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Current program generators usually operate in a greedy manner in the sense that a program must be
generated in its entirety before it can be used. If generation time is scarce, or if the input to the genera-
tor is subject to modification, it may be better to be more cautious and to generate only those parts of
the program that are indispensable for processing the particular data at hand. We call this lazy program
generation. Another, closely related, strategy is incremental program generation. When its input is
modified, an incremental generator will try to make a corresponding modification in its output rather than
generate a completely new program. It may be advantageous to use a combination of both strategies in
program generators that have to operate in a highly dynamic and/or interactive environment.
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1. INTRODUCTION

1.1. Greedy, lazy, and incremental program generation

‘¢ Automatic programming”’ necessarily means production of programs by means of other programs.
The latter are usually called program generators. The use of program generators dates back almost to the
beginning of the programmable electronic computer [13]. Compilers for high-level programming
languages are the most successful and widely used program generators to date, and the well-known argu-
ments for using them apply to other program generators as well. The fact that many program generators are
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tailored towards a specific and rather limited application area does not detract from these arguments.

Usually, the time spent by a program generator is not that important as long as the program produced
by it is efficient. If there is ample time available for the generator, the complete program can be generated
before it is used. We call this greedy program generation (Section 2.1). There are basically three reasons
why greedy program generation is not always an efficient or feasible strategy:

(A) The generated program is used so little that the time invested in generating it is largely lost.

(B) The real-time requirements (interactive response time requirements) that have to be met by the
environment in which the generator runs are too stringent for the generator to finish its task com-
pletely.

(C) The generated program is too large to be run in its entirety.

So, rather than generating a program all at once, it may be better to generate only those parts of it that are
indispensable for processing the particular data at hand. We call this lazy program generation (Section
2.2). Another, closely related, strategy is incremental program generation. When its input is modified, an
incremental generator will try to make a corresponding modification in its output rather than generate a
completely new program. The best known examples of incremental program generators are incremental
compilers. It may be advantageous to use a combination of both strategies in program generators that have
to operate in a highly dynamic and/or interactive environment. This is our main topic (Section 2.3).

We first came across the above-mentioned weaknesses of greedy program generation while design-
ing a syntax-oriented editor for the ASF+SDF language definition formalism, which has very general user-
definable syntax [9]. We realized that generating a completely new parser after each syntax change would
lead to unacceptable response times. To solve this problem, we converted greedy scanner and parser gen-
erators to versions that are both lazy and incremental. These are discussed in Section 3.

To avoid misunderstanding, it should be emphasized that we have not mechanized the process of
converting greedy program generators to lazy/incremental ones. The above-mentioned conversions were
done by hand. Gordon [8] has raised the question whether lazy functional languages like Miranda, Ponder,
or LML [4] can be used to obtain lazy program generation more or less automatically as a special case of
lazy evaluation. In the same vein, one might ask whether an incremental language like INC [24] can be
used to obtain the incremental behavior for free. These questions remain to be investigated.

1.2. Related work

In spite of their indisputable importance, very little has been written on the general principles under-
lying program generators. An interesting paper with a practical flavor on the construction of application
generators is the one by Cleaveland [3]. The literature on partial evaluation [20] contains some relevant
theoretical considerations of a general nature. In [5] Ershov clearly explains the basic ideas involved.
Although these have influenced our discussion of greedy program generation in Section 2.1 to some
degree, our viewpoint in this paper is not that of partial evaluation, and we have not attempted to interpret
our work in that particular context.

In the way of lazy and incremental program generation we mention Brown’s lazy BASIC compiler
for small machines [2], the lazy LL(1) parser generator developed by Koskimies [17] (both of which are
discussed in Section 2.2), Szafron and Ng’s interactive incremental scanner generator LexAGen [21],
Horspool’s incremental LALR(1) parser generator ILALR [14] (these are discussed in Section 3), and
Fritzson’s incremental PASCAL compiler [6, 7]. To the best of our knowledge, program generators that

are both lazy and incremental have not been discussed before, except in our papers [10] and [11] (cf. Sec-
tion 3).

