1991

G.J. Akkerman, J.C.M. Baeten

Term rewriting analysis in process algebra

Computer Science/Department of Software Technology Report CS-R9130 June

CWI vatonal ingtitunt voor onderzoek op het gebied van wiskunde en informatica

CWI is the research institute of the Stichting Mathematisch Centrum, which
was founded on February 11, 1946, as a non-profit institution aiming at the
promotion of mathematics, computer science, and their applications. It is
sponsored by the Dutch Government through the Netherlands organization
for scientific research (NWO).

Copyright © Stichting Mathematisch Centrum, Amsterdam

1

In this section, we motivate our investigations, list our two main sources, and give a brief overview

Term Rewriting Analysis in Process Algebra

G.J. Akkerman
Department of Philosophy, University of Utrecht,
Heidelberglaan 2, 3584 CS Utrecht, The Netherlands

J.C.M. Baeten
Department of Software Technology, CWI,
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
and
Programming Research Group, University of Amsterdam

P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

Abstract

We discuss the application of term rewriting analysis to theories of communicating concur-
rent systems. Turning such a theory into a canonical term rewriting system yields decidability
and is essential for implementation. We do this for the theory ACP with a silent step in the
setting of branching bisimulation. It is necessary to consider rewriting modulo equalities.

The article has the following structure: After the introduction and a list of definitions, we
consider in section 3 Knuth-Bendix completion. In section 4, we consider a Peterson-Stickel
complete term rewriting system which has the same term algebra as the fragment of ACP”
it corresponds with. In section 5, we prove termination of this rewrite system.

1980 Mathematics Subject Classification (1985 Revision):

68Q45, 68Q55, 68Q65, 68Q50.

1987 CR Categories: F.4.3, D.2.10, D.3.1, D.3.3.

Key words & Phrases: process algebra, term rewriting, silent step, branching bisimulation,
Knuth-Bendix completion.

Notel: When we started this article, and wrote much of it, the first author was employee of
the Software Engineering Research Centrum, Utrecht, The Netherlands.

Note2: The second author received partial support from ESPRIT basic research action 3006,
CONCUR, and from RACE project 1046, SPECS. This document does not necessarily reflect
the views of the SPECS consortium.

Introduction

of the process algebra system that we consider.

1.1 Motivation for a term rewriting analysis

In this subsection, we explain why we did a term rewriting analysis of ACP”. The foremost
reason for doing a term rewriting analysis is that it yields a canonical term rewriting system. A
canonical term rewriling system is a term rewriting system that is strongly terminaling and has
unique normal forms. Canonical term rewriting systems can be used for the following purposes:

Report CS-R9130

CWI

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1

1. It can be verified by inspection whether a certain class of function symbols (called defined
functions) can be eliminated from a term by means of the rules of the rewriting system. (See

[HHS82, JK89].)

2. It can be used for proving that certain algebras are conservative extensions of others. (See

[JK89].)

3. It yields a decision procedure for equality of terms: Two terms have the same interpretation
in every model of an algebra if they have the same normal form.

4. A canonical term rewriting system yields a well defined implementation of the algebra for
closed terms.

1.2 Origins

We apply the completion method of [PS81] to the process algebra system ACPT of [BW90]. One
of the authors has considered this subject earlier, in [Akk87]. The version of ACPT considered in
that report resisted completion. We now succesfully consider a modern version of ACP”.

1.3 Algebraical preliminaries

In this section we consider some notions from abstract algebra.

1.3.1 Term algcbras

In this paper we consider the closed term algebra and open term algebra associated with an axiom
system:

o The closed term algebra (or just term algebra) is constructed by considering the set of all
closed terms over the signature of the axiom system, and partitioning them in equivalence
classes, where terms are in the same equivalence class if and only if they can be shown equal
by means of the equations.

o The open term algebra is constructed in the same way, but starting from the set of all terms,
including those containing variables.

An equation is considered valid in the open term algebra if its left hand side and right hand side are
in the same equivalence class, and valid in the closed term algebra if for every ground substitution
instance of the equation, the left and right hand side of this instance are in the same equivalence
class.

