1991

D. Soede, F.Arbab, I. Herman, P.J.W. ten Hagen
The GKS input model in Manifold

Computer Science/Department of Interactive Systems Report CS-R9127 May

CWI nationaal intituut voor onderzoek op et gebied van wiskunde en informatica

CWI is the research institute of the Stichting Mathematisch Centrum, which
was founded on February 11, 1946, as a non-profit institution aiming at the
promotion of mathematics, computer science, and their applications. It is
sponsored by the Dutch Government through the Netherlands organization
for scientific research (NWO).

Copyright © Stichting Mathematisch Centrum, Amsterdam

The GKS Input Model in MANIFOLD

Dirk Soede
Farhad Arbab
Ivan Herman
PaulJ. W. ten Hagen

Cwl
Department of Interactive Systems
P. O. Box 4079, 1009 AB Amsterdam
The Netherlands

ABSTRACT

This paper describes the specification of the GKS input model in ManwoLo. The aim of
the work reported in this paper was two-fold: first, to review the communication patterns
implied by the GKS input model, and second, to evaluate the suitability of the ManFoLd
language as a tool for defining complex dynamic interaction patterns that are common in
non-trivial user interfaces.

The GKS input model is also adopted by all more recent ISO graphics standard docu-
ments. A more formal scrutiny of the inter-communication of the components of this
model, excluding the implementation details of their functionality, is instructive in itself.
It can reveal directions for improvement of its shortcomings and for generalization of its
strengths for the ongoing effort to define the functionality of future graphics packages.

Mantrowp is a language for describing inter-process communications. Processes in Manr-
roLp communicate by means of buffered streams and by reacting to events raised asyn-
chronously by other processes. Our experience shows that ManiFoLp is a promising tool
for describing systems of cooperating parallel processes. Our ManFoLD specification of
the GKS input model offers a very flexible way to structure user defined logical input
devices. Furthermore, it is simple and modular enough to allow easy extensions to
include more functionality by local modifications. As such, it can serve as a basis for
possible extensions and enhancements envisioned for future graphics packages.

1987 CR Categories: C.1.2,C.1.3,C.2.m,D.1.3,F.1.2,1.1.3,13.6,1.34
1885 Mathematical Subject Classification: 68N99, 68Q10, 68U05
Keywords and Phrases: logical input devices, computer graphics standards, parallel programming languages.

1. Background

. The first ISO (Intemational Standards Organization) graphics standard, the Graphical Kernel System (com-
monly abbreviated as GKS)!3 was published in 1985. This specification was the outcome of a significant
amount of work performed by a group of experts of different nationalities. This standard, as well as its fol-
lowers like CGI'4, GKS-3D12, PHIGS!5, and PHIGS PLUS!6, have played an important role in computer
graphics ever since, both from an industrial as well as an educational point of view (see for example
Arnold and Duce? or Howard et al!l for a good overview of all these graphics standards).

However, it is widely recognized that the advances in hardware since 1985 (high performance graph-
ics workstations, low-cost laser printers, the predominance of raster technology both in display and hard-
copy devices, etc.) have changed the environment of graphics systems to one which is very different than
that envisioned for GKS or even its successors. Meanwhile, many new application areas have also come to

Report CS-R9127
Cwi
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

-2-

the fore, for example, multi-media systems, embedded systems, cooperative working, and scientific visuali- .
zation. The advent of low-cost, powerful graphics workstations has also led to the widespread use of visual
interfaces to application programs. All these new areas demand graphics support beyond the scope of that
provided by the current ISO/IEC standards for 2D and 3D graphics (GKS, GKS-3D and PHIGS). Conse-
quently, several institutions (including ISO) and expert groups have already started to work on the
specification of a successor for GKS.

Such a renewal of effort towards the specification of a new standard has several aspects; one of them,
which is our concern in this paper, is to take a very critical look at the existing specifications to understand
both their strengths and their deficiencies. To this end, among other approaches, the use of more formal
specification methods to just simply describe the model defined by GKS is important by itself. This is so
because the GKS model has been adopted virtually unaltered, by all other ISO graphics standard docu-
ments mentioned above, as well. Indeed, the official ISO documents on GKS contain a fairly informal
(albeit quite precise) specification of the GKS model. This informality has been the source of a number of
misunderstandings and misinterpretations in the past in implementations of the GKS standard. The use of
more formal methods may also help in defining a much more advanced model for computer graphics to
satisfy contemporary requirements such as user extensibility and the use of advanced parallel hardware.
Such formal methods have already been used in an attempt to describe the graphics output pipeline, or at
least a significant portion of it (see for example DuceS). '

2. Introduction

The input model of GKS is a relatively independent entity within the description of the standard itself.
Although it offers a fairly complex model (which has been reused with only very minor changes in PHIGS
and PHIGS PLUS as well), it has been one of the widely criticized chapters of the standard for its relative
rigidity, and for the difficulties involved in its adaptation to support new types of input devices.

An interesting aspect of this input model is that it attempts to give a consistent picture of input han-
dling, using the terminology of concurrent processes. This is a natural consequence of the complex nature
of input handling in interactive graphics applications, and the fact that it is physically possible for a works-
tation operator to simultaneously use more than one of its input devices. However, this is the only point in
the standard where parallelism is alluded to at all. Unfortunately, the terminology of concurrent processes
is used in the standard documents in a fairly imprecise way: the very notion of a process, when it is created
and when it dies, etc., are not defined at all; what these and other “‘process-related’’ notions effectively
mean is therefore ‘‘implementation dependent.”” For instance, going through the exercise presented in the
sequel, we had different ‘‘correct’’ interpretations of these concepts in mind which we had to reconcile
among ourselves first. (This is significant, considering that some of the authors of this paper have been
involved with the definition of the GKS standard, two independent commercial GKS implementations, and
previous papers giving a formal description of the GKS input model using CSP.)