2. GREEDY, LAZY, AND LAZY/INCREMENTAL PROGRAM GENERATION

2.1. The traditional (greedy) case
Suppose a program with two arguments
P: AXB—C

is used in a context in which it has to be applied to a relatively large number of be B for each ac A. In such



cases it is often possible to gain efficiency by replacing P with a higher-order program (‘‘program genera-
tor’”) of curried type

G:A—->(B-C)
which, when given a particular a€ A, yields (‘‘generates”’) a specialized program
G,:B->C

such that for all be B execution of G, with argument b yields the same result as execution of P with argu-
ments ¢ and b, and with the additional property that G, is a much more efficient program than P with first
argument a. If, for instance, the former is more efficient than the latter by a multiplicative speed-up factor
S>1, the investment of time T, in generating G, will start paying off after G, has run for a total time ¢
defined by

t
t= Ta+—§,

leading to a break-even point
1
=(1+—)T,.
t=(t5 T,

Within certain limits, the larger the investment T, made in generating G, the larger the speed-up S that can
be achieved. In practice, a speed-up S of 10 or more can often be achieved at acceptable cost.

For the sake of concreteness, it may be instructive to consider a parser generator from the general
viewpoint. In that case, P would be a general parser, A would be a domain of grammars (probably
described in BNF), B would consist of sentences to be parsed, and C would contain parse trees and some
failure value. The associated parser generator would be G, and G, would be a parser for a specific gram-
mar a.

Compilation of a programming language L is another instructive example. In this case, P would be
an interpreter for L-programs, A the collection of L-programs, B a domain of input values, and C a domain
of result values. The compiler for L would be G, and G, would be the object code for a.

2.2. Lazy program generation

As indicated in Section 1.1, investing time T, in generating G, is not always possible or justified. In
such cases, lazy program generation may offer a solution. Rather than generating G, all at once, a lazy gen-
erator produces for each b only those parts of G, that are actually needed to compute the required result.
Except if G, is too large to be run in its entirety (Section 1.1, case (C)), parts generated for previous inputs
b (if any) are retained indefinitely, so the lazy generation process is cumulative. Whether the complete pro-
gram G, is ever generated in this way, depends on the particular sequence of inputs involved. Parts of G,
that are not needed by any b are never generated.

In view of the foregoing, a rough outline of the lazy counterpart L, of G, (expressed in some suitable
language) is:

L,(b): B-»C

constanta: A

static g: B —— C with initial value g,
begin

return g(b)

when attempting to execute gap yin g
do
g :=EXPAND(a,g,")
resume
od
end.

For each new b=b,, L, initially tries to compute the required result by means of the incomplete program
8n-1 generated during the previous activations of L,, that is, by means of the value of the static function



variable g: B —— C, where —~ indicates a partial function. The fact that g is static means that its value is
retained between different activations of L,. For n=1 the value of g is its initial value g, which consists of
nothing but a single gap and is undefined everywhere. Only if execution of g,_; with argument b,, hits a
gap yin g,_;, L, generates an additional piece of program by calling procedure EXPAND in the body of the
exception handler. This procedure, which is a suitably adapted version of the greedy generator G of the
previous section, produces the required extension in some unspecified, application dependent way using a,
the incomplete program g,_; generated so far, and the gap descriptor y (which identifies the gap in ques-
tion). It fills the gap only to the extent necessary, so part of the gap in the form of one or more new gaps
may remain. Computation is then resumed at the point where the exception occurred using the extended
version of g,_;. The computation may hit several gaps in succession, so the extension of g,_; to g, may
require several activations of EXPAND. If no gap in g,_; is encountered, no extension is necessary and
8n=8n-1- Hence, EXPAND is not called and L, runs as fast as G,. An extreme and, from the viewpoint of
lazy program generation, undesirable case is g =G,. L, has to generate the whole program G, just to han-
dle b,. Obviously, the lazy character of L, is lost in this case. Lazy program generation may alleviate the
problems mentioned in Section 1.1 if EXPAND has to generate only relatively small extensions at each step
and if the total generation time is distributed more or less evenly.