1.3.2 Conservative extensions

An axiom system F; is called a conservative ertension of an axiom system F- if it allows all
deductions of Ey, and does not allow any new deductions on old terms. Usually consideration is
restricted to ground terms only.

1.4 Process Algebra

In this section, we will describe the axiomatization of process algebra that we consider. See table
1. This is a fragment of ACP” which can among other variants of process algebra be found in
[BW90].

The axioms describe the possible behaviour of a process in terms of choices “+” and sequences
(denoted by a usually invisible infix dot, as in az for a -) of actions. Those actions are in the
axioms referred to by action variables “a”, “b” and “c,” ranging over some set A of actions. The
specification is parametrized over this set A of actions together with a partial communication

r+y=y+z Al TT=12 B1

st (W4o)= (tn) bz A2 |a(ry+)+ =zly+:) B2

rt+zr==z A3

(z+y)z=2zz+yz A4

(zy)z = 2(y2) A5

z+é=1z A6 alb = y(a, b) if y(a,d) | CF1

bz =16 AT alb = é otherwise CF2

zlly=z|ly+yllz+zly CMI | azlb = (a|b)z CM5

a|| z = ax CM2 | albz = (a|b)z CM6

azlly = a(zlly) M3 | azlby = (alb)(zlly) M7

(z+y)z=zllz+yllz CM4 | (z+y)lz= x|z + y|z CM8
z|(y +2) = zly + x|z CMY

Table 1: Considered fragment of ACP".

function v : A x A — A. We take §,7 € 4, and we assume that for all a,b,¢c € A, alb = bla,
a|(blc) = (a|b)|c, a|r = 6 and alé = 4.

For the meaning of the axioms in table 1, the reader is referred to [BW90].

Missing in table 1 are the axioms for 8y and 7. We do not consider those function symbols
because their axiomatization depends on the actions in H and I being actions from A, and this
does not fit our analysis using open terms.

A successful term rewriting analysis for ACP was carried out in [BK84] (although the treat-
ment of rewriting modulo commutativity and associativity was inexact) and used to establish basic
results about the theory. In [BK85] however, it appeared that such an analysis for the theory with
Milner’s silent step 7 is not possible, due to the fact that the second and third 7 law of Milner
cannot be ordered (i.e., given a direction). Therefore, in [BK85] graph rewriting techniques and a
notion of saturation were used instead, to establish the basic theorems for ACP with silent step.
In [GW89] an alternative formulation of the laws for the silent step was proposed (having as se-
mantics the so-called “branching bisimulation”) and advantages over Milner’s approach discussed.
The question arises whether ACP with branching bisimulation allows a successful term rewriting
analysis. In [BW90] it is claimed that this is indeed the case. The present article provides a full
proof of this fact. A similar claim for CCS with branching bisimulation was made in [DIN90].

2 Definitions

In this section we define our concepts. We hope that most of our readers already are familiar with
the concepts involved, otherwise it would be useful to consult [HO80].

Definition: (symbols)
We assume a set of uninterpreted symbols.

Definition: (signature)
A signature is a pair (F,V) of two disjoint sets of symbols. Symbols in F' are called function
symbols. Symbols in V are called variables. We assume the existence of a function arily: I" — N.

Definition: (terms)

The set T(F,V) of terms over F,V is defined as the smallest set such that V C T(F,V) and
if t1,...,tn € T(F,V) and arity(f) = n then f(ty, ..., tn) € T(F,V). We will usually denote
T(F,V) by T.

Definition: (equality of terms)

We use “=” to denote syntactical equalily on terms.

Definition: (occurrences, replacement)

Occurrences are finite sequences of integers. The set of occurrences O(t) of a term ¢ is defined
by: O(v) = () for v € V and O(f(t1,...,tn)) = {()} U{U", (i) T O(t)}, where u v denotes
the concatenation of sequences u and v. For v € O(t) the subterm ¢t/u at u in ¢ is defined by
t/() =tand f(t1,...,tn)/ (G, u1, ..y w) = t;/{u1, ..., u;). We define O(s,t), the occurrences of s in ¢
as {u € O(t)|t/u = s}. For u € O(t) replacement t[u — s] of the subterm in ¢ at u by s is defined
by t[{) — s]= s and f(t1,...,t:)[(5) " u —s] = f(t1,.. ., tica, tilu — s, tig1, ..., tn).
Definition: (closure under contexts) ’

We say that a relation R : T x T is closed under conterts if whenever t, = sq,...,t;_, =
si—1,tiRsi,tiy1 = Siy1,...,tn = Sn and arity(f) = n then f(t1,...,t.)Rf(s1,---,5n).

