1991

V.C.J. Disselkoen

Real-time quadratic shading

Computer Science/Department of Interactive Systems Report CS-R9123 April

CWI nitionaal instituut vooronderzoek op et gebied van wiskunde en informatica

CWi is the research institute of the Stichting Mathematisch Centrum, which
was founded on February 11, 1946, as a non-profit institution aiming at the
promotion of mathematics, computer science, and their applications. It is
sponsored by the Dutch Government through the Netherlands organization
for scientific research (NWO).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Real-Time Quadratic Shading

Vineent C.J. Disselkoen

CWI
P.0. Box 4079, 1009 AB Amsterdam,
The Netherlands
e-mail: vincent@cwi.nl

This document describes a technique generating quadratic shading func-
tions for scanlines when using a shading model closely related to Phong
shading. The specular term is expressed using quadratic curves, obviat-
ing the need for pixel-time exponentiation. The method combines con-
cepts from vector coordinate interpolation and vector rotation techniques.

CR Categories and Subject Descriptors:
1.3.1 Hardware Architecture: Raster Display Devices
1.3.3 Picture/iImage Generation: Display Algorithms
1.3.7 Three-Dimensional Graphics and Realism: Shading
Key Words and Phrases:
Phong Shading, Quadratic Shading, Image Synthesis

1 Introduction

Many computer image generation systems represent curved surfaces using polygon meshes. In
order to display these objects realistically, a shading function must be used that assigns intensity
values to each of the visible pixels in such a way that the transitions at polygon boundaries are at
least smooth. That is, the intensity should be continuous over the surface, and the direction of the
tangent to the intensity curve on both sides of a boundary should be equal.

Phong shading [2] is a technique satisfying the above requirements. However, Phong shading of
objects containing large numbers of polygons using multiple lightsources is usually too complex
and costly to allow real-time generation of images. Real-time evaluation of the Phong shading
function for one light source would require pixel-rate evaluation of a reciprocal square root, expo-
nentiation and several elementary operations (sections 3 and 4). In contrast, the simple and cheap
Gouraud shading method [1] which computes intensity values at polygon vertices and linearly in-
terpolates these over the surface requires a huge amount of refinement, i.e. subdivision into smaller
and smaller polygons, to reduce Mach banding and disappearance of highlights.

There have been several successful simplifications of the original Phong model that allow more

efficient computation without sacrificing image quality. Duff [3] rewrote Phong’s expression to al- -
low more efficient evaluation and forward differencing (section 2). The method of Bishop and We-

imer [4] uses a very cheap shading function that produces good results by approximating the Phong

function using a two-dimensional quadratic Taylor series, but still requires pixel-rate exponentia-

tion, which is impractical for hardware implementation.

We propose a shading function [5] that allows use of quadratic curves to approximate the diffuse
as well as the specular component, implying that exponentiation need only be performed once per
scanline instead of once per pixel. All possible preprocessing of constants per scanline is per-

Report CS-R9123
CwWiI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

page 2 2. Forward differencing

formed at scanline level, and all possible preprocessing of constants per frame is performed at
frame level.

2 Forward differencing

Forward differencing is an efficient method for evaluation of polynomials. A polynomial, e.g. p(x),
is specified using its initial value at the location x=t and first forward difference, dp(t)=p(t+1)-p(t).
The evaluator then uses the initial value at ¢, and adds the first forward difference to the original
value to arrive at the value p(t+1)=p(t)+dp(t). A similar process is performed to compute the first
forward difference. The n-th forward difference is constant. For example, evaluation of the func-
tion p(t)=t“+t+1 over the range t=1 to t=5 is performed as follows: the first forward difference is
dp(t)=((t+1)2+(t+1)+1)-(t°+t+1) = 2t+2, and the second forward difference is ddp=(2(t+1)+1)
- (2t+1)=2. The initial values for the second order forward difference are then p(1)=3, dp(1)=4
and ddp=2.

ddp(t)=2 2

S S

dp(t)=4 = N 3 75 @ 12

p(t)=3 A A 4A) 31
UV 7 W 13 VWV 2T\

t=1 2 3 4 5

The method computes the values of the polynomial for each location in the range using a mere n
additions per location.This implies that decomposing a shading function in a vertical component
and a horizontal component which is constant per scanline, both of which can be expressed as poly-
nomials only, would produce a very efficient shading technique.