In the previous section we mentioned parser generation and compilation as examples of greedy pro-
gram generation. Both can be done in a lazy manner. Koskimies [17] has developed a lazy parser genera-
tor for modular LL(1) grammars. Each module is supposed to contain the definition of a single nontermi-
nal symbol of the grammar. It would be nice if the parser for the complete grammar could be obtained by
linking parsing procedures generated separately for each individual module. For an ordinary recursive des-
cent parser this is impossible, however, since each parsing procedure depends on the set of first symbols of
the corresponding nonterminal. In general, computation of this set requires access to the definition of other
nonterminals and hence to other modules. Koskimies circumvents this problem to some extent by generat-
ing a hybrid recursive descent/table-driven parser consisting of separately generated procedures incorporat-
ing a rule selection mechanism driven by so-called start trees. These are built by need during parsing to
minimize the initial generation delay. In this case, incomplete programs g, consist of a fixed recursive des-
cent part and a possibly incomplete set of start trees. A gap 7 is a nonterminal whose start tree has not yet
been computed. If such a nonterminal is encountered during parsing, the corresponding start tree is com-
puted by the function StartTree,, which is generated separately for each module. So instead of a single
EXPAND function that handles all gaps, each gap has its own specialized version.

A lazy BASIC compiler for small machines was developed by Brown [2]. Statements are compiled
by need when encountered during execution. Each compiled statement is placed in the workspace immedi-
ately after the previously compiled statement. If the workspace is full, all object code accumulated in it is
thrown away. This radical strategy eliminates the problem of dangling jumps to object code that no longer
exists, except for stacked return addresses. To prevent these from doing harm, they must refer to source
code rather than object code. Returns are therefore effected by indirect transfers through the lazy compiler.
Thus, in this case an incomplete program g, is a series of compiled statements possibly with embedded
gaps containing references to source code. If such a reference is encountered during execution, the
corresponding statement is compiled and placed in the workspace. The reference that triggered the compi-
lation is replaced with a direct jump to the compiled statement or even with the compiled statement itself if
the reference was the last item of the object code. It may turn out that the statement had already been com-
piled. In that case, the reference is merely replaced by a direct jump to the compiled statement. Obviously,
unreachable parts of the program will never be compiled.

2.3. The combination of lazy and incremental program generation

In the previous section a@ was kept constant. Now suppose that a is subject to modification, perhaps
because it is being developed and experimented with interactively. Ordinarily, a completely new program
would have to be generated for each new version of a. If modifications follow each other in quick succes-
sion, chances are that only a small part of each a is used before it is modified. This fact may be exploited
by a lazy program generator. The program generated for the old version of a is still thrown away, but, as it
will be incomplete most of the time, less time is wasted than before. As explained in the previous section,
this is the strategy used in Brown’s lazy BASIC compiler, albeit for a different reason.



Although lazy generation may certainly offer a partial solution, the above scheme is still rather crude
in that it does not attempt to retain the largest possible part of the old program. This part can be character-
ized in terms of the greatest lower bound of two incomplete programs with respect to the subsumption
order, which is the natural partial order on incomplete programs. More specifically, an incomplete pro-
gram g subsumes an incomplete program h (g<h) if 4 can be obtained from g by partially or completely
expanding the gaps in g. Except if G, is too large to be run in its entirety, the lazy generator L, of the pre-
vious section produces a sequence of incomplete programs {g, },>o such that

805815825 " =G,.
The greatest lower bound gk of two incomplete programs g and 4 with respect to < has the usual proper-

ties, namely,

gnh<g,
gAh<h,and
f<gnhforall fsuchthat f<gand f<h.

It is the most specific (least general) incomplete program that can be expanded to both g and k. In the
worst case it is equal to the program that consists of nothing but a single gap.