Apart from its input handling aspect, the very notion of parallelism makes the input model of GKS
very interesting for future improvement of graphics standards. Indeed, it is widely recognized that con-
currency must somehow be included in any future graphics package specification to improve its user-
extensibility and its compatibility with more advanced hardware. However, there is no common agreement
on which of the different formalisms for parallel processing are the most suitable for the needs of such
specifications. To find suitable tools for describing future graphics standards as systems of cooperating
parallel processes, it seems inevitable at this point that different approaches must be tried out and tested
using realistic examples. The GKS input model seems to be a good first candidate for such studies. Some
of our colleagues have already produced a formal description of this model using Hoare’s CSP? (see for
example Duce, van Liere, and ten Hagen 19895 or Duce, van Liere, and ten Hagen 19907). Their work
provides a good reference point against which the usefulness of other tools and formalisms, such as Manr.
FoLp, can be measured. Compared to CSP, we believe ManmroLp allows more flexibility and modularity
which seem to be essential for describing the entire functionality (not just the input handling part) of
emerging graphics standards.

The rest of this paper is organized as follows. Section 3 is a brief overview of the Mantrorp language.
MantroLp is a language for describing complex communications among large numbers of concurrent auto-
nomous agents that comprise a dynamic parallel system. Graphics environments and complex user

-3-

interfaces are among the areas that can benefit from Manrop. However, Mantrowp is useful in a much
broader context for programming of parallel systems. The length of Section 3 may seem discouraging to
readers with no particular interest in parallel programming. This section can be easily skipped by those
readers and used only as a reference in case they wish to understand the details of the ManiroLp programs
presented later in the paper.

Section 4 describes the GKS input model. The notion of processes in ManroLp and the ease and the
flexibility with which they can be organized into cooperating agents help the construction of an implemen-
tation of the GKS input model in Manrrorp, described in Section 5. This implementation is based on a few
reusable components. It is modular and flexible enough to easily allow a range of changes to its functional-
ity and behavior. A few examples of these are discussed in Section 6, together with their implications on
the ManroLp program of Section 5. Some such changes are small variations of the GKS standard
specification. Others go further beyond the intentions of the GKS standard and show some of the extended
functionality that is desired to have in future graphics environments. Section 7 is the conclusion of the
paper, and a more detailed version of the ManiroLp programs discussed in the paper appear in the appen-
dices.

3. The ManroLp Language

In this section we give a brief and informal overview of the ManroLp language. The sole purpose of the
ManrFoLp language is to describe and manage complex communications and interconnections among
independent, concurrent processes. A detailed description of the syntax and the semantics of the ManFoLp
language and its underlying model is given elsewhere3. Other reports contain more examples of the use of

the ManwroLp language!-2.
Received Events
lan Output
T N

Incoming Streams ————— | Manifold Outgoing Streams

o <

% \\/\

Figure 1 - The model of a process in ManroLp

The basic components in the Manrop model of computation are processes, events, ports, and
streams. A process is a black box with well defined ports of connection through which it exchanges units
of information with the other processes in its environment. The internal operation of some of these black
boxes are indeed written in the ManroLp language, which makes it possible to open them up, and describe
their internal behavior using the ManroLp model. These processes are called manifolds. Other processes
may in reality be pieces of hardware, programs written in other programming languages, or human beings.
These processes are called atomic processes in ManroLp. In general, a process in ManwroLp does not, and
need not, know the identity of the processes with which it exchanges information. Figure 1 shows an
abstract representation of a MaNIFoLD process.

-4-

The interconnections between the ports of processes are made with streams. A stream represents a
flow of a sequence of units between two ports. Streams are constructed and removed dynamically between
ports of the processes that are to exchange some information. The constructor of a stream need not be the
sender or the receiver of the information to be exchanged: any third party manifold process can define a
connection between the ports of a producer process and a consumer process. Furthermore, stream
definitions in ManwroLp are generally additive. Thus a port can simultaneously be connected to many dif-
ferent ports through different streams. The flows of units of information in streams are automatically repli-
cated and merged at outgoing and incoming port junctions, as necessary. The units of information
exchanged through ports and streams, are passive pieces of information that are synchronously produced
and synchronously consumed at the two ends of a stream, with their relative order preserved.

Orthogonal to the stream mechanism, there is an event mechanism for information exchange in Mant.
roLp. Contrary to units in streams, events are atomic and active pieces of information that are broadcast by
their sources in the environment. In principle, any process in the environment can pick up such a broadcast
event. In practice, usually only a few processes pick up occurrences of each event, because only they are
tuned in to their sources. Occurrences of the same event from the same source can override each other
from the point of view of some observer processes, depending on the difference between the speed of the
source and the reaction time of an observer.

Events are generally raised by their sources and dissipate through the environment. They are active
pieces of information in the sense that in general, they are observed asynchronously and once picked up,
they preemptively cause a change of state in the observer. Events are the primary control mechanism in
ManroLp. Each state in a manifold defines a pattern of connections among the ports of some processes.
The corresponding streams implementing these connections are created as soon as a manifold makes a state
transition (caused by an event) to a new state, and are deleted as soon as it makes a transition from this
state to another one. In general, the set of sources whose events are honored by an observer manifold, as
well as the set of specific events which are honored, are both state dependent.

3.1. Manifold Definition

A manifold definition consists of a header, public declarations, and a body. The header of a manifold
definition contains its name and the list of its formal parameters. The public declarations of a manifold are
the statements that define its links to its environment. It gives the types of its formal parameters and the
names of events and ports through which it communicates with other processes. The body of a manifold
may also contain additional declarative statements, defining private entities. A manifold body primarily
consists of a number of event handler blocks, representing its different execution-time states. For an exam-
ple of a manifold, see Listing 1.