3 Phong shading

Phong shading [2] is a method for smoothly shading curved surfaces. The curved surfaces are de-
fined using a mesh of polygons of which normals, light vectors, eye direction vectors and reflection
direction vectors are given at each vertex. The function that assigns intensity values to each pixel
was established empirically and gives a realistic approximation of the actual lighting. The shading
function used consists of an ambient term, and for each light source, a diffuse and specular term.
Phong’s method derives the intensity of a pixel due to a certain light source by adding the diffuse
term cosd to the specular term cos’c, where s is a constant defining the shininess of the surface.
The angles 6 and o are the angle between the normal vector N of the surface and the direction of
the light source L, and the angle between the viewing direction E and the direction of reflection R.
Therefore, for each pixel, the expression that must be evaluated is

Intensity = 12 (ambient + 2 (cosd + cos’o))
polygons lights

The methods used for interpolation of the normal, light, eye and reflection vector can be divided

into

* vector coordinate interpolation techniques, such as the original Phong [2] shading method and
its optimizations by Duff [3] and Bishop and Weimer [4], where an interpolation is performed
by linearly interpolating two vectors and normalization, and

* vector rotation techniques, where the first of these two vectors is rotated towards the second
one around their normal vector, such as the equi-angular interpolation method proposed by Ku-

4. Vector Coordinate Interpolation techniques page 3

ijk and Blake [5].

The four interpolated vectors are required to have unit length. The vector coordinate interpolation
techniques have the advantage of being suited to producing a vector incrementally, while rotational
techniques typically require matrix multiplications or angular updates. The vectors thus derived,
however, do not require normalization while the vector coordinate interpolation techniques require
a reciprocal square root and scalar product to arrive at a unit vector.

4 Vector Coordinate Interpolation techniques

Assuming that a polygon is defined by its vertices and the normal, light, eye and reflection direc-
tion vectors, N and R are expressed using a linear function in x and y. For the moment, L and E are
assumed to be constant during interpolation, but these can be derived similarly when this is not the
case.

For each light source, the original Phong shading method performs vector coordinate interpolation,
normalization and scalar product with a light vector to obtain an intensity component, followed by
an exponentiation of the specular component.

Ax+By+C . (Sx+Ty+U L2

I = ambient + ——————— o =
‘Ax+By+C| \|Sx+Ty+U|)

Given the normal and other vectors at the vertices of a triangle, we have to determine two triplets
A,B,C and S,T,U to interpolate the four vectors. Suppose the normals are defined by (x;,y;,vec)),
(X»y»Vec,), (x;y3vecs), then the triplets can be constructed using the following method:

-1 -1 -1

ay x; v 1 |veey a, x;y, 1] |vecy, az x;y1 1| |vecys
by| = |x,y, 1| |vecy byl = |x, ¥, 1| |vecy, byl = |xyy, 1| |vecys
c x3y3 1| |vecy c, xyy5 1| |vecs, 3 x3y3 1| |vecs;

It is easily seen that the complexity of evaluating the intensity expression used in this method for
each pixel is four scalar products, two reciprocal square roots, two vector additions, an exponenti-
ation and two additions. If light and eye vector are not at infinity, these have to be interpolated as
well.

4.1 The H vector

A generally accepted simplification to the above method is to assume that the specular component
can be rewritten as:

~
+

L

o5k
[]
=
R
=
Tl
I
5512

IS
-+
5]

This approach was suggested by Blinn [7]. H represents the surface normal that would produce the
mirror reflection from the light to the eye. One can not simply assume that both methods are equiv-

page 4 4. Vector Coordinate Interpolation techniques

alent. For example, the shininess index must be larger in order to produce a comparible effect with
this function. For more details, we refer to Hall [6], pages 76 through 78.
4.2 Duff’s optimization

Duff [4] combined interpolation and evaluation of the components allowing optimizations and
used forward differencing by rewriting Phong’s expression as follows:

- - = 3 e - - S = =3 - — P s
. (A*L)x+ (B*L)y+C-*L [(S*E)x+ (T*E)y+U°E
|(A<L)x+ BeL)yy+C+L] \[(S*E)x+ (T*E)y+U+E|
I = ambient + ax+bx+c (ax + bx + ¢ SL

+
de2+exy+jy2+gx+hy+i \A/c'ix2+e'xy+fy2+g'x+liy+i

The a through r are constants during interpolation, and can therefore be precomputed once per
frame

d=A<A d=38+3

L4 LB [+C €=2(A*B) ¢é=-2(3+7)
a=—z b=—— C=—= NN ..
Izl Izl Izl f=B+B foTo¥

i ES ,_ET . EU g=2(AC) £-203-D)
|E| |E] |E| h=2(B*C) h=2(T+D)
i=CeC i=UU

Naturally, use of an H vector simplifies the above because S=A, T=B and U=C.

