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Abstract. In the framework of [LS], partial deduction involves the creation of SLD-trees for a

given program and some goals, up to certain halting points. This paper identifies the
relation between halting criteria for partial deduction and loop checking (as formalized
in [BAK]). It appears that loop checks for partial deduction must be complete, whereas
traditionally the soundness of a loop check is more important. However, it is also
shown that sound loop checks can contribute to improve partial deduction. Finally, a
class of complete loop checks suitable for partial deduction is identified.
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1. INTRODUCTION

Although partial evaluation dates back to the 1970’s, and was introduced into
logic programming in the early 1980’s ([Ko]), the topic only recently has
attracted more substantial attention (e.g. [BEJ]). The foundations of partial
evaluation in pure logic programming have been thoroughly studied in [LS]; we
follow their framework here. Their method is more appropriately called partial
deduction nowadays, leaving the term partial evaluation for works taking into
account certain non-logical features of PROLOG, as is done in e.g. [S1, S2].
The following intuitive description of partial deduction is given in [LS]:
‘Given a program P and a goal G, partial evaluation produces a new program P,
which is P “specialized” to the goal G. The intention is that G should have the
same answers w.r.t. P and P, and that G should run more efficiently for P' than
for P. The basic technique for obtaining P' from P is to construct “partial” search
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trees for P and suitably chosen atoms as goals, and then extract P' from the
definitions associated with the leaves of these trees.’

Thus for some atoms A a finite part of an SLD-tree of PU{«A} must be
constructed. This paper will not address the choice of the atoms, but concentrate
on the question which part of the SLD-tree must be constructed, or, conversely,
where the construction of the SLD-tree must be stopped. This question is of
fundamental importance, as a sufficient stopping criterion is necessary to prevent
the partial deduction from looping.

In the literature it is often noted that these stopping criteria are ‘very closely
related to the problems of loop trapping’ ([LS]). But a precise connection was
never made, probably because there was no formal theory of loop trapping to
connect to. Either the problem was only identified as being ‘difficult’, or for
practical purposes ad hoc solutions were used.

Recently a framework for the analysis of loop checking mechanisms has
been presented in [BAK], together with some particular loop checks intended to
be incorporated in a PROLOG-like interpreter for use at run-time. One of the
aims of this paper is to show that the framework of [BAK] is sufficiently general
for describing loop checks suitable for partial deduction as well.

The plan of this paper is as follows. Section 2 contains all preliminaries
regarding partial deduction, illustrated by an example. Section 3 recalls the basic
definitions of loop checking, as presented in [BAK]. A group of loop checks,
the equality checks, is studied as an example.

In Section 4, it is shown that the termination criteria for partial deduction can
indeed be described as loop checks, but that their characteristics are different
from the ‘ordinary’ loop checks that can be used at run-time. More precisely, a
loop check used for partial deduction must first of all remove all infinite
derivations (completeness), whereas for ordinary loop checks the most important
requirement is that no solutions are lost (soundness). Due to the unsolvability of
the halting problem, these two requirements are generally incompatible.

We also show in this section how in conjunction with a complete loop check
(which enforces termination) a sound loop check can be used to remove some
loops from the program P' obtained by partial deduction. To this end the
example of Section 2 is reconsidered. Adding a sound loop check to the partial
deduction procedure is probably less costly than adding it to a PROLOG-like



interpreter, as most information needed for it (such as previous goals) must be
maintained for the complete loop check anyway.

The importance of sound loop checks has been sufficiently stressed in the
literature (e.g. in [BAK]). Complete loop checks have not yet received that much
attention. Section 5 contains some general observations about complete loop
checks (notably their relation with selection rules) and describes a class of
complete loop checks that is inspired by some typical examples proposed in
[S1]. Furthermore, the relationship with [BASM] is discussed.

In [LS], programs with negation are considered and SLDNF-resolution is
used, making the distinction between finite and infinite failure significant. As
shown in [B2], the use of a sound loop check can be combined with (stratified)
negation, but because infinite failure can be turned into finite failure by such a
loop check, it was more natural to use SLS-resolution ([P]) there. In order to
avoid unnecessary complications, we restrict ourselves here to programs without
negation and the use of SLD-resolution.