Conceptually, each activated instance of a manifold definition — a manifold for short — is an indepen-
dent process with its own virtual processor. A manifold processor is capable of performing a limited set of
actions. This includes a set of primitive actions, plus the primary action of setting up pipelines.

Each event handler block describes a set of actions in the form of a group construct. The actions
specified in a group are executed in some non-deterministic order. Often, these actions lead to setting up
Dipelines between various ports of different processes. A group is a comma-separated list of members
enclosed in a pair of parentheses. In the degenerate case of a singleton group (which contains only one
member) the parentheses may be deleted. Members of a group are either primitive actions, pipelines, or
groups. The setting up of pipelines within a group is simultaneous and atomic. No units flow through any
of the streams inside a group before all of its pipelines are set up. Once set up, all pipelines in a group
operate in parallel with each other.

A pipeline is an expression defining a tandem of streams, represented as a sequence of one or more
groups, processes, or ports, separated by right arrows. It defines a set of simultaneous connections among
the ports of the specified groups and processes. If the initial (final) name in such a sequence is omitted, the
initial (final) connection is made to the current input (output) port. Inside a group, the current input and
output ports are the input and output ports of the group. Elsewhere, the current input and output ports are
Input and output, i.e., the executing manifold’s standard input and output ports.

In its degenerate form, a pipeline consists of the name of a single port or process. Defining no useful

-5-

connections, this degenerate form is nevertheless sometimes useful in event handler blocks because it has
the effect of defining the named port or process as an active source of events.

An event handler block may also describe sequential execution of a series of (sets of) actions, by
specifying a list of pipelines and groups, separated by the semicolon (5) operator.Ir In reaction to a recog-
nized event, a manifold processor finds its appropriate event handler block and executes the list of sequen-
tial sets of actions specified therein. Once the manifold processor is through with the sequence in its
current block, it terminates.

3.2. Event Handling

Event handling in ManwroLp refers to a preemptive change of state in a manifold that observes an event of
interest. This is done by its manifold processor which locates a proper event handler for the observed
event. An event handler is a labeled block of actions in a manifold. The manifold processor makes a tran-
sition to an appropriate block (which is determined by its current state, the observed event and its source),
and starts executing the actions specified in that block. The block is said to capture the observed event
(occurrence). The name of the event that causes a transfer to a handling block, and the name of its source,
are available in each block through the pseudonyms event_name and event_source, respectively.

In addition to the event handling blocks explicitly defined in a manifold, a number of default
handlers are also included by the ManroLp compiler in all manifolds, to deal with a set of predefined system
events.

The manifold processor finds the appropriate handler block for an observed event e raised by the
source s, by performing a circular search in the list of block labels of the manifold. The list of block labels
contains the labels of all blocks in a manifold in the sequential order of their appearance. The circular
search starts with the labels of the current block in the list, scans to the end of the list, continues from the
top of the list, and ends with the labels of the block preceding the current block in the list.

The manifold processor in a given manifold is sensitive to (i.e., interested in) only those events for
which the manifold has a handler. All other events are to be ignored. Thus, events that do not match any
label in this search do not affect the manifold in any way. Similarly, if the appropriate block found for an
event is the keyword ignore, the observed event is ignored. Normally, events handled by the current block
are also ignored.

The concept of an event in Mantrorp is different than the concepts with the same name in most other
systems, notably simulation languages, and CSP. Occurrence of an event in MANFoLD is analogous to a flag
that is raised by its source (process or port), irrespective of any communication links among processes.
The source of an event continues immediately after it raises its flag, independent of any potential observers.
This raised flag can potentially be seen by any process in the environment of its source. Indeed, it can be
seen by any process to which the source of the event is visible. However, there are no guarantees that a
raised flag will be observed by anyone, or that if observed, it will make the observer react.

3.3. Block Labels

~ Event handler block labels are pattems designating the set of events captured by their blocks, separated by
colons (:) from each other and from their blocks. Blocks can have multiple labels and the same label may
appear more than once marking different blocks. Block labels are filters for the events that a manifold will
react to. The filtering is done based on the event names and their sources. Event sources in ManwoLp are
either ports or processes.

The most specific form of a block label is a dotted pair e.s, designating event e from the source (port
or process) s. The wild-card character * can be replaced for either e, or s, or both, in a block label. The
form e is a short-hand for e.* and captures event e coming from any source. The form *.s captures any
event from source s. Finally, the least specific block label is *.* (or *, for short) which captures any event
coming from any source.

+ In fact, the semicolon operator is only an infix manner call (see §3.5), rather than an independent concept in Mawor.
However, for our purposes, we can assume it to be the equivalent of the sequential composition operator in a language like
Pascal.

3.4. Visibility of Event Sources

In each block, the manifold processor can react to only those events coming from sources (processes or
ports) that are visible in that block. The visibility rule states that only those sources whose names appear in
a block are visible from that block. This means that, while the manifold processor is in a block, except for
the manifold itself, no process or port other than the ones named in that block can be the source of events to
which it reacts. There are other rules for the visibility of parameters, operands of certain primitive actions,
and it is also possible to define certain processes as permanent sources of events that are visible in all
blocks. A manifold can always internally raise an event that is visible only to itself via the do primitive
action.

Once the manifold processor enters a block, it is immune to any of the events handled by that block,
except if the event is raised by a do action in the block itself. This temporary immunity remains in effect
until the manifold processor leaves the block.

3.5. Manners

The state of a manifold is defined in terms of the events it is sensitive to, its visible event sources, and the
way in which it reacts to an observed event. Such states collectively define the behavior of a manifold. It
is often helpful to abstract and parameterize some specific behavior of a manifold in a subroutine-like
module, so that it can be invoked in different places within the same or different manifolds. Such modules
are called manners in ManoLp.