Definition: (term rewriting system, axiom system)

We define both a term rewriting system and an aziom system as finite sets of pairs of terms. The
difference between them is their intended use. We express this intended use by writing a pair of
terms (s,t) in a term rewriting system as s — ¢, and the same pair in an axiom system as s = ¢.

Definition: (substitution)

A substitution is a total function o from V to T. Substitutions are extended to maps from 7" to
T by o(f(t1,-..,t2)) = f(o(t1),...,0(tn)). We say that a relation R on terms is closed under
substitution if for all terms s and ¢ and all substitutions o whenever sRt also o(s)Ro(t).

Definition: (Equational term rewriting system)
An equational term rewriting system (ETRS) is a pair (R, E) where R is an term rewriting system,
and E an axiom system.

Definition: (equality and rewrite relations)

The one step equalily relation =}, of an equational term rewriting system (R, E) is defined as
the smallest symmetrical relation on terms containing E that is closed under substitutions and
contexts. The equality relation =g of a term rewriting system is defined as the reflexive transitive
closure of the one step equality relation. The one step rewrite relation —% of a term rewriting
system R is defined by: s —} t if there exist an occurrence u € O(s), a substitution ¢ and a rule
! — 7 € R such that s/u = ¢(I) and t = s[u — o(r)]. The one step rewrite relation is the smallest
relation on terms containing R that is closed under substitutions and contexts.

Definition: (Unification, matching)

We say that a substitution o is an E-unifier of the two terms s and ¢ if o(s) =g o(t). We say that
two terms s and t are E-unifiable if there exists an E-unifier of s and t. We say that a substitution
o E-matches s to t if o(s) =g t.

Definition: (Rewriting relations modulo)

The one step rewrite relation —>}3/E is defined as =g . —% . =p. (Here R;.R» is the composition
{(z,y)|Fu(z Riu AuR2y} of the relations R; and R;.) The rewrite relation — g/ is defined as the
reflexive transitive closure of —»}{ /E" Notice that this relation allows equality steps between the
rewrite steps.

Definition: (Noetherian)
A relation — is called Noetherian (or well-founded) if there are no infinite sequences s; — s4 —

Definition: (confluence of a pair of terms)
We call a pair (s1, s2) of terms confluent for a relation — if there exists a term ¢ such that s; —* 1
and s —* t. (Here we use R* for the transitive closure of R.)

3 Knuth-Bendix completion considered briefly.

Note: In this section, we will use the word rewriting for a reduction, because we will use the word
reduction for the transformation of a problem to another (simpler) problem.

In this report we consider the confluence of a term rewriting system presenting ACP". A
well-known technique for constructing (often infinite) term rewriting systems for an equational
theory is Knuth-Bendix completion. We will consider Knuth-Bendix completion in its original
form [KB70, Hue80], and in its variant by Peterson and Stickel [PS81]. Let us first consider
confluence.

A term rewriting system is confluent if for every pair of divergent reductions t —* t; and
t —* t,, the resulting pair of terms (t;,12) is confluent. Knuth-Bendix completion is based on a
technique for finding divergent reductions t —* ¢, and t —* to for which there are no convergent
reductions. This technique for finding such divergent rewritings is based on the following two
reductions:

o First, the problem is reduced to the consideration of all divergent pairs of one step rewritings,
under the assumption that the rewriting relation is well-founded.

o Next, this problem is reduced to the consideration of all one step rewritings from terms
obtained by overlapping two left hand sides of rewrite rules.

Since there are only finitely many (most general) overlappings of the left hand side of a rewrite
rule, these reductions make the test for confluence decidable, and in fact yield a counterexample
if they fail.

