢ L.

Proof. By definition of splitting.

Lemma 6
Let P be a block in the block tree.
If P and o are the labels on the arc from P to L(P) then o # 7.
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Proof. By definition 3.1 (v).

Lemma 7
Let D1 and Dy be blocks in the block tree.
(1) Rh(D1)=h(D2)+1 AN D1 #P(D;) = DiNDy= 0.
(12) Rh(D:1) = h(D2) A Dy # Do = DiNDy=0.

Proof. By construction of the block tree.

Lemma 8
Let P be a block in the block tree, and let R = R(P).

Ur-(R) € Ur2(R) U {R}

Proof. By lemma 5.
Main Theorem BN By =0 = A(B4, By) distinguishes B; and Bs.

Proof. Given two blocks B; and Bs in a block tree generated by the extended parti-
tion refinement algorithm, then in case B; and Bj are disjoint, algorithm 3.12 returns a
formula that distinguishes B; and Bs. This will be proved by induction on the minimal
height of two blocks in the block tree.

Basis: The base case is that h,,(B1,B2) = 0. Then by lemma 2, block B; or block Bs
must be the root block of the block tree. This means that B; and Bz can never be disjoint
and therefore the implication of the theorem is always true.

Induction Hypothesis: We assume that all formulas A(Bj, B2) with hm(Bi1,B2) < h and
B; N By = 0, distinguish B; and Bs.

Induction: We show that formulas A(Bj, By) with k., (B1, B2) < h and B; N By = 0, distin-
guish B; and Bs. In step 1 of the algorithm 3.12, block P is the lowest common ancestor of
blocks B; and Bsy. According to step 2 and lemma 4, block P is connected to blocks L and
R by respectively a left and a right arc. According to step 3, action o and splitter B’ are
the labels on the left arc; 71 = 72(R) and r2 = 7o(R) are the labels of the right arc. If r; is
empty then formula ®; is “true”, else formula ®; distinguishes block P and all blocks in 71 by
the induction hypothesis. The application of the induction hypothesis is correct because its
conditions hold. The first condition holds by lemma 1 and the fact that all blocks in r; have
the same height as lowest common ancestor P. The second condition holds by lemma 7 (ii);
note that the second conjunct of this lemma holds because P cannot be in 7; by definition
of r1.

In the same way, if 79 is empty then formula ®; is “true”, else formula ®; distinguishes
block B’ and all blocks in 73 by the induction hypothesis. The application of the induction
hypothesis is correct because its conditions hold. The first condition holds by lemma 1 and
the fact that block B’ has the same height as lowest common ancestor P. The second condi-
tion holds by lemma 7 (ii); note that B’ is disjoint with all the blocks in o by definition of
splitting. Step 4 of the algorithm distinguishes two cases.
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I) In case o # T, it is obvious that ® holds in all the states of L. However, ® does not
hold in any state of R. We prove this by reductio ad absurdum. Suppose 3s € R : s € [®].
Then by definition of [®] this state s has to satisfy the following property:

(i) Iso,...,5n € [®1],3s" € [®2] : s0 = s, [Vo<i<n © Si-1 s sl and s, — §'.
To derive the contradiction, we first prove that s, must always be in R by induction on the
index of state s,.

Basis: s =s € R.

Induction Hypothesis: s;_; € R.

Induction: By the ih. s;_; is in R. The state s; is a 7-successor of s;_1, and therefore s; must
be in a block of r-(R). By lemma 8, s; must also be in | Jr2(R) U {R}. Now we show that s; is
not in a block of 72(R).

By property (i), s; must also be in [®;]. If ® = tt then |Jr#(R) = 0, according to step 3.
Otherwise, by the main induction hypothesis formula @, distinguishes P and blocks in r#(R).
Then by lemma 3, s; € |Jr2(R).

Now that state s, must always be in R, we know by the last conjunct of property (i) that
s’ must be in Jra(R). Moreover, s’ must be in [®3]. If ® = t¢ then Ura(R) = 0, ac-
cording to step 3. This contradicts the fact that s’ must be in (Jra(R). Otherwise by the
induction hypothesis formula ®; distinguishes B’ and blocks in 74(R), but then by lemma 3:
s' € Ura(R). This also contradicts the fact that s’ must be in ro(R). Hence, if o # 7 then
® is a distinguishing formula for L and R.

II) Otherwise, in case @ = 7, the extra formula ®3 distinguishes block B’ and block R
by the induction hypothesis. The application of the induction hypothesis is correct because
its conditions hold. The first condition holds by lemma 1 and the fact that block B’ has
the same height as common ancestor P. The second condition holds by lemma 7 (i); for
this purpose we prove that B’ # P by reductio ad absurdum. Suppose that B’ = P, then
lemma 6 contradicts the fact that a is equal to 7.

Now it is obvious that ® holds in all the states of L. However, & does not hold in any
state of R. We will prove this by reductio ad absurdum. Suppose 3s € R : s € [®]. Then by
definition of [®]), state s must satisfy one of the following properties:

(ii) s € [®2 A B3] or;
(iii) dsg, ..., 80 € [[@1]],35[ € [[‘1)2 A @3]] 180 =5, [V0<i§n 1 8i—1 SN s,'] and sy, =5 8.

Now we derive a contradiction in case state s satisfies property (ii) or property (iii). When
state s satisfies property (ii) then s must be in [®3] because [®2 A @3] is defined as [®2] N
[®3]. We already know that formula ®3 distinguishes B’ and R by the induction hypothesis.
But then by lemma 3, s ¢ R. This contradicts the fact that s is in R.

When state s satisfies property (iii), state s’ must also be in [®2 A @3] = [®2] N [@3] and
thus s’ must be in [®;]. This means that s has to satisfy property (i) and this will lead to a
contradiction as before. Hence, if & = 7 then ® is a distinguishing formula for L and R.

Finally, in step 5 we can conclude by lemma 3.11 that when B; C L then formula ¢
distinguishes B; and Bj. Otherwise, formula —® distinguishes B; and B by negation. U
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