4.3 Bishop and Weimer’s approximation

To avoid the considerable overhead involved to compute Duff’s expression, Bishop and Weimer
[4] coded the above expressions using two-dimensional Taylor series expanded to the quadratic
terms. Bishop and Weimer propose a quadratic function for both components which can easily be
encoded using forward differencing. Therefore, the update overhead for both the diffuse term and
the specular term drops to a mere two additions per pixel, but the specular term still has to be ex-
ponentiated for each pixel that is evaluated. Both expressions have the following form:

Liwm = T5x2 +Tyxy + T3y2 +Tyx+Ty+T, where

7. _ 3cg’ —4cdi-4agi . _ 3cK-dcfi-4bhi . _3bi-ch
5= 27 3= > LT
8i"i 8i” i Lyl
3cgh — 2cei — 4bgi - 2ahi 2ai-cg _c
Ty= 2 Ty=— 7 %_T
4] ,\/l— 21J; 1

Exponentiation is performed by table lookup. We noticed that the table used should be either large
or nonlinear. If we use a linear table in both intensity value and exponent, we need a 512 by 128

4. Vector Coordinate Interpolation techniques page 5

entry table in order for the linear interpolation to be accurate to 1%. Leaving out all trivial entries
still requires 10k. A table with better resolution when the intensity exceeds 0.95 and the exponent
100, say, dramatically reduces the size, but makes the solution even more complicated to realize in
(fast) hardware.

The results of the method are surprisingly good for surfaces that are not too strongly curved. Sim-
ilarly, an expression is given for the case in which E and L are not at infinity, which uses the Duff
variables a through r. We refer to Bishop and Weimers article [4]. Using this method, the diffuse
term can be computed accurately with extremely low overhead. As desired, it can be efficiently
evaluated by a pipeline performing second order forward differencing. The remaining problem is
therefore to find an expression for the specular term that obviates the exponentiation.

4.4 Curve fitting

Consider the horizontal component of a shading function. Fitting one or more quadratic curves
over the existing shading function implies sampling data and approximating the original shading
function as accurately as possible. This can be done using several criteria, such as minimizing the
maximum difference over a range, minimizing the absolute value of the area or the area itself be-
tween both functions over the range, or the well-known least squares fit method where the square
of the difference between both functions over the range is minimized.

Our problem is, however, more demanding, because we must also minimize the discontinuities and
differences in derivative at the edges. In fact, we should guarantee that these do not cause visible
discontinuities or Mach bands, which practically means that they should equal 0. This demand is
also applicable to the intensity of the highlight at x coordinate xh.

More accurately, we desire a quadratic approximation function g of the shading function s which
allows

q (xl) =s(xl) 9

g (xh) ~s (xh) ‘Zx ;
q(xr) ~s(xr) axd (xr) ~ 3 (xr)

q (xl) =L (x])

Given either Duff’s or Bishop and Weimer’s expression, we can accurately compute the specular
intensity component of several pixels on a scanline. The intensity of the highlight is not easily com-
puted, for we must either locate it using the complex Duff expression or the approximation used
by Bishop and Weimer, which is too inaccurate outside the range [xI...xr].

Suppose that g is a single quadratic function in x. It is easily seen that theoretically, these demands
generally do not have an exact solution. Our experiments show that practically, relaxing any of the
above requirements to allow better approximation of other demands tends to severely deteriorate
picture quality. As is apparent, matching derivatives will in most cases produce discontinuities in
the intensity. Matching intensities will force us to use some technique minimizing the error made
in one or both of the derivatives, and will generally produce visible Mach bands. We had no diffi-
culty whatsoever to find a situation for each technique where either intensities where visibly dis-
continuous, Mach bands appeared or the highlight was displaced or had a visibly different intensi-
ty.