This theory of Knuth-Bendix completion sketched above has to be modified if we allow a
sequence of rewrite steps interspersed with equality steps. The required modifications are not
obvious if some rewrite rules have a variable that occurs more than once in its left hand side. We
will use a variant of Knuth-Bendix completion by Peterson and Stickel, because this variant can
indeed be viewed as a modification of Knuth-Bendix completion. (Other, more general, variants
exist, e.g.,[JK86] and [BD89], but in as far as those deviate from the framework of Peterson and
Stickel, they develop more theory, and require, e.g., a test for coherence.) Peterson and Stickels
completion differs in the following respects from Knuth-Bendix completion:

e Unification in the overlap test is done modulo associativity and commutativity.

o Termination of the rewrite rules must be proven modulo associativity and commutativity.
(That is, there must be no infinite descending chains of rewrite steps interspersed with
equality steps.)

e The set of rewrite rules has to be increased: For every rule | — r where [is governed by a both
associative and commutative function symbol (say +), we require that a rule l+2—r+2
be added, where z is a variable not occurring in [or 7. We notice that addition of such
extensions is equationally sound, but it may give rise to new overlaps.

4 Results

A natural term rewriting system associated with ACP” would have the equations of ACP”
oriented from left to right. Unfortunately, that rewrite system would not be confluent. In this
section, we motivate the construction of a rewrite system by means of a sequence of divergent
reductions. We will start by considering some divergent reductions of ACP” considered as a
rewrite system. Later we will also consider a divergent reduction based on the rules we added to
ACP".

All term rewriting systems that we consider have the same term algebra as our fragment of
ACPT: No equations were deleted, and only equations valid in the term algebra of our fragment
of ACP” were added, as can easily be proved by means of structural induction.

Note: It is not at all clear whether the steps that we took to resolve the divergences are the only
reasonable ones, though we cannot think of others that work. (Just orienting the outermost terms
to rules did not seem very promising.)

1 z+zr=2z 14 bz =6

2 IT=2 15 Tle =46

3 TR 16 2l (ry) = zlLy

4 r|r==x 17 alb = v(a,b)

5 Sla=4é 18 z((ry) +y) = zy

6 Tla=6 19 zlly=z|ly+yllz+zly
7 (zy)z = z(yz) 20 (rz)|ly =46

8 af|z = az 21 | (ry+y) =z|y

9 z(Ty) = 2y 22 (az)]b = (a]b)z

10 (t+y)z=zz+yz 23 (r(y+z2)+y) =z(y+=z)
11 br =6 24 z||(r(y+2)+y) =z (y+ 2)
12 (z+y)llz=zllz+ylz |25 (az)|ly = a(=]ly)

13 (+ylz==z|z+ylz |26 (az)|(by) = (a[b)(=z|ly)

Table 2: The associated rewrite system.

We will now present the sequence of divergences based on the new rewrite rules that they led
to: rise to:

4.1 Rules [9] and [18]

Rules [9] and [18] are consequences of other rules:
e Rule [9]: z(ry) ="' (z7)y =2 zy.
o Rule [18]: z((ry) +v) =PV 2((r(y + 6)) + y) =0 2(y + §) =P oy

The other rules present in table 2 but not in ACPT are not equational consequences of the rules
used thus far, but are valid in the (closed) term algebra. (And the other rewrite rules can be used
for proving this by structural induction.) They were added to avoid the problems noted below.

4.2 Rule [14]

Because: zly =071 (¢ + 6)|y =13 (z]y) + (6]y) Since the two outermost terms of this deduction
form an equation of two terms in normal form, and this equation is not present as a rewrite rule
or the converse of one, we must add rules to rewrite at least one of both terms. In this case, we
decided to add rule [14]. The terms resulting after application of these rules are then equal by
rule [3]

4.3 Rules [4] and [15]

Because: ay =[87"] ally =271 (ar) |y =% a(r|ly) =1 a(r|| y+y| 7 +y|r) =& a(ty+y|l 7+ yl7)
As before, we must add rules to rewrite at least one of both terms. In this case, we decided to add
rules [4] and [15]. The terms resulting after application of these rules are then equal by rule [18]