A manner is a construct that is syntactically and semantically very similar to a manifold. Syntacti-
cally, the differences between a manner definition and a manifold definition are:

1- The keyword manner appears in the header of a manner definition, before its name.
2- Manner definitions cannot have their own port definitions.

Semantically, there are two major differences between a manner and a manifold. First, manners
have no ports of their own and therefore cannot be connected to streams. Second, a manner invocation
never creates a new processor. A manifold activation always creates a new processor to ‘‘execute’’ the
new instance of the manifold. To invoke a manner, however, the invoking processor itself ‘‘enters and
executes’’ the manner.

The distinction between manners and manifolds is similar to the distinction between procedures and
tasks (or processes) in other programming languages. The term manner is indicative of the fact that by its
invocation, a manifold processor changes its own context in such a way as to behave in a different manner
in response to events.

Manner invocations are dynamically nested. References to all non-local names in a manner are left
unresolved until its invocation time. Such references are resolved by following the dynamic chain of
manner invocations in a last-in-first-out order, terminating with the environment of the manifold to which
the executing processor belongs.

4. The GKS Input Model

The purpose of the GKS input model is to supply a general interface to a host of different physical input
devices®:10.12,13 1p this model there is a fixed number of logical input device classes (six, to be precise),
which are characterized by the type of values they produce. For instance, there is a locator device class
which returns a point in the world coordinate system (a user-configurable virtual coordinate system).

An actual realization of a logical input device is a member of its corresponding class whose behavior
can be further specialized in a number ways by specifying prompt and echo type indicators; e.g., it is possi-
ble to have a locator with a rubber-band or one with a cross-hair, etc.

An important characteristic of the GKS input model is its operating mode facility. Each logical input
device, regardless of its class, can operate in three different modes:

request mode

In the request mode, the application asks for a value from a logical input device and blocks
until the value is produced. An operator must indicate explicitly when the device produces a

-7-

value by means of a trigger (e.g., a mouse button). The interval during which the operator may
use the trigger starts when the application asks for a value and ends when the operator uses the
trigger for the first time after that. :

sample mode

In the sample mode, the application can at any time read the current value of a logical input
device instantaneously, without blocking. In this mode there is no need for the operator to
trigger the device.

event modeJr

Here, as in the request mode, an operator must trigger the device, but the produced value(s) are
gathered in a central queue. (There is only a single central queue in GKS for all devices
operating in the event mode.) The application gets its input values from this queue, so it is not
necessarily blocked during an input operation. The interval during which an operator may use
the trigger for a logical input device in this mode starts when the event mode is entered for that
device and lasts until an explicit departure from the event mode for the device. The trigger
may be used as many times as the operator wishes in this interval. This mode allows much
more flexibility in the order of triggering different input values by the operator.

Every GKS logical input device has a measure process and a trigger process, and its behavior is
described in terms of these processes. Both processes can monitor several lower level (sometimes physi-
cal) devices.

A measure process keeps track of the current state of a logical device by mapping values obtained
from a low level input device onto its own state value. A separate process is responsible for producing an
echo on the screen. The prompt and echo type parameters of a GKS logical input device determine which
of a predefined set of echo processes is to be used. Thus echoing is a hidden activity of a logical input dev-
ice which can be influenced by an application program only to a limited extent and in a prescribed manner.
(For instance, it is not possible for an application program to specify that changes to the current position of
a locator device are to be echoed on the screen using an animated cat, rather than the static shape of a hum-
ble cross-hair.)

A trigger process must give the operator the possibility to indicate a particular instant in time. For
example, pressing a mouse button by itself is merely a timing signal which does not have any other con-
tents.

With these concepts the operating modes can be described as follows. Whenever a logical input dev-
ice is active, there is also an active measure process supplying it with its state value. In the request mode
there is also an active trigger process. The moment the trigger process produces its signal, the device
returns its current state value. After producing one value the processes are stopped. In the sample mode
the trigger process is not used. When a device is sampled, it produces its current state value as its result.
Finally, in the event mode, both measure and trigger processes are used and operate as in the request mode,
except that now multiple values may be produced. These values are delivered to a central event queue of
GKS.

All processes are activated upon a read request in request mode, and at mode setting for other modes.
The control structure imposed on processes in the GKS input model is thus non-trivial. However, note that
the exact semantics of terms like stopped as used in the GKS standard documents is undefined: it can be
interpreted to mean suspended, deactivated, or killed. Similarly, activation of a process can be interpreted
as resumption or creation of a new instance.

+ Caveat: The term event is used both in GKS and in Mawworn, designating completely different concepts. In this paper, we
refrain from using the term event to denote its GKS meaning, except in event mode and event queue. Thus, throughout this
paper, event is always a Masworo event, but event mode and event queue are GKS concepts.

-8-

5. A ManroLp Implementation of the GKS Input Model

In the previous section we outlined the official GKS description of a logical input device. Our implementa-
tion of the GKS logical input device contains ManroLp processes named after those mentioned in the GKS
standard. However, since we explicitly implement the communications that are verbally described in the
standard, we introduce a few extra processes as well. For simplicity, we do not explicitly deal with such
GKS concepts as input classes and prompt-echo types, etc. These features can easily be added, but they
are not relevant to our discussion.

Locator
. echo
Input Device (crosshair)
i echo_on
: echo_off
e A
X ! measure
T state N (transf_crds)
1 1
H l ! I
FommEmEme 1 resul ! .
F- i ' esult <4 DeviceScheduler :
oo Locator ! [!
e ! i 4
L T TR J :
(- A \\
! request_mode : ! mode_is set .
;! sample_mode : : - - “. fired
o event_mode
o sample Pl |
o request v .
! .' instru'ctions === =%--=-q o trigger
| 1
X | ! DeviceController: (button)
I : b e e o -
] et
| |
| I
L Fmm-=m--- A
____3 application !
________ -
[- 3 Manifod @ = ~—-----= > temporary stream
o ————> permanent stream
D Atomic process B event route

Figure 2 - The Process Structure

In Section 5.1, we first present our implementation model of a GKS logical input device. To be
specific, we use a locator device as an example. A GKS locator device is a reasonable choice here because
all other GKS input devices involve either equivalent or a subset of the components and connections used
for a locator. The structure and most of the components presented in Section 5.1 are generic and can be
used for other GKS logical input devices as well. Section 5.2 describes the details of one of the major gen-
eric components, the device scheduler manifold. The details of how various specific and generic processes

-9-

are put together to produce the functionality of a locator device is explained in Section 5.3.