Therefore, we will use a set of several curves to approximate the scanline intensity function. A sim-
ilar function must be devised that computes the vertical component of the intensity function, in-
cluding the continuity constraints, but we can allow a more complex algorithm for this, so that we
do not have to find a method that incrementally updates the information for the horizontal shading
function, but can spend some time actually computing it. We will first describe some properties of
the actual shading function that become apparent when we use a vector rotation technique.

page 6 5. A vector rotation method

5 A vector rotation method

Without loss of generality, assume that the shape of the polygon to be shaded is a trapezium(l),
where a normal, light and H vector are defined at each vertex. We assume the vectors are defined
with respect to a common origin, although they are associated with the vertex of the trapezium.

Instead of using a linear expression to compute the normal vectors and normalizing them, we cal-
culate a normal vector of the plane defined by the left vector pair and rotate a “left” vector over the
total angle between these two vectors in a number of steps depending on the number of scanlines
covered. Similar rotations are used for the right vector and the light and H vector. Given these left
and right normal vector at a certain scanline, we again compute the normal vector of these two, and
rotate a vector over the total angle between these two vectors in a number of steps depending on
the number of pixels covered. It is easily seen that using similar rotations for the light and H vectors
produces the desired vectors for each pixel. For the moment, assume the light and H vectors fixed.

The complexity of the method described above is roughly equal to the complexity of the original
Phong shading method. We will now show how to modify it in order to derive a number of qua-
dratic curves for each scanline using expressions that need only be updated at scanline rate.

For the moment, assume that we are dealing with the diffuse situation. Let i denote an index rang-
ing from 0, the upper scanline of the trapezium to k, the lower scanline of the trapezium. Because
two planes through the origin must intersect, we know there is an intersection int of the planes
through Iy, I and r,ry respectively. The angle between int and J; is called A;, the angle between int
and r; is called p;. J;, the vector marching along the left edge of the polygon can therefore be ex-
pressed using the aforementioned plane and its angle with int, A;. Similarly, p; defines the location
of I;.

int

common
origin
representation

ligh light

Assuming the light vector fixed, we define ¢; and 1; as the angles between the light vector and A,;
and p; respectively.

We can now express the value of the diffuse component, cosd, as a function of i and the angle with
respect to /;. Let p; denote the projection vector of the light vector on the plane through l; and r;.

1) A trapezium is a possibly degenerate quadrilateral of which two boundaries are parallel with
the horizontal axis.

5. A vector rotation method page 7

Observe that p; is perpendicular to both [;Xr; and lightX(1;Xr;), so that p; must be a multiple of the
vector(I;Xr)X(lightX(1;Xr;)).

ligh

We define L,M and R as the planes through int and [, light and r; respectively, S as the plane
through /; and r;, ® as the plane through /; and light, and W as the plane through r; and light. P is
the plane through light and p;.

Let p; be a unit vector. We can now use the fact that S1P. Using p; and the cosine rule for spherical
trigonometry, we can express cosd as cosy;cos(0-o;) +siny;sin(0-o,)cos(n/2) where v; is the angle
between p; and light and which is constant per scanline. The offset a; of /; with respect to p; can
also be easily derived using the cosine rule: coso;=cosg;/cosy;.

int

p;°light
cosy =
P; ° P;
(&0 })
cosa. = b
cosy

light

The cosy; can be expressed in terms of cosg;, cost; and cosy;. Again, the cosine rule allows several
ways to express cos@; and cosy;.

page 8 5. A vector rotation method

COSQ = COSACOSW + SinAsinucose

COSY = COSPCOS + SinPSincosm

COST = COSACOSP + SinAsinp cosw
cosd = cosycos (60 - a)

cos?1y — 2coSQCOSTCOSY + cos?

cosy = sgn (cosQ) / = sinZ (light, li X ri)

1 - cos?t

€,n and o are the angles between L and M, M and R and L and R respectively.These angles are con-
stant during interpolation. If S is the plane through /; and r;, then the angles &; and g; are the angles
between L and S, and S and R, respectively.These angles vary during interpolation. p is the angle
between light and int, and 7; is the angle between /; and r;.