Remark:

Let us note explicitly, that for resolving this equation, which was produced by equations obtained
from left linear rules only (viz. rules [2], [8], [19] and [25]), we need rule [18], which is not left linear,
(or its converse, which is nonterminating). Therefore we suspect that we cannot do a similar terin
rewriting analysis of the left linear fragment of ACP” using techniques (given in [Hue80]) only
applicable to left linear rules. Consequently, we think that Peterson-Stickel completion provides
the simplest (but also least powerful) working approach to term rewriting in process algebra.

4.4 Rules [16] and [20]

a(zlly + yllz + zly) =17 a(elly) =257 (az) |y =C7 a(ra) |y =L a(rzlly) =0 a((relly) +

(vl 7z) + (z|7y)) =2 a(r(zlly) + (vl 2) + (z|7y) =" a(r(z|ly +yll= +=ly) + (y] 72) + (2]7v)
As before, we must add rules to rewrite at least one of both terms. In this case, we decided to add
rules [16] and [20]. The terms resulting after application of these rules are then equal by rule [23]

4.5 Commutativity of “|”

In table 2, we have already used commutativity of “|” by having only one version of [15] and [20].
Therefore, we assume for the moment that we have both versions of each rule. We consider now
the following deduction: a(z| y+y| z+zl|y) =[197"1 g(z||y) =257 (az)|| y =067 (az)| (ry) =)
a(zll(ry) =19 a(z| (ry) + (r) =+ 2|(ry)) =0 a(zlLy+ (ry) L2 +2l(r)) =P a(zy+r(lle) +
z|(79)) =29 a(elLy + (lle) + 8) =¥ a(zly + (ylle) = a(zlly + T(yllz + 2]y + yle)) =1
a(y| = +z| y+ ylz). (Notice that this divergent reduction is based on the rules 16 and 20 that we
have added.) Toresolve it, we decide to add an equation “rly = y|z”, expressing the commutativity

Of “ln.
4.6 Rules [21] and [24]

These can now be proven by the axioms presented thus far:

e Rule [21]): z|| (ty + v) =[67") z| T(ry +v) =08 z|| ry =09 2| y
o Rule [24]: z|| (7(y + 2) +y) =[167"] z|| r(r(y+2)+y) =03 || r(y + 2) =0 2| (y + 2)

4.7 Main theorem
We can now state our main theorem, the confluence of our AC'P” subset.

Theorem:
The system in table 2 is confluent.

Proof:

We verified this by computing all E-critical pairs, and checking their E-confluence, using the
implementation of Peterson-Stickel completion described in [Akk87]. Under the assumption of
well-foundedness of the rewrite relation, this suffices. It may be appropriate to check the confluence
of table 2 with another implementation as well.

5 Proving termination

First we state a definition from [De79):

Definition: (Simplification ordering)
A transitive and irreflexive relation > is a simplification ordering on a set of terms T if for any
terms t’ t” f(...t...)’ f(t') eT

1. t > t'implies f(---t---)> f(---t'---) and

For the proof of termination of our term rewriting system, we use the following theorem (from

[De79]):

Theorem:

[z]lv] EFIIF2

[z]y] | 21t

[z]v] 9l=l+lv]
[zy] | [=]l] + [2]

[+ 9] | [e]+ [u] + 1
[a] 2

Table 3: Interpretation of the function symbols

A term rewriting system P = {l; — r;}_, terminates if there exists a simplification ordering >
over T such thar I; > r; for any assignment of terms in T to the variables of ;.

Since this theorem considers ordinary rewriting, while we consider rewriting modulo asso-
ciativity and commutativity, we cannot immediately apply it. However, if we require that the
ordering is compatible with associativity and commutativity of the associative and commutative
function symbols, the proof in [De79] can easily be adapted to rewriting modulo associativity and
commutativity.

We will now describe the simplification ordering that we use to prove termination:

Definition: (Numbers greater than 1)
We define N3 as {m € N|m > 2}.