2. PARTIAL DEDUCTION

In this section we recall the basic concepts of partial deduction, as introduced in
[LS]. Knowledge of the basic theory and terminology of logic programming, as
can be found in [L], is assumed. For two substitutions ¢ and T, we write 6 <7
when G is more general than T and for two expressions E and F, we write E<F
when F is an instance of E. An SLD-derivation step from a goal G, using a
clause C and an idempotent mgu 6, to a goal H is denoted as G =¢,o H.

In contrast with [L], where SLD-derivations must always be finished (being
successful, failed or infinite), here SLD-derivations can also be unfinished, in
the sense that a goal can have no selected literal, in which case the derivation
ends at that goal. Similarly, SLD-trees can be unfinished too. An unfinished
SLD-derivation or -tree that consists solely of the initial goal is called trivial. If
an SLD-derivation D is finite, then |D| denotes its length, i.e. the number of
resolution steps in it.

Given a goal G = «<Aj,...,Ay, G~ denotes the formula AjA...AAp. With
each goal in an SLD-derivation Go =¢y,0; G1 =...= Gk-1 =Cy,0 Gk =-... we
associate a resultant: for i > 0, the resultant associated to Gjiis Go~0105...6; if
G; =0, Go~0103...0;<G;~ otherwise. Notice that if Gg consists of a single
atom, such a resultant is a program clause.



DEFINITION 2.1 (Partial deduction).
Let P be a program, A an atom and T a finite non-trivial SLD-tree of PU{«A}.
Let Gi,...,Gr be the leaves of T that are not failed (r = 0 is possible). Let
Rjy,...,R be the corresponding resultants. The set {Ry,...,R;} is called a partial
deduction for A in P.

For a set of atoms A = {Ay,...,As}, a partial deduction for A in P is the
union of partial deductions for Ay,...,Agin P.

A partial deduction for P w.r.t. A is a program obtained from P by replacing
the set of clauses in P whose head contains one of the predicate symbols
appearing in A by a partial deduction for A in P. o

DEFINITION 2.2 (Soundness and completeness of partial deduction).

Let P be a program and A a finite set of atoms. Let P' be a partial deduction for P

w.r.t. A. Let G be a goal.

i) P'is sound w.r.t. P and G if every correct answer for P"U{G} is correct for
PU{G}.

ii) P' is complete w.r.t. P and G if every correct answer for PU{G} is correct
for P'U{G}. O

As SLD-resolution is sound and complete (w.r.t. the least Herbrand model
semantics), one could equally well express these criteria by means of computed
answers of SLD-refutations. In [LS] programs with negation are considered,
using SLDNF-resolution ([C1]) and completion semantics. Consequently their
approach is more complicated in two ways.

First of all, SLDNF-resolution is generally not complete w.r.t. the
completion semantics. So a distinction between declarative soundness and
completeness of partial deduction (considering correct answers) and operational
soundness and completeness (considering computed answers) must be made.

Secondly, they require more elaborate notions of soundness and
completeness. In terms of semantics, having no correct answers for PU{«<A}
allows for two situations that must be distinguished, namely ‘comp(P)=—1A’ and
‘comp(P)¥# A and comp(P)¥#1A’. In terms of SLDNF-derivations, this relates to
the distinction between finite and infinite failure.



Both in [LS] and in the more limited case studied here, it appears that partial
deduction is always sound, but only complete under a certain condition.

DEFINITION 2.3.
Let S be a set of first order formulas and A a finite set of atoms. S is A-closed if

each atom in S that contains a predicate symbol occurring in an atom in A is an
instance of an atom in A. O

THEOREM 2.4. ([LS]) Let P be a program, G a goal, A a finite set of atoms and
P’ a partial deduction for P w.r.t. A.
i) P'is sound w.r.t. P and G.
ii) If P"U{G} is A-closed, then P’ is complete w.r.t. P and G. O

The following example shows a case in which partial deduction is
traditionally useful: a meta-interpreter is specialized to a certain object program.
The resulting program bears similarity to this object program: the meta-
interpreter is ‘compiled away’. Thus one level of interpretation is removed, an
operation that usually leads to a considerable gain in efficiency.

The example also shows that the closedness condition is needed. In
Section 4 this example reoccurs in combination with loop checking.