Updating the expressions for cosg;, cost; and cosy; can be performed incrementally. This, howev-
er, poses severe restrictions on the accuracy of the incremental computations. Furthermore, there
are many situations in which special cases must be handled and even more situations in which er-
rors explode, e.g. when T is almost 0.

Now that we have an expression for cosd, we must find a way to represent the cos® function by
quadratic curves. This problem has been solved in Kuijk and Blake [5], who propose the following
function:

(b)?2
1 b(%)%—bsﬂs—a
/\ 0% where
cos’d~| 1-p- -as8sa 4o S*56
(0 -b)> ~ 5(0.095 +5.2)
; m as0=b s+ 65
: 0 -
b -a J a 0 0l =b 55 +31.7
\ =

With respect to the cosine, this function has several merits that come for free, namely that its value
outside the range -b..b is 0 and that the approximation for cos” does not have the discontinuities in
slope at -7t/2 and 7t/2, thus avoiding Mach banding. So the above expressions can be used to update
a; and T; for each scanline, and these fully determine the shape of the approximating function, con-
sisting of at most three quadratic curves. The shape of this shading function differs slightly from
the original cosine power. The largest difference is due to the smoothing of the cosine function it-
self; it appears when using s=1, namely 0.05. These differences are, however, no threat to the im-
age quality, but merely the result of a slightly alternative model with respect to the original Phong
function, which is a model based on empirical observations itself. The average error over the range
of 6€[-n/2..w/2] and s€[1.128] is 0.0006.

The rotations are in practice performed by updating cosines of angles and computing their arc-
cosine when needed. These trigonometrical operations must be evaluated accurately in order to as-
sure correct results. Because of the substantial overhead involved, we integrated this method with
the ones using vector coordinate interpolation.

6. Hybrids ‘ page 9

6 Hybrids

The main idea of integrating the Duff and Bishop & Weimer methods with the above method is to
derive the parameters needed for the approximation function in a cheap way. These hybrids all suf-
fer from the drawback that the scanline parameters are derived using vector coordinate interpola-
tion while the scanline shading function uses vector rotation. This might result in highlight contor-
tion.

We use a hybrid where the cosg;, cost; and cosy;. are assumed to be computed using a scalar prod-
uct and a division by the vector lengths.

What we are interested in is the angle between the (constant) light vector and normal vector, d.

Let 6 denote the angle between /; and the interpolated vector, which ranges from 0 to t. Using the
cosine rule, we find four relationships between the angles:

COS@ = COSTCOSY + sintTsinycosg
COSY = COSTCOSQ + SinTsingpcos§

cosd = cos (T - 0) cosy + sin (T - 0) sinycosT
cosd = cosOcos@ + sinOsingcosg

For the definitions of these angles, we refer to section 5, "A vector rotation method", on page 6,
and to the appendix.

Adding the last two expressions for cosd and dividing by two, and substituting the expressions for
cosE; and cosC; yields the following expression for cosd:

COSY — COSQCOST

cosd = -
sint

sin@ + cosgcosO

COSY — COSQCOST

- sin@ + cos0)
cos@sint

cosd = cos (

COSY — COSQCOST
cos@sint

cosd = cos (tanasin® + cos0) where a = atan

cos P
cosd = haiad (cosBcosa + sinOsina)
cosa

Using the fact that

page 10 6. Hybrids

p 2 2

———— = SgNpNp +gq

cosatan 2
this can be rewritten as

cos?yp — 2cosQcosTcosy + cos? cos®t
2 P) P P
COSO = SgNCosQ |COs @ + — cos (0 -a)
sin“t

or, as was mentioned before, as

cos?y — 2cos@cosTcosy + cosg

sint

cosd = I'cos (0 -a);I' = sgncoscp\/

Substituting

We derive

cosd =I'cos (0 - a - w)

(rper) o) =21, 2v) (Lo 7)) (rpov) + (r;*)2 (L2 1)
(o1 (ry=r) = (o)’
r.°y

l

- (rl . rl)

o = atan

JUo1) o) - (ery?
(ll.'v) <0—=n

m=(li°v)>0—>0

6. Hybrids page 11

This is easily rewritten to allow second order forward differencing by observing that the various
scalar products I, Ir, rr, Iv and rv are quadratic or linear in y, where y is the scanline offset with
respect to the middle of the object.