5.1. General Structure of an Input Device

Figure 2 gives an overview of the relations among processes used for a GKS locator input device with a
specific prompt-echo type (we will come back to this example later). There are three types of communica-
tions depicted in Figure 2: two types of streams and the so-called event routes. Temporary streams are nor-
mally used in this example for transfer of only one unit, after which they are removed. Permanent streams
exist for as long as a logical input device exists. Note that this difference between the two types of streams
is only a practically useful distinction made in this example; there is no difference between the two that
MantFoLp is aware of. The event routes show the intended trajectories of certain events. Whether or not an
event is noticed by a receiver depends on its state: in some cases it might ignore them. To indicate this, the
lines for event routes are not fully connected to the receiver. Note that event trajectories are also meaning-
less in MantroLp: they too are only a practically useful concept in the context of this application.

Two types of processes are shown in the Figure 2: manifolds and atomic processes. MANIFOLD ViEWS
an atomic process as a black box. This simply means that the internals of an atomic process are irrelevant
to the application. Atomic processes may represent pieces of hardware, processes written in other
languages, etc. It may indeed be desirable to replace some of the atomic processes in our example with
manifolds. Nevertheless, we refrain from doing so in this paper because such substitutions are mostly
irrelevant for our purposes.

We make another distinction between generic processes and device specific processes. Generic
processes are used in the construction of every logical input device. Specific processes are substituted for
others in order to create the required variety of logical input device classes and prompt-echo types. Clearly
the process Locator is specific: it is a specific type of a GKS locator. The same is true for the specific
echo process (crosshair), the measure process (transf_crds), and the trigger process (button)
used in Locator. The generic processes are state, DeviceController, and Devi-
ceScheduler.

The intention for most of the connections in Figure 2 is rather obvious. For instance, the output of
the measure process should be directed both to the echo process and to the state process (which stores its
last received value). The presence and absence of echoing is controlled by the manifold Devi-
ceScheduler through raising events echo_on and echo_of£. The trigger process raises the event
£ired whenever an operator pushes the proper mouse button.

The manifold DeviceController controls the operation of the logical input device by
transforming instructions that come in from the application program into their corresponding events. The
generic process DeviceScheduler expects to detect logical input device mode setting requests, as
proper events raised by DeviceController. The manifold DeviceScheduler is the most essen-
tial part of the logical input device. It coordinates all actions especially those related to the operating
modes. We examine its details more closely in the next section.

5.2. The Device Scheduler Manifcld

" The manifold DeviceScheduler describes the interaction behavior of the processes which make up a
logical input device. There are four major stages in this manifold. The first one is when no specific operat-
ing mode has yet been chosen for a device. The other three correspond to the GKS logical input device
operating modes.

Listing 1 contains the code for the main level of DeviceScheduler. There are quite a few
things to note here. The parameters in the header refer to processes created elsewhere. The process con-
troller is the source of events which direct the behavior of this manifold. trigger corresponds the
earlier mentioned GKS concept. The values from the measure process are via the input port measures
available inside the manifold. The event declaration statements indicate what sort of events this manifold
will accept or send.

Next is the body of the DeviceScheduler manifold, enclosed in a pair of braces. It starts with
some private declarations, followed by its event handling blocks. In its private declarations, first we see a
definition of a process named state which is an instance of variable. A variable is a ManFoLD

-10-

DeviceScheduler (controller, trigger)
process controller, trigger.
port in measures.
event request_mode, sample mode, event mode.
event echo_on, echo off.
{
process state is variable.
permanent controller.
permanent (measures -> state).

start:

activate state;

idle.
request_mode:

RequestMode (state, trigger).
sample mode:

SampleMode (state) .
event mode:

EventMode (state, trigger).
end:

deactivate state.

Listing 1 - Input Device Manifold

process that remembers the last value it receives on its input port, and copies it on its output port whenever
it is connected to a ‘‘reader’’ process. The first permanent statement declares the process named controller
to be a permanent source of events through the lifetime of this manifold. The second permanent statement
sets up a pipeline to store the last value produced by the measure process into process state. This is
accomplished by defining a stream (—) between port measures and the input port of state. We
assume here that the measure process will later be connected to the input port measures.

The rest of the code defines different manifold blocks, each preceded by labels which denote events
that cause a transition to that block. The event start is always raised automatically after a manifold is
activated. In this case, the start block activates state and subsequently waits until another event
arrives. The candidates for incoming events are the three mode setting events (the end event will be
raised automatically inside the manifold just before it dies, e.g., in response to a terminate event).

Assume, for instance, that the event request_mode is received. Its associated block specifies that
a manner named RequestMode must be called. A manner is a ManFoLp construct which introduces
sub-blocks into a manifold program. A manner call effectively changes the context of the calling proces-
sor, and thus its behavior, by pushing the previous context into a stack and entering a new one — that
described by the manner. The previous context is restored upon exit from a manner.

Looking at the manner RequestMode in Listing 2 we note that it has the same syntactic structure
as a manifold (there are minor differences). Note the two mode-specific events that are declared only for
this manner. After the manner is entered the event start is raised automatically. This first raises the
event echo_off (switches off the echo possibly left on by previous modes), and then raises the event
mode_is_set which is needed for synchronization with the controller manifold (see Appendix B).
The manner then waits for an event to arrive.