EXAMPLE 2.5.

Let P be the following variant of the ‘vanilla’-interpreter, interpreting a small
transitive closure program (translated in such a way that the PROLOG system
- predicate ‘clause’ has become a purely logical predicate; the predicate symbols
denoting the base relation r and its transitive closure tc have become function
symbols). Goals are represented as lists and the leftmost selection rule is always
used. Notice that the addition of x in the third clause for ‘solve’ avoids an
infinite loop (or the use of a cut).

solve([]) «. clause(r(a,a),[]) <.
solve([x]) « clause(x,y),solve(y). clause(r(a,b),[]) <.
solve([x1,x2]y]) « solve([x1]),solve([x2ly]). clause(r(b,c),[]) «.

clause(tc(x,y),[r(x,y)]) <.
clause(tc(x,y),[r(x,z),tc(z,y)]) <.



solve([tc(x,c)]) « solve([tc(x,c)])
solve([tc(x,c)]) « clause(tc(x,c),y),solve(y)
solve([tc(x,c)]) « solve([r(x,c)]) solve([tc(x,c)]) « solve([r(x,z),tc(z,c)])

solve([tc(x,c)]) < clause(r(x,c),y"),solve(y")

solve([tc(b,c)]) < solve([])

solve([tc(x,c)]) « solve([r(x,z)]),solve([tc(z,c)])
solve([tc(b,c)]) « (unfinished)

FIGURE 2.1

Taking A = {solve([tc(x,c)])}, the SLD-tree of Figure 2.1 can be
constructed (the resultants are given). The partial deduction Py for P w.r.t. A is
now obtained by replacing the clauses for ‘solve’ in P by:

solve([tc(b,c)]) «.
solve([tc(x,c)]) « solve([r(x,z)]),solve([tc(z,c)]).

The resulting program is not complete w.r.t. PU{«=solve([tc(x,c)])}: every call
to solve([r(x,z)]) fails, only the answer substitution {x/b} is found. This is due
to the fact that Py is not A-closed: the atom solve([r(x,z)]) occurs in Py and is not
an instance of solve([tc(x,c)]). Thus solve([r(x,z)]) must be included in A and an
SLD-tree of PU{«solve([r(x,z)])} must be constructed (see Figure 2.2).

solve([r(x,z)]) « solve([r(x,z)])
solve([r(x,z)]) « clause(r(x,z),y),solve(y)

solve([r(a,a)])<solve([]) solve([r(a,b)])«solve([]) solve([r(a,c)])«solve([])

solve([r(a,a)]) « solve([r(a,b)]) « solve([r(b,c)]) «

FIGURE 2.2



Thus the new partial deduction P, for P w.r.t. A contains for ‘solve’ the clauses
solve([r(a,a)]) «.
solve([r(a,b)]) «.
solve([r(b,c)]) «.
solve([tc(b,c)]) «.
solve([tc(x,c)]) « solve([r(x,z)]),solve([tc(z,c)]).
Now Pyu{«solve([tc(x,c)])} is A-closed and indeed P; is complete w.r.t.
PU{«solve([tc(x,c)])}. ]

This short introduction to partial deduction leaves two questions
unanswered (although the example gives some hints), namely:
- which set A = {A1...,Ag} is best to be used, and
- how deep the SLD-trees of PU{«A1},...,PU{« A} should be expanded.
In this paper the second question is addressed, by relating the stopping criteria
for the expansion of the SLD-trees used in partial deduction to loop checking.

3. LOOP CHECKING
In this section we recall some of the basic notions concerning loop checking, as
introduced in [BAK]. At the end of this section, the concepts introduced are
illustrated by an example.

3.1. Definitions
One might define a loop check as a function from SLD-trees to unfinished SLD-
trees. However, this would be a very general definition, allowing practically
- everything. The purpose of a loop check is to prune an SLD-tree to an initial
subtree of it. Moreover, we shall use here a more restricted definition: given a
program P and a goal G, the decision to prune a ncde is based only upon its
ancestors in the SLD-tree of PU{G}, that is on the SLD-derivation from G up to
this node.