. \/(rr) ()2 =2 (Iv) (Ir) (rv) + ()2 (1)
(1) (rr) - (Ir)*
D) (rv) = (rr) (Iv)
n
() (rr) - (i)
(Iv) <0 -
®= (v)>0-0

cosd = I'cos (60 - a -) o = ata

For their definitions, we refer to section 10 on page 13. These are derived using the fact that for
any scanline, /; and r; are defined using /;=Ax;+By+C and r;=Ax,+By+C.

X =x,0+dx1y X, =%, X, =%,
dx; = dx, =
X, =x, +dxy Ye=Yo Ye=Yo

It is possible to use fourth or third order differencing for the entire expressions in the denominators
and numerators of the expressions for I" and a, but this is more complex, less accurate and exactly
as costly in terms of elementary operations. If a multiplication is by far more expensive than an
addition, this is an alternative.

Now, this expression must be rewritten in terms of the x-coordinate instead of 6. This is done using

acos (S) acos (____lr_)
o _ A8 T \J@ o L) (riory) J (rr)
= A’ T widh” width *= widih .

The implementation of this method is straightforward. Below, a stripped version in pseudo code
will be presented where we assume the availability of a processor capable of performing an arct-
angent, an arccosine, two reciprocal square roots, two divisions and several additions and multipli-
cations in scanline time. The more complex functions could be computed by table lookup, if de-
sired. '

The computation of the specular term is performed by raising I to the power s and supplying the
parameters corresponding to -b,-a,a and b to the shading function. When s is an integer, this can.
easily be performed using either a number of multiplications logarithmic in the maximum value of
s or table lookup.

Observe that we do not need this expensive method for the diffuse term, but can simply use Bish-
op and Weimers expression. Therefore, the total overhead for a scanline is practically equal to the
complexity of the aforementioned floating point operations or table lookups.

page 12 | 7. Complexity

7 Complexity

Assuming a RISC-like architecture, we can perform a reciprocal with the desired accuracy using 7
floating point operations, while a reciprocal square root amounts to 17 operations. An arctangent
costs 19 operations and an arccosine 33.

Assuming the situation where the light and H vector are given and constant, and the normal vectors
are specified at the vertices of a trapezium, precomputing the A,B and C vectors, the Duff variables,
the T through 7’5 for the diffuse term as defined by Bishop and Weimer and the above parameters,
implies a frame complexity of 287 floating point operations. The scanline update costs are 182 op-
erations while the pixel update cost is 5 integer additions. For original Phong shading, these figures
are 24, 21 and 46 floating point operations, respectively.

Assuming that the integer additions are as costly as the floating point operations, this implies that
our method has a break-even point with respect to the original Phong shading method at 23 pixels.

As most polygons will be larger than 5X5 pixels, this clearly justifies the increased scanline and
frame complexity, even if no additional hardware is used for forward differencing.

8 Conclusions

Our research shows that Phong shading can be approximated by using quadratic curves at scanline
level. This enables the use of extremely simple and fast evaluation hardware pipelines at pixel gen-
eration level. The difference with the original Phong shading model concerns mainly the interpo-
lation technique used at scanline level.

We presented two methods for efficient computation of the specular term. The first is based on vec-
tor rotation horizontally as well as vertically, while the second one applies vector coordinate inter-
polation in the vertical direction. One is free to combine these specular terms with a diffuse term
that is derived analogously or computed using the technique of Bishop and Weimer.

Although in theory, the hybrid methods might suffer from inconsistencies in highlight location due
to the different interpolation methods, we did not find any evidence that this would affect image
quality in practice.

Our method drastically reduces the pixel rate complexity at the expense of an increase of scanline
complexity. However, the break-even point of 23 pixels with respect to the original Phong shading
method immediately justifies this.

9 Extensions

Simple modifications allow lightsources located in the vicinity of the object. A method that chang-
es the normal vectors in order to approximate this effect has been described in the article by Kuijk
and Blake [5]. The idea is to choose a representative from the light or H vectors defined at the ver-
tices. The same rotation that would map the light or H vector at a vertex to the representative is
applied to the normal, thereby assuring that the intensities at the edges are continuous.