At this point the next event may be a request event. The corresponding block causes the process
trigger to be declared as an active source of events by just naming it. The trigger process is
expected to produce the event fired at the proper time indicated by the logical input device operator.

-11-

manner RequestMode (state, trigger)
action state, trigger.
event request, fired.
{
start:
raise echo_off;
raise mode_is_set;
idle.
request:
raise echo_on;
trigger.
fired:
raise echo_off;
state -> passl() -> output;
idle.

Listing 2 - RequestMode Manner

Once the trigger process has fired, a value coming from state must be transferred to the output
port of the manifold. To accomplish this, a (temporary) pipeline is created from the output port of state
to the output port of the manifold. A pipeline is a set of consecutive streams which belong together. If one
of the processes engaged in the pipeline dies, all the streams in the pipeline will be removed. By putting an
implicitly activated instance of the process passl — which dies after passing exactly one unit from its
input to its output port — in between, the pipeline will transfer only one unit. Then the manifold waits until
anext event is received.

Dynamic nesting of manner calls means that while a manifold processor is inside the Request-
Mode manner (e.g., in block request waiting for an event from the trigger), a mode change event will
still be responded to properly. For instance, assume that at such a point in time a sample_mode event is
raised. Because its event source (controller) is declared to be permanent in the caller of the
RequestMode manner, it is allowed to preempt the current block (e.g., request in RequestMode).
Since there is no handling block for sample mode in RequestMode, the manner call terminates and
the processor retumns to its previous (i.e., the calling) context. Popping of the stacked contexts of manner
calls continues until either a handling block is found for the outstanding event, or the context of the mani-
fold is reached. In case of our example, we find a handling block for sample mode at the manifold
level. Thus, the DeviceScheduler manifold exits RequestMode and enters SampleMode, as
specified in the handler block for sample mode in Listing 1.

We will not discuss the other two operating modes in detail here, but only mention their differences
with the request mode. The actual code for these modes can be found in Appendix A. In the sample mode,
there is no trigger process. Instead, the moment for returning a state value is determined by the arrival of
the event sample raised by the controller process. In the event mode, the trigger process remains a per-
manent source of the fired events, and the value of state is directed to a process representing the
global event queue of GKS (gks_event_queue).

5.3. A Locator Device

The manifold and manners described in the previous section are more concerned with the generic part of
logical input devices. As an example of how an actual input device may be implemented, we take the
simplified locator device which was depicted earlier in Figure 2. A device of class locator returns a point
in a virtual coordinate system called the world coordinate system. The official GKS model allows several
world coordinate systems but for simplicity we assume only one.

-12 -

process button is ButtonDevice. - /* hardware button device */
process pointer is PointerDevice. /* hardware pointer device */

Locator ()

port in instruct.

{
process scheduler is DeviceScheduler.
process crosshair is Crosshair.
process transf crds is TransformCoordinates.
process controller is DeviceController.

permanent instruct -> controller.
permanent pointer -> transf crds ->

(-> crosshair, -> scheduler.measures) .
permanent scheduler -> output.

start:
activate controller (scheduler).
activate scheduler(controller, transf crds, button);
activate crosshair (scheduler);
activate transf crds();
idle.
end:

deactivate scheduler, crosshair, transf crds.

Listing 3 - Locator Manifold

The manifold Locator is shown in Listing 3. This manifold serves as the interface for the appli-
cation. The application puts instructions in the form of strings on Locator’s input port instruct
(which are subsequently forwarded to the DeviceControl ler). Results (coming from the process
DeviceScheduler) are sent back to the application through the standard output port of Locator.
The proper process structure for our locator device is defined by Locator. It first declares the processes
that are required for the device. The echo process crosshair takes care of the echoing for the device.
The process transf crds transforms device coordinates into world coordinates and serves as the
measure process for our locator. The atomic processes button and pointer are supposed to be
already active. They represent the actual (e.g., hardware) trigger and the lower-level (e.g., hardware) posi-
tion or displacement register, respectively.

Next a number of streams are defined, of which most can be traced back to the connections shown in
Figure 2. The stream connecting pointer to transf crds is the only stream not shown in Figure 2.

It supplies the measure process of our locator with its raw input.

6. Extensions and Modifications

One of the advantages of using Mantorp is that the resulting programs embody very flexible structures. In
our case at hand, new logical input devices can be defined very easily by reuse of the generic manifolds.
To create a new input device, it suffices to define a few processes and some stream connections as in
Locator. The ease of definition of new devices is significant because it allows programmers to construct
their own (hierarchical) devices. In the following sections we give a number of examples of how the origi-
nal implementation can be modified to add extra features or change its behavior.

We distinguish between three types of modifications. First, through a simple example, we show how

-13-

intercepting the information flow (in this case out of the measure process) can be used to modify behavior.
Then some variations on device echoing are discussed. These two types of modifications are in an abstract
sense, ‘‘minor’’ changes. The last set of examples goes into the core of the operation of the logical input
device and deals with concepts such as unbuffered information transfer.

6.1. Information Filters

Filtering the information flow that comes out of the measure process can be useful in a number of situa-
tions. For instance, to make certain items of a choice device not selectable can be achieved by mapping
their corresponding numbers to a special number that indicates no-selection.

In the context of our locator device, enforcing that the return values of a locator device must always
lie on some grid in the world coordinate system is another example where filtering is useful. In this case,
not only the device must return the properly rounded values, the echo process must also show the same
correct values. This can be accomplished by replacing the group in Locator by the following line:

(pointer -> transfer crds -> grid ->
(->crosshair, ->scheduler.measures))

The process grid is the filter that rounds off a point in the world coordinate system to its closest point on
a grid. Both the scheduler and the echo process crosshair receive the same rounded points and thus
echoing is done as desired.