_ Actually, the greatest lower bound is maximal only in a relative sense. It depends on the domain of
incomplete programs in which it is interpreted. From the viewpoint of abstract syntax the simplest incom-
plete programs are Q-terms, in which the special constant Q acts as a gap. For instance,

program(if (Q,Q,Q)) < program(if (eq(x,0),assign(y,Q2),assign(Q,£))).
and

program(if (eq(x,0),assign(y,Q),assign(Q,Q))) A program(if (Iit(x,0),assign(y,1),Q)) =
program(if (Q,assign(y,€2),Q).

A better greatest lower bound is obtained if incomplete programs are generalized (2-terms containing n-
adic gaps for any n>0 rather than conventional Q-terms containing only zero-adic gaps. For instance, in
that case

program(if (eq(x,0),Q2)) A program(while(lt(x,0),L2))
would be equal to

program(£2(Q2(x,0),Q))
rather than to

program(£2).

Now, suppose a is changed to a’ after the lazy generator L, has processed its kth input. The largest
part of the incomplete program g, generated so far that can be retained in the context of a’ is

g =Gy

Obviously, computing G, is contrary to the rationale of the lazy generation strategy, so the above charac-
terization of the largest part g’ of g; that can be retained in the context of a’ is useless from a computa-
tional viewpoint. Fortunately, in many concrete cases a reasonable approximation to g’ can be computed
efficiently on the basis of the incomplete program g, generated so far, the modification A to be made to aq,
and q itself, without computing G,-. Whether this is feasible has to be investigated separately in each
specific case. This is crucial to the success of the proposed lazy/incremental strategy.

A rough outline of the lazy/incremental counterpart I, of L, is



I,(A,b): (A—>A)XB—C
static o:: A with initial value a
static g: B —— C with initial value g,
begin
if A#id, then a,g :=MODIFY (a,A,g) fi
return g(b)

when attempting to execute gap yin g
do
g =EXPAND(0.,g.Y)
resume
od
end.

In I,, a is no longer constant, but the initial value of static variable o which is subject to modifications A of
type A—>A. MODIFY computes (a suitable approximation to) the largest part of the old value of g that
remains valid in the modified context in terms of the old value of g itself, the modification A, and the old
value of o (see above). It also updates the value of o by applying A to it.

3. LAZY/INCREMENTAL SCANNER AND PARSER GENERATION

In this section we discuss the lazy/incremental lexical scanner and parser generators ISG and IPG.
As mentioned in Section 1.1, we use the combination ISG/IPG in a syntax-oriented editor for the
ASF+SDF language definition formalism, which has very general user-definable syntax.

3.1. ISG - a fully lazy/incremental lexical scanner generator

ISG is a fully lazy/incremental lexical scanner generator. In this case, A is the domain of regular
grammars, B contains the sentences to be scanned, and C consists of legal strings with their lexical type(s)
and a failure value. For each regular grammar there is a deterministic finite automaton (DFA) recognizing
the language generated by the grammar. ISG constructs this automaton by need, so the incomplete pro-
grams g produced by ISG are partial DFAs (PDFAs), which may be viewed as approximations to the com-
plete automaton for the input grammar. Modifications A are additions and deletions of a single regular
expression.

We now summarize the operation of ISG in relation to the general scheme outlined in sections 2.2
and 2.3. More details can be found in [10]. Let a be a regular grammar with alphabet . A PDFA g for a
consists of a set of states and a binary transition function mapping state-symbol pairs to states. A state is a
set of positions p in a indicating to which points in the grammar the scanning process has progressed. The
start state is the set of initial positions. A gap yin g is a state whose transitions have not yet been com-
puted. Whereas a greedy scanner generator can throw away the positions making up a state after the full
DFA has been constructed, ISG has to retain the structure of states for the purpose of further expansion and
incremental modification of the PDFA.