Definition: (extended polynomial terms)
We define extended polynomial terms inductively by:

e All n € N>, are extended polynomials.
e All v € V are extended polynomials.

e If z; and z, are extended polynomials, then z; + 25 is an extended polynomial.

If z; and z, are extended polynomials, then z;.25 is an extended polynomial.
e If z is an extended polynomial, then 27 is an extended polynomial.

We denote the set of extended polynomials over V by X[V]. Assigments of N>s to V are extended
to X[V] in the expected way.

Definition: (Majorizing)

We define the ordering s > t (“s majorizes t”) as V., N, .m(s) > m(t). Notice that majorizing
is closed under substitution. -

Theorem:
ACPT is terminating

Proof:
We make the following observations:

o Using the interpretation given in table 3, we define an ordering on T by s > ¢ if [s] > [t].

e In table 3, associative and commutative function symbols are interpreted in such a way
that compatibility modulo associativity and commutativity is ensured. (Our interpretation
satisfies [(z + y) + 2] = [+ (y + 2)}, [+y] = [y + 2], and z|y = y|2.)

e After noting that all the basic functions 2, .+., .-. and 2 used to construct this interpretation
already satisfy the conditions for a simplification ordering, it is easy to prove that > on T’
is a simplification ordering.

e Some easy calculations show that for every rule I — r in table 2, [] > [r], hence { > ».

Remark: Remarkable about [De79] is that it, when it is used as we do here, does not depend on
the well-foundedness of N2, in the sense that e.g., R>2, the real numbers greater than 2, would
work just as well.

References

[Akk87) G.J. Akkerman. Knuth-Bendiz Completions of Process Algebra Aziomatizations. Tech-
nical Report IR-135, Free University, Amsterdam, October 1987.

[BD89] L. Bachmair and N. Dershowitz. Completion for rewriting modulo a congruence. Theo-
retical Computer Science, 67:173-201, 1989.

[BK84] J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication. Infor-
mation and Control, 60(1/3):109-137, 1984.

[BK85] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstraction.
Theoretical Computer Science, 37(1):77-121, 1985.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge University Press, 1990.

[De79] N. Dershowitz A note on simplification orderings. Information Processing Lellers, 9(5),

1979.

[DIN90] R. De Nicola, P. Inverardi and M. Nesi. Using the Axiomatic Presentation of Behavioural
Equivalences for Manipulating CCS Specifications. In J. Sifakis, editor, Automatic Veri-
fication Methods for Finite State Systems. LNCS 407, Springer Verlag, 1990.

[Fag84] F Fages. Associative Commulative Unification. Technical Report 287, INRIA, April 1984.

[GW89] R.J. Glabbeek and W. P. Weijland. Branching Time and Abstraction in Bisimulation
Semantics. (Extended Abstract.) In G. X. Ritter, editor, Information Processing 89,
IFIP World Congress, San Francisco, pages 613-618 North-Holland, Amsterdam 1989.

[HH82] G. Huet and J.-M. Hullot. Proofs by induction in equational theories with constructors.
Journal of Computer and System Sciences, 25:239-266, 1982.

[HO80] G.Huet and D. Oppen. Equations and rewrite rules: a survey. In R. Book, editor, Formal
Languages: Perspectives and Open Problems, pages 349-405, Academic Press, 1980.

[Hue80] G. Huet. Confluent reductions: abstract properties and applications to term rewriting
systems. Journal of the Association for Computing Machinery, 27(4), 1980.

[Hue81] G. Huet. A complete proof of correctness of the knuth bendix completion algorithm.
Journal of Computer and Systems Sciences, 23(1), 1981.

[JK86] J.-P.Jouannaud and H. Kirchner Completion of a set of rules modulo a set of equations.
SIAM Journal on Computing, 15:1155-1194, 1986.

[JK89] J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in theories without
constructors. Information and Computation, 82, 1989.

[KB70] D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebras, pages 263-297, Pergamon Press,
1970.

[PS81] G. E. Peterson and M. E. Stickel. Complete sets of reductions for some equational theorics.
Journal of the Association for Computing Machinery, 28(2), 1981.