Thus we exclude here more complicated pruning mechanisms, for which the
decision whether a node in a tree is pruned depends on the so far traversed
fragment of the considered tree. Such mechanisms are for example studied in
[TS, V].

Due to this restriction we could define a loop check as a function which,

given a program and an SLD-derivation, returns it unchanged if it is not pruned,



and otherwise returns the proper initial subderivation of it that ends in the pruned
node. Of course, if a derivation D is pruned at the goal G, then every derivation
D' that is the same as D until and including G must also be pruned at G: the
ancestors of G are the same in D and D'

This means that it is better to define a loop check as a set of derivations
(depending on the program): the derivations that are pruned exactly at their last
node. Thus a program P and a loop check L determine a set of (unfinished)
SLD-derivations L(P). Such a loop check L can be extended in a canonical way
to a function fi, from SLD-trees to unfinished SLD-trees by pruning in an SLD-
tree T for PU{Gg} the nodes in {G | the SLD-derivation from Gg to G in T is in
L(P)}. We shall usually make this conversion implicitly.

We shall mainly study an even more restricted form of a loop check, called
simple loop check, in which the set of pruned derivations is independent of the
program. Thus a loop check is a function with a program as input and a set of

derivations, being a simple loop check, as output. This leads us to the following
definitions.

DEFINITION 3.1.
Let L be a set of SLD-derivations. Initials(L) = {D € L | L does not contain a
proper initial subderivation of D}. L is subderivation free if L = Initials(L). 0O

In order to render the intuitive meaning of a loop check L: ‘every derivation
D e L is pruned exactly at its last node’, we need that L is subderivation free.
Note that Initials(Initials(L)) = Initials(L).

DEFINITION 3.2 (Simple loop check).
A simple loop check is a computable set L of finite SLD-derivations such that L
is closed under variants and subderivation free. a

The first condition here ensures that the choice of variables in the input
clauses in an SLD-derivation does not influence its pruning. This is a reasonable
demand since we are not interested in the choice of the names of these variables.



DEFINITION 3.3 (Loop check).
A loop check is a computable function L from programs to sets of SLD-
derivations such that for every program P, L(P) is a simple loop check. O

Of course, we can treat a simple loop check L as a loop check, namely as the
constant function AP.L.

DEFINITION 34.
Let L be a loop check. An SLD-derivation D of PU{G} is pruned by L if L(P)
contains D or a proper initial subderivation of D. O

3.2. Soundness and Completeness

In this section some basic properties of loop checks are introduced and some
natural results concerning them are established. Here we concentrate on the use
of a loop check at run-time. That is, the effect of adding a loop checking
mechanism to a standard PROLOG-like interpreter is considered.

When used in this way, the most important property of a loop check is that
using it does not result in a loss of success: the answer to the query 3G~ (which
is simply ‘yes’ or ‘no’) must not change. Since we intend to use pruned trees
instead of the original ones, we need at least that pruning a successful tree yields
again a successful tree.

Even stronger, often we do not want to lose any individual solution. That is,
if the original tree contains a successful branch, giving some computed answer 6
(thus proving VG~0), then we require that the pruned tree contains a successful

~branch giving a more general answer than 0, thus proving (a formula trivially

implying) VG~0. In this way every correct answer is still ‘represented’ by a
more general computed answer in the pruned tree, thus ensuring the complete-
ness of SLD-resolution with loop checking.

Finally, we would like to retain only shorter derivations and prune the
longer ones that give the same result. This leads to the following definitions.

DEFINITION 3.5 (Soundness).
i) A loop check L is weakly sound if for every program P, goal G, and SLD-tree
T of PU{G}: if T is successful, then f] (T) is successful.
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ii) A loop check L is sound if for every program P, goal G, and SLD-tree T of
PU{G}: if T contains a successful branch with a computed answer G~0, then
f1.(T) contains a successful branch with a computed answer G~o' < G~o0.

iii) A loop check L is shortening if for every program P, goal G, and SLD-tree T
of PU{G}: if T contains a successful branch D with a computed answer
substitution o, then either f1 (T) contains D or f; (T) contains a successful
branch D' with a computed answer G~¢' < G~0 such that D' < |D|. O

The following lemma is an immediate consequence of these definitions.