If the PDFA g generated so far for a hits a gap y while scanning its input string, g is expanded by an
instance of EXPAND (Section 2.2) which, apart from error handling, looks as follows:



EXPAND(a,g,Y)

begin
assertion expanded(y) = false
for all s € Z such that symbol(p)=s for some p € y
do

8 :=Up e y| symboi(p)=s} followpos(p,a)
if 8¢ g.States
then add § to g.States; expanded(d) = false

fi
g.Transition(y,s) =6
od
expanded(Y) = true
return g
end.

EXPAND computes all legal transitions 7y 58 of v, where s is a symbol and & the corresponding successor
state of y. For any s there is at most one such state since we are dealing with deterministic automata. It
consists of the positions that may follow the positions p in vy at which the symbol s occurs (if any). These
are computed by followpos. Accepting states need not have any legal transitions.

It might seem as if EXPAND could be made even lazier by adding only the legal transition for the
current symbol rather than all legal transitions. In that case, gaps in the automaton would correspond to
unexpanded transitions rather than to unexpanded states. Unfortunately, this approach would require the
introduction of error transitions or something equivalent, which is not very attractive.

ISG uses the following instance of MODIFY (Section 2.3):

MODIFY (a,A,g)
begin
assertion A#id,
anew = A(a)
O := firstpos(anew)
gtmp.Start :=0
gtmp.States = g.States
if 6 & gtmp.States
then add o to gtmp.States; expanded(c) = false
fi
gtmp.Transition := g.Transition
if expanded(c) = false
then gtmp := EXPAND (anew,gtmp,G)

fi
gnew.Start :=C
gnew.States = {d € gtmp.States | 8= gtmp.Transition( . . . gtmp.Transition(c,s1), . . . ,5)}

gnew Transition = gtmp.Transition lg,,,w‘s,a,,:
return anew, gnew
end.

After applying A to a, MODIFY computes the new start state ¢, which consists of the new set of initial
positions, by means of firstpos and constructs an intermediate partial automaton grmp by adding ¢ and its
legal transitions to the old PDFA g. Since gtmp may be partially obsolete, MODIFY performs a garbage
collection on it by retaining only states J that are reachable from ¢ by k20 applications of the transition
function gtmp.Transition, and by restricting the transition function to these states. This yields the new
PDFA gnew.

Rather than the greatest lower bound in the sense of Section 2.3 (which is empty since the new auto-
maton always has a different start state), MODIFY computes



EXPAND (A(a),{6} U £,0) A G,

where G 5, is the complete DFA for the regular grammar A(a). Actually, it may compute somewhat less
since all states of the old automaton that are not reachable from the new start state are removed. Such
states may become reachable after further expansion, however, in which case they could have been
retained. This can be achieved at the expense of an increase in space complexity by postponing garbage
collection and allowing further lazy expansion of {G}\g in the context of A(a). This is the approach
taken in the lazy/incremental parser generator IPG discussed in the next section. The ISG approach has the
advantage of simplicity. The number of states retained after a modification is generally quite close to the
theoretical maximum.

ISG has been implemented in LISP. In so far as a meaningful comparison can be made, the fotal gen-
eration time used by ISG is typically 2.5 times less than that used by the greedy lexical scanner generator
FLEX [18], while the lexical scanners produced by it (in LISP) are typically 5 times slower than those gen-
erated by FLEX (in C). The total generation time includes compilation of the generated scanners in both
cases. ISG uses negligible time updating the generated scanner after a modification to the regular grammar.

Szafron and Ng’s interactive incremental scanner generator LexAGen [21] is an interactive develop-
ment environment for lexical grammars. It maintains a DFA incrementally on the basis of a regular gram-
mar entered by the user. The DFA can be tested interactively after each change to the grammar or it can be
compiled non-incrementally to high-quality C-code with approximately the same performance as that gen-
erated by FLEX. The test mode of LexAGen is maintained incrementally, but no performance figures for it
are given in [21], so it cannot be compared to ISG.

ISG is used in conjunction with the lazy/incremental parser generator IPG described in the next sec-
tion.