Anti-aliasing using exact pixel area integration is trivial because the weighting function that must
be applied over a scanline consists of at most three linear parts in x when shading polygons. Ap-
plying these linear weighting functions to the quadratic shading functions clearly produces cubic
curves, which can be evaluated by third order forward differencing.

An architecture is being developed where instances of the aforementioned algorithm are executed
in parallel for each trapezium visible on a scanline. The resulting polynomial shading functions are
then sent to an evaluation pipeline performing second or third order forward differencing and ac-
cumulation of the various resulting shading values due to individual lightsources and their both
components. For a description of this architecture, we refer to [8].

10. List of symbols page 13

10 List of symbols .

o L(pyl) lp initial left vector Uy aaxl@+cc+2 acxly

B L(pyry) I; left interpolation vector Il; 2(aa dxl xly+bc+ab xly+ac dxl)
0 £ (normal,light) [, eventual left vector Il aa dxl°+2 ab dxl+bb

e L (LS ro initial right vector Irg aaxlyxro+cc+ac(xlp+xry)

Y £ (p; light) r; rightinterpolation vector Ir; aa(dxl xly+dxl xrp)+2bc

n 4R ry eventual right vector +ab(xlg+xrg)+ac(dxl+dxr)

o L, light) L plane through /) and /; lry aadxl 2dxr+ab(dxl+dxr)+bb

A L (int, 1) R plane through rj and ry rrg aaxrg°+cc+2 ac xry

£ (int, light) int intersection of L and R rr; 2(aadxr xrg+bc+ab xry+ac dxr)
0 £ (I, normal) light light vector rry aa dxr°+2 ab dxr+bb

p L (int,r) M plane through light and int lvy av xl0+cv

o £ (normal, H) S plane through /; and r; lv; avdxl+bv aa A°A
T L. normal interpolated normal rvg av xrO+cv ab A°B
o £ R) p; projection of light on S rvy avdxr+bv ac AC
E £(@9) I' cosy V lightorH av AV
v £ (light,r) P plane through p; and light Il llp+y(ll;+y 1l,) bb BB
T 4 (¥, a (s+5.6)/(s(0.095+5.2)) Ir Clro+y(lr;+y Irp) bc BC
s shininess b (s+65)/(55+31.7) rr rroty(rry+y rrp) bv BV
i scanline index ® plane through /;and light Iv lvp+y lv; cc CC
y scanline-y,,;qqe W plane through r;and light rv rvp+yrv; cv CV
k maximum index H Hvector, H replaces light in the specular case.

11 References

[1] Gouraud, H., June 1971. “Continuous Shading of Curved Surfaces,” |EEE Transactions on
Computers, vol. 20, no.6, pp. 623-628.

[2] Bui-Tuong, Phong, June 1975. “Illumination for Computer-Generated Pictures,” Communi-
cations of the ACM, vol. 18, no.6, pp. 311-317.

[3] Duff, T., 1979. “Smoothly Shaded Renderings of Polyhedral Objects on Raster Displays,”
ACM Computer Graphics, vol. 13, no.6, pp. 270-275.

[4] Bishop, G., and D.M. Weimer, August 1986. “Fast Phong Shading,” ACM Computer Graph-
ics, vol. 20, no.4, pp. 103-106.()

[5] Kuijk, A.A.M., and E.H. Blake, December 1989. “Faster Phong z‘)‘hading via Angular Interpo-
lation,” Computer Graphics Forum, vol. 8, no.4, pp. 315-324.9

[6] Hall, R., 1988. “Illumination and Color in Computer Generated Imagery,” Springer Verlag
New York.

[7] Blinn, J.F., 1977. “Models of Light Reflection for Computer Synthesized Pictures,” ACM
Computer Graphics (SIGGRAPH 77), vol. 11, no.2, pp. 192-198.

[8] Jayasinghe, J.A.K.S., A.A.M. Kuijk and L. Spaanenburg, 1991. “A Display Controller for an

Object-Level Frame Storage System,” Advances in Computer Graphics Hardware lli
(A.A.M. Kuijk, ed.), Springer Verlag Berlin, pp. 140-170.

1) There are several errors in this paper. Some have been rectified, but for completeness, we will
repeat these here: ,
Page 104, first column, first and second equation: Remove the three L vectors from the denomina-
tor. Page 104, second column, second equation: the first term in the denominator of T is 3cgr5l and
not 3ig”. Page 105, second column, second equatioglz The sign of the term fjlgr should be + instead
of - and the term -2fnr should be replaced by -2fI“nr.