LEMMA 3.6. Let L be a loop check.
i) If L is shortening, then L is sound.
it) If L is sound, then L is weakly sound. a

The purpose of a loop check is to reduce the search space for top-down
interpreters. Although impossible in general, we would like to end up with a
finite search space. This is the case if every infinite derivation is pruned.

DEFINITION 3.7 (Completeness).

A loop check L is complete w.r.t. a selection rule R for a class of programs &, if
for every program P € & and goal G in Lp, every infinite SLD-derivation of
PU{G} via R is pruned by L. O

We must point out here that by these definitions we have overloaded the
terms ‘soundness’ and ‘completeness’. These terms do not only refer to loop
checks, but also to interpreters for logic programs (with or without a loop
check). Such an interpreter is sound if any answer it gives is correct w.r.t. the
intended model or the intended theory of the program. An interpreter is complete
if it finds every correct answer within a finite time.

A logic program can express (by semantical implication) that certain facts
hold, but it cannot express that certain other facts do nor hold. To overcome this
shortcoming Reiter ([Re]) introduced the closed world assumption (CWA).
Given a program P, CWA(P) = {7 A | A'is a ground atom and P ¢ A}. The
soundness and completeness of SLD-resolution imply that CWA(P) = {"A | A
is a ground atom and every SLD-tree of PU{«A} is failed}.



When a top-down interpreter is augmented with a loop check, we obtain a
new interpreter. The soundness and completeness of this new interpreter
depends on the soundness and completeness of the old one, as well as on the
soundness and completeness of the loop check.

The relationships between soundness and completeness of loop checks and
the interpreters augmented with them are expressed in the following lemma’s.
We refer here to two interpreters: one searching the SLD-tree depth-first left-to-
right (as the PROLOG interpreter does), and one searching breadth-first.
Without a loop check, both interpreters are sound and sound w.r.t. CWA. The
breadth-first interpreter is also complete, but not complete w.r.t. CWA.

LEMMA 3.8. Let P be a program, A a ground atom and L a weakly sound loop
check. Then for every SLD-tree T of PU{«A},1A € CWA(P) iff fL(T)
contains no successful branches.

Thus an interpreter augmented with a weakly sound loop check remains
sound w.r.t. CWA. Since f1(T) may be infinite, nothing can be said about
completeness.

LEMMA 3.9. Let P be a program, G a goal and T an SLD-tree of PU{G}. Let L
be a sound loop check. Then G~@ is a correct answer for PU{G} iff f.(T)

contains a successful branch with a computed answer G~1 <G~ 6.

Thus an interpreter augmented with a sound loop check remains sound.
- Moreover, a breadth-first interpreter remains complete .

COROLLARY 3.10. Let P be a program, A a ground atom and L a weakly sound
and complete loop check. Then for every SLD-tree T of PU[A},"A e
CWA(P) iff fL(T) is finite and contains no successful branches.

Thus an interpreter augmented with a weakly sound and complete loop
check becomes complete w.r.t. CWA.

11
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COROLLARY 3.11. Let P be a program, G a goal and L a sound and complete
loop check. Then for every correct answer G™0 for PU{G} and for every
SLD-tree T of PU{G}, fi(T) is finite and contains a successful branch with
a computed answer G~T < G™6.

Thus a depth-first interpreter augmented with a sound and complete loop
check becomes complete . This also means that a sound and complete loop check
can be used to implement query processing as defined in the Introduction.
Indeed, given a program P and an atom A with an SLD-tree T of PU{«A}, it
suffices to traverse the finite tree f] (T) and to collect all (computed) answers.

After studying the relationships between loop checks and interpreters, we
shall now analyze a relationship between loop checks. In general, it can be quite
difficult to compare loop checks. However, some of them can be compared in a
natural way: if every loop that is detected by one loop check, is detected at the
same derivation step or earlier by another loop check, then the latter one is
stronger than the former.

DEFINITION 3.12.

Let Lj and L be loop checks. L is stronger than L, if for every program P and
goal G, every SLD-derivation Dy € Ly(P) of PU{G?} that is not itself contained
in L1(P) has a proper initial subderivation D1 € Ly(P). O

In other words, L; is stronger than Ly if every SLD-derivation that is
pruned by L is also pruned by L;. Note that the definition implies that every
loop check is stronger than itself.