3.2. IPG - a fully lazy/incremental context-free parser generator

Taking Tomita’s general context-free parsing algorithm [22] as our point of departure, we developed
the fully lazy/incremental parser generator IPG. In this case, A is the domain of context-free grammars, B
contains the sentences to be parsed, and C consists of sets of parse trees and a failure value. Modifications
A are additions and deletions of a single production rule. The programs g generated by IPG are incomplete
LR(0) parse tables which are constructed by need. These may be viewed as incomplete programs for
Tomita’s general bottom-up parsing algorithm. Since the grammars involved need not be LR(0), the
corresponding LR(0) parse tables need not be deterministic, but may contain shift-reduce and reduce-
reduce conflicts. Tomita’s algorithm interprets non-deterministic table entries by starting as many LR(0)
parsers in parallel as required. To keep the number of different LR(0) parsers to a minimum, they are
joined at the earliest possible moment.

We now summarize the operation of IPG in relation to the general scheme outlined in sections 2.2
and 2.3. A more detailed description can be found in [11]. We assume the reader to be familiar with con-
ventional LR parsing [1]. In IPG, the LR(0) parse table figures as a set of parse states, a binary transition
function, and a unary reduction function. States are sets of dotted rules. A dotted rule n ::=u.v is a BNF rule
whose right-hand side contains a dot indicating to which point in the rule parsing has progressed. A state
consists of all dotted rules that may be valid simultaneously at some time during parsing and in which some
progress has already been made. The latter condition, which does not apply to the start state, means that the
right-hand sides of the dotted rules involved do not start with a dot. Gaps 7 are states whose transitions and
reductions have not yet been computed. Unlike greedy parser generators, IPG cannot throw away the dot-
ted rules making up states, but has to retain them for the purpose of further expansion and incremental
modification of the parse table.

The transition function consists of y -5§ triples, where vy and § are states, and s is either a terminal or
a nonterminal symbol of the grammar. If it is a terminal, the transition corresponds to a shift action, other-
wise it corresponds to a goto.

When a gap 7 in the incomplete parse table g is encountered during parsing, IPG calls the following
version of EXPAND:



EXPAND(a,g,Y)
begin
assertion expanded(Y) = false v expanded(Y) = obsolete
if expanded ()= obsolete
then for all y 38 € g.Transition
do
delete ¥538 from g.Transition
decrease referencecount(d)
od
fi
I" .= closure(y,a)
for all s such that n::=usve T’
do
d:={ni=usv|n:=usvel)}
if 8¢ g.States
then add 8 to g.States; expanded(d) = false; referencecount(d) =0
fi
add y 53 to g.Transition
increase referencecount(9)
od -
foralln::=u.eT
do
if n #start
then add n::=u to g.Reduction(Yy)
else add y —$5accept to g.Transition
fi
od
if expanded () = obsolete
then while referencecount(8)=0 for some & € g.States
do assertion =7y
for all 8 3§’ € g.Transition
do
delete 8 58’ from g.Transition
decrease referencecount(8)
od
delete & from g.States
od

expanded(y) := true
return g
end.

For the moment we assume that the incomplete state 7y is not obsolete, so we skip the first and last if-
statement of EXPAND. The remaining part is quite similar to ISG’s version of EXPAND (Section 3.1). It
first uses closure to enrich vy with all dotted rules in which no progress has yet been made, but which may
become applicable, and assigns the result to I". Using T, it then computes all transitions and reductions for
v.

Obsolete states y are produced by MODIFY. The way they are treated by EXPAND becomes easier
to understand if MODIFY is discussed first:
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MODIFY (a,A,g)
begin
assertion A#id,
anew = A(a)
n = nonterminal(A)
for all 8 B’ € g.Transition
do
expanded(d) := obsolete
od
return anew,g
end.

After applying A to a, MODIFY extracts the nonterminal on the left-hand side of the syntax rule involved
in the modification and assigns it to n. It then sets all states & that have one or more transitions for n to
obsolete. This means they are treated as gaps, but their old transitions are retained until they are re-
expanded (if ever—see below). To increase the chance that parts of the graph of states that are no longer
reachable from the start state are reused, MODIFY does not immediately perform garbage collection like
ISG, but allows lazy expansion of the partially obsolete graph gnew and leaves garbage collection to
EXPAND. We therefore resume our discussion of EXPAND.