2) This paper also contains an error: the definitions of a and b on page 321 have been interchanged.
The definitions as shown in this paper are correct: a=(n+5.6)/(n*(0.09n+5.2)) and b=(n+65)/
(5n+31.7).

page 14 12. Pseudo-code

12 Pseudo-code

The following code has not been optimized. It is assumed that the ABC triplet and light vector serve
as input, and that a trapezium is being shaded. No color- or anti-aliasing code or variable declara-
tions are shown.Triangles, being degenerate trapeziums, can be processed without modifications.

void shader(A,B,C, V, xlup,xrup,xldn,xrdn,yup,ydn, s)
fetch a(s) and b(s);
height=ydn-yup; xlI=xlup; xr=xrup;
heightinv=1/height; dxl=(xldn-xlup)*heightinv; dxr=(xrdn-xrup)*heightinv;
if frac(yup)!=0
xl+=(1-frac(yup))*dxl; xr+=(1-frac(yup))*dxr;
aa=A.A; ab=A.B; ac=A.C; av=A.V; bb=B.B; bc=B.C; bv=B.V; cc=C.C; cv=C.V;

lo=...; ly=...; llp=...; lii=llg; dlli=lly+ll5; ddll;=2ll,;

IVo=...; Iv4=...; Ivi=lvg; divi=lvy; o) xldn xlup xrup xrdn
Iro=...; Iry=...; Iro=...; Irj=lrg; dir=Iry+Iry; ddir=2Iry; ’ : P
Vo=...; IV{=...; Vi=rvp; drvj=drvy;

IMo=...; My=...; Mo=...; ITj=ITq; Arri=rr{+rro; ddrr=2rro;
for(scanline:ceﬁ(yup); scan ine<cei|lydn%; scanline++)
costi=Iri/sqrt(llj*rr;); e ydn
if cost;>1-verysmall
cosg;=lvi/sqrt(ll;); cosy=rvi/sqrt(rr;);
I linearshade(xl,xr, sgn(cosey;)*pow(|cosey;|,s),sgn(cosy;)*pow(|cosy;|,s));
else
Ti=pow((rr*tvi*lvi-2*vi*ir*rvi+li*rvi*rv;) / (I*rr-In*in) |, s/2);
ag=sgn(lvy)*atan((Il*rvi-lvi*lr) / sqrt(Ivi*ivi*(Il*rr-Ir™)));
Tj=acos(cosrt;);
If‘ |Vi<0 Qi+=T,
if max(lv;,rv))>0 and Ij>verysmall
generatequadratics (xl,xr, T,,7;, @,b,s);
Xl+=dxl; xr+=dxr;
lj+=dll;; dlli+=ddlli; Ivj+=dlv;; Iri+=dIr;; diri+=ddlr;; rvi+=drv;; rri+=drr;; drri+=ddrr;;

The procedure that generates the actual curves does nothing more than efficiently combining the
data and sending the quadratic curves to the evaluating soft- or hardware:

void generatequadratics(xl,xr, [;,a;,7;, a,b,s);
width=xr-xI;
if floor(xl)=floor(xr)
exit;
if ti<verysmall
constantshade(x|,xr,[;);
exit;
dtdx=ti/width; dxdt=1/dtdx; dtdx*=dtdx*T;;
middle=xl+o;*dxdt; adxdt=a*dxdt; bdxdt=b*dxdt;
xbl=ceil(middle-bdxadt); xal=ceil(middle-adxadt);
xar=ceil(middle+adxdt); xbr=ceil(middle+bdxdt);
gshade(max(xI|,xbl), min(xr,xal), dtdx/(b*(b-a)), 0, max(xl,xbl)-middle-bdxdt);
qshade§max(xl,xal), min(xr,xar), dtdx/(-a*b), I';, max(x|,xbl)-middle);
gshade(max(xl,xar), min(xr,xbr), dtdx/(b*(b-a)), 0, max(xl,xbl)-middle+bdxdt);

void gshade(x, xn, second, def, angle)
if xI=xn
first=s/2; temp=second*angle; intensity=def+temp*angle/2; first+=temp;
quadraticshade(x,xn-x, intensity, first, second);