6.2. Reaction Modifications

The examples in the previous section intercepted and modified the information coming out of the measure
process. The examples in this section involve changes to the way in which a logical input device must
react to some information, for instance to support a more complex echoing. The following structure can be
used to get several simultaneous echoes:

(pointer -> transfer crds -> (->echol, ->echo2, ->echo3 ... ,
->scheduler.measures))

Each echo process, echoi, receives a copy of the values coming from the measure process. An echo pro-
cess might also be preceded by a process that computes some predicate based on the incoming value.
Depending on the value of a predicate predi, its corresponding echo process can be turned on or off:

(pointer -> transfer crds -> (-> predl -> echol, -> pred2 -> echo2,
... —>scheduler.measures))

The notification of when to turn an echo on or off is supposed to be sent over the stream by its correspond-
ing predicate process.

We may wish to dynamically decide about which one on a set of echo processes is to be used. This
is very useful, for example, when a display screen is divided into a number of subareas, each with its own
associated cursor shape. Of course, this can be done by the above scheme, using a predicate process for

~ each echo process. In that case, we must make sure that all predicate processes comply with a common

switching protocol. It is practically more convenient to encapsulate such a switching protocol in a single
process. This can be done by changing the line to:

(pointer -> transfer crds -> (->switch, ->scheduler.measures),
switch.chl -> echol, switch.ch2 -> echo2, ...)

The process switch decides which of the several echo processes is to receive the measure values. Tum-
ing echo on and off could be done in the same way as in the previous example, i.e., the echo processes can
be identical for the two examples. The switch process sends the measure values only to the process that
is responsible for the cursor in the current area.

-14 -

6.3. Operational Modifications

The following examples are concemed with the operation of the generic part of the logical input device.
There are certain aspects of the implementation model that may cause undesirable effects in practice. In
the real world everything takes time: transmission of information, processing of information, and even,
simply becoming aware of an event. In Manworp, only the relative speed of the transmission of units and
events is guaranteed; there are no restrictions on the absolute delays of data transmission. Even more unc-
ertain is the execution time of atomic processes, such as an echo process.

Our MantroLp implementation of a logical input device, as presented earlier, demonstrates an ambi-
guity in the GKS standard that can lead to annoying consequences. When the measure process of a logical
input device produces values in a much higher rate than its echo process is able to handle, the connecting
stream buffers them and the echo process will lag behind. Meanwhile, the scheduler actually gets the most
recent measure value from the measure process. Thus, firing a trigger will cause a value to be returned that
does not correspond to that of the echo. In principle, this may or may not be a problem: in some cases it
may be desirable for the state of the logical input device to be synchronized with the echo, whereas in other
cases, it may be more advantageous to have it synchronized with the measure, even if the echo lags behind.
The most strict case where the state of the logical input device must be synchronized with both measure
and echo may also be necessary in some applications. The GKS standard does not address this issue expli-
citly, and thus, can sanction either of the three alternatives.

To avoid the discrepancy between the measure and the echo processes, we can flush intermediate
results when a newer measure value is available. To do this we construct a process called flush (shown
in Listing 4) that provides the latest value received via its input port on its output port whenever it receives
the event new_value.

The f£lush process has two manners, corresponding to whether or not £1lush has received a new
value since the last time it sent out a value. When no new value has arrived and if the receiving process is
ready to receive another value, a temporary stream is made directly from input to output. Otherwise the
latest value is stored and later retrieved when a value is requested. Process flush is now inserted
between the measure and the echo process:

(pointer -> transfer crds ->
(-> flush -> crosshair, -> scheduler.measures))

The process which decides when the next value is to be sent out (in this case crosshair), does so by
raising the value request event.

In the above example, the state of the logical input device is synchronized with the measure process.
However, we can easily accommodate the situation where the state of the logical input device must be the
same as the echo, simply by substituting the line:

(pointer -> transfer crds -> flush ->
(-> crosshair, -> scheduler.measures))

Now the state of the device is updated at the the same moment as flush sends out a value (still on
request of crosshair). If we are concerned with the performance we can also put f£lush earlier in
the pipeline just before transf er_crds. This avoids unnecessary computations of
transfer crds.

7. Conclusion

This paper reflects our study of the GKS input model from an implementation point of view. Since the
model was conceived in late seventies to early eighties, it is not particularly amenable to changes necessi-
tated by recent advances in graphics. For instance, it lacks the flexibility to allow programmers and end-
users configure their own customized logical input devices, and to take advantage of the special hardware
facilities available on modern workstations.

Our ManrroLp implementation of the GKS input model is simple and modular. It is smaller than its
previous formalizations that have appeared in the literature, and yet, it covers more of the operational
details of the model. It clearly shows some of the shortcomings and the ambiguities in the GKS standard

-15-

flush (echo)

process echo.

{
process store is variable.
permanent echo.

starﬁ:
do unchanged.
unchanged:
UnChanged () .
changed:
Changed () .
}

manner UnChanged.

{
start:
input -> passl() -> store;
do changed.
value request:
input -> passl() -> output;
do unchanged.
}

manner Changed() .
{
start:
input -> store.
value_ request:
store -> passl() -> output;
do unchanged.

Listing 4 - Process Flush

documents, and we have pointed out the ways in which they can be resolved. One interesting observation
is that our ManroLp implementation is flexible enough to accommodate all changes and extensions dis-
cussed in this paper with minimal effort, and with very little localized impact on the actual source code.

This exercise shows that the ManroLp language is useful for describing the complex interactions
among a set of cooperating concurrent processes that comprise non-trivial user interfaces. It also suggests
that ManroLp may be a suitable framework for defining the future graphics packages that must accommo-
date user reconfigurability. Of course, both of these issues need to be examined more elaborately as we
gain more practical experience with the ManoLp language and use it in more applications.