‘When given an obsolete state y, EXPAND first deletes its old transitions. As a result, some of the
states to which y had transitions may end up having reference count 0, that is, completely disconnected
from the start state. Rather than immediately deleting these, EXPAND first expands v in the way explained
earlier. As a consequence, some of the disconnected states may become connected again. Only then does
EXPAND remove any remaining disconnected states. A basic shortcoming of the reference counting
method is that direct or indirect self-references may lead to garbage that is never collected. On the other
hand, there is still no guarantee that states that are deleted might not have become connected after further
expansion, so the moment at which garbage collection is done might have been postponed still further.

Like ISG, IPG has been implemented in LISP. The parsers produced by it are typically 2 times
slower than those generated by the LALR(1) parser generator Yacc [1, 15]. Of course, IPG is not limited to
LAILR(1) grammars, but can handle all context-free grammars. Its initial generation time is very small and
its total generation time is typically 30 times smaller than that of Yacc. This large factor is primarily due to
the fact that IPG generates a parser in the same LISP work space in which it runs. A secondary reason is
that the LR(0) tables generated by IPG require less effort than the LALR(1) tables produced by Yacc. IPG
uses negligible time updating the generated parser after a modification to the corresponding context-free
grammar.

Horspool has developed an incremental LALR(1) parser generator ILALR [14]. As is to be
expected, it has a less efficient generation phase than IPG, but generates better parsers for LALR(1) gram-
mars that are not LR(0). The incremental maintenance of LALR(1) parse tables turns out to be prob-
lematic. Adding a syntax rule to the grammar does not present new problems in comparison with the LR(0)
case, but deleting a rule leads to a complete recomputation of the LALR(1) look-ahead sets.

4. FURTHER WORK

Both ISG (Section 3.1) and IPG (Section 3.2) have been extended with a subgrammar selection
feature, which allows lazy restriction of the incomplete scanner or parser generated so far to a subgrammar
corresponding to one of the modules making up a modular regular or context-free grammar [16, 19]. If a
gap is encountered in subgrammar mode, expansion takes place with respect to the full grammar. Restric-
tion of new parts to the currently selected subgrammar is done by need as well. Although expansion with
respect to the currently selected subgrammar would almost always be faster and would be in better agree-
ment with the lazy approach, expansion with respect to the full grammar facilitates selection of a different
subgrammar and requires less modification of ISG and IPG.

Walters [23] has tailored ISG towards the efficient implementation of term rewriting systems that are
subject to frequent modification. The first phase of term rewriting consists of term matching. In [12] Hoff-
mann and O’Donnell give a top-down matching algorithm that reduces term matching to string matching.
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Basically, the set of tree patterns (left-hand sides of rewrite rules) is transformed into a finite automaton
similar to the one produced by ISG. Walters first derives a set of regular expressions from the set of tree
patterns and then uses his extended version of ISG to produce the automaton. In this way, term rewriting
systems that are subject to modification can be handled smoothly and efficiently. No restrictions are
imposed on the set of tree patterns.

As pointed out in Section 1, lazy/incremental program generation remains to be investigated from the
perspective of lazy functional languages, incremental languages, and partial evaluation.

We have been unable to ascertain whether a lazy/incremental compiler has been implemented for
some language, but something very close to it is bound to exist somewhere.

5. CONCLUSIONS

Our experience with ISG and IPG has taught us that lazy/incremental program generation is an
implementation technique that merits serious consideration in highly dynamic applications in which both
program generation time and program execution time are scarce. Whether it can actually be applied
depends on several factors, which have to be investigated separately in each particular case. Obviously, for
lazy program generation to make sense, most expansion steps should be relatively small so that the total
generation time can be distributed more or less evenly over many computations. In addition to this,
lazy/incremental program generation requires an efficient way of establishing which part of the already
generated program remains valid in a modified context.
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