The following theorem will prove to be very useful. It will enable us to
obtain soundness and completeness results for loop checks which are related by
the ‘stronger than’ relation, by proving soundness and completeness for only
one of them.

THEOREM 3.13 (Relative Strength). Let L; and Ly be loop checks, and let L] be
stronger than L.
i) If L] is weakly sound, then Ly is weakly sound.
it) If L is sound, then L is sound.
iii) If L] is shortening, then Ly is shortening.



iv) If Ly is complete (w.r.t. a selection rule R for a class of programs &),
then Lj is complete (w.r.t. R for the class of programs &).
PROOF. i)-iii) If an SLD-tree T contains a successful branch, then fp,(T)
contains a successful branch that satisfies the conditions of Definition 3.12.
Since L is stronger than Ly, fi.;(T) is a subtree of f1,(T), so this branch is also
contained in f1 5(T).

iv) Every infinite SLD-derivation is pruned by Ly, so it is also pruned by L1. O

Now we have a more clear view of the situation. Very strong loop checks
prune derivations in an ‘early stage’. If they prune too early, then they are
unsound. Since this is undesirable, we must look for weaker loop checks. But a
loop check should preferably be not too weak, for then it might fail to prune
some infinite derivations (in other words, it might be incomplete). Of course, the
‘stronger than’ relation is not linear. Moreover, loop checks exist that are neither
sound nor complete.

The undecidability of the halting problem implies that there cannot be a
weakly sound and complete loop check for logic programs in general, as logic
programming has the full power of recursion theory. It was shown in [BAK]
that weakly sound and complete non-simple loop checks exist for programs
without function symbols, so called function-free programs, for which the
Herbrand Universe is finite. However, it was also shown that there is no weakly
sound and complete simple loop check for function-free programs. Therefore,
we found it useful to develop some simple loop checks, and to find classes of
programs for which these loop checks are complete.

3.3. An example: the equality checks
In this subsection we introduce the equality checks. First we give a definition of
the weakly sound versions. Then we introduce an additional condition that
makes these checks shortening. Finally, we define the class of restricted
programs: the equality checks are complete w.r.t. the leftmost selection rule for
function-free restricted programs.

In fact, we should give a definition for each equality check. This would
yield a number of almost identical definitions. Therefore we compress them into
two definitions, trusting that the reader is willing to understand our notation. The

13
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equality relation between goals (regarded as lists) is denoted by =1. (In [BAK],
also variants of these loop checks are considered, regarding goals as multisets.)

DEFINITION 3.14 (Equality checks based on Goals).

The Equals Variant/Instance of Goaly i check is the set of SLD-derivations

EVG/EIGL = Initials({ D | D = (Go=¢;,0; G1 =...= Gk-1 =k, 0k Gk) such
that for some i, 0 < i < k, there is a
renaming/substitution T such that Gy =, Gjt }). O

The informal justification for these loop checks is as follows. Suppose that
we want to refute a goal G. If we find that in order to refute G we need to refute
a variant or instance of G, say Gt, then two cases arise. If there is no solution
for Gt, then pruning Gt is clearly safe. On the other hand, if there is a solution
for Gr, then the derivation giving this solution might be used (possibly in a more
general form) directly from G.

These loop checks are indeed weakly sound. However, they are not sound.
To see this, suppose that we find for Gt a successful derivation D with a
computed answer substitution 6. Then using D directly from G gives a
computed answer substitution TG (maybe a more general substitution, but not
necessarily). Therefore success is not lost. However, the derivation G = G;
=Ci;+1,0i+1 -+ =Cik.0k Ok = G7, followed by D, yields a possibly different
computed answer substitution: 6;,1...6x0, thus possibly affecting soundness.
(In Example 3.16, we show a specific program and goal for which this
difference arises.) Of course, we are only interested in computed answers, i.e.
the resultants Go01...8i0i,1...6x0 and GgB;...6;10, where Gy is the initial goal.
So T and 6j,1...6k should coincide on the variables of Gg0;...6;.

Hence we can make these loop checks sound, and even shortening, by
adding the condition Gg01...6x = Gg0;...6;T. (Note that in this equality it is
irrelevant whether goals are lists or multisets