-16 -

Appendix A: Manifold: DeviceScheduler

process gks_event_gqueue is Queue. /* Global event queue */

DeviceScheduler (controller, trigger)
process controller, trigger.
port in measures.
event request_mode, sample mode, event mode.
event echo_on, echo_off.
{
process state is variable.
permanent controller.
permanent (measures -> state).

start:

activate state;

idle.
request mode:

RequestMode (state, trigger).
sample mode:

SampleMode (state) .
event mode:

EventMode (state, trigger).
end:

deactivate state.

manner RequestMode (state, trigger)
action state, trigger.
event request, fired.
{
start:
raise echo_off;
raise mode is_set;
idle.
request:
raise echo_on;
trigger.
fired:
raise echo_off;
state -> passl() -> output;
idle.

manner SampleMode (state)
action state.
event sample.
{
start:
raise echo_on;
raise mode_is_set;

-17 -

idle.

sample:
state -> passl() -> output;
idle.

manner EventMode (state, trigger)
action state, trigger.
event fired.

{

permanent trigger.

start:
raise echo_on;
raise mode_is_set;
idle.
fired:
state -> passl() -> gks_event_queue;
idle.

-18 -

Appendix B: Manifold: DeviceController

DeviceController(scheduler)

process scheduler.

{
event request _mode, sample mode, event _mode.
event request, sample.

start:
case ($getunit(input),
"request mode", set _new_mode (scheduler, request_mode),
"sample mode", set _new_mode (scheduler, sample mode),

"event mode", set_new _mode (scheduler, event _mode) ,
"request", raise request,
"sample", raise sample,
"stop", do end);
do start.
terminate:
ignore.
end:

deactivate parent.

manner set_new _mode (scheduler, mode _event)
action scheduler.
event mode_ event.
event mode is_set.
{
start:
(scheduler, raise mode_event) .
mode is _set:
return.

Appendix C: Manifold: Locator

-19-

process button is ButtonDevice. /* hardware button device */
process pointer is PointerDevice. /* hardware pointer device */

Locator ()

port in instruct.

{
process scheduler
process crosshair
process transf crds
process controller

is
is
is
is

DeviceScheduler.
Crosshair.
TransformCoordinates.
DeviceController.

permanent instruct -> controller.
permanent pointer -> transf crds ->

(-> crosshair,

-> scheduler.measures).

permanent scheduler -> output.

start:

activate controller (scheduler).

activate scheduler(controller, transf_ crds, button);
activate crosshair(scheduler);

activate transf crds();

idle.
end:

deactivate scheduler, crosshair, transf crds.

References

1. Arsas, F. AND 1. HERMAN, ‘‘Examples in Manifold,”” Technical Report CS-R9066, Centre for
Mathematics and Computer Science (CWI), Amsterdam (1990).

2. ARrBAB, F. AND 1. HERMAN, ‘‘Manifold: A Language for Specification of Inter-process Communica-
tion,”” Technical Report CS-R9065, Centre for Mathematics and Computer Science (CWI), Amster-
dam (1990).

3. ARBAB, F., ‘‘Specification of Manifold,”’ Technical Report (in preparation), Centre for Mathematics
and Computer Science (CWI), Amsterdam (1991).

4. ARNOLD, D.B. AND D.A. DUCE, ISO Standards for Computer Graphics: The First Generation,
Butterworths, London (1990).

5. Ducg, D.A., R. VAN LIERE, AND P.J.W. TEN HAGEN, ‘‘Components, Frameworks and GKS Input,””
in Eurographics’89 Conference Proceedings, ed. W. Hansmann, F.R.A. Hopgood and W. StraBer,
North Holland, Amsterdam (1989).

6. Ducg, D.A., ¢‘GKS, Structures and Formal Specification,’’ in Eurographics’ 89 Conference Proceed-
ings, ed. W. Hansmann, F.R.A. Hopgood and W. StraBer, North Holland, Amsterdam (1989).

7. DUCE, D.A, R. VAN LIERE, AND P.J.W. TEN HAGEN, ‘‘An Approach to Hierarchical Input Dev-
ices,”” Computer Graphics Forum 9, pp. 15-26 (1990).

8. ENDERLE, G., K. KANSY, AND G. PFAFF, Computer Graphics Programming - GKS (Second Edition),
Springer Verlag, Berlin - Heidelberg - New York - Tokyo (1987).

9. Hoare, C.AR., Communicating Sequential Processes, Prentice—Hall , New Jersey (1985).

10. HorGoop, F.R.A., D.A. Duce, J.R. GALLOP, AND D.C. SUTCLIFFE, Introduction to the Graphical
Kernel System GKS, Academic Press, London - New York (1983).

11. Howarp, T.L.J.,W.T. HEewrrT, R. J. HUBBOLD, AND K. M. WYRWAS, A Practical Introduction to
PHIGS and PHIGS PLUS, Addison-Wesley, Wokingham-Reading (1991).

12. Iso,, “‘Information processing systems - Computer graphics - Graphical Kernel System for Three
Dimensions (GKS-3D) functional description,”” ISO8805 (1988).

13. Iso,, ““Information processing systems - Computer graphics - Graphical Kernel System (GKS) func-
tional description,’” ISO I1S7942 (1985).

14. Iso,, ““Information processing systems - Computer graphics - Interfacing techniques for dialogues
with graphical devices (CGI) functional description,”” ISO DP 9636/1-6 (1988).

15. Iso,, “‘Information processing systems - Computer graphics, Programmer’s Hierarchical Interactive
Graphics System (PHIGS) - Part 1, Functional description,”” ISO/IEC9592-1 (1988).

16. Iso,, “‘Information processing systems - Computer graphics, Programmer’s Hierarchical Interactive

Graphics System (PHIGS) - Part 4, Plus Lumiére und Surfaces (PHIGS PLUS),”’ ISO/IEC9592-4,
rev. 3 (1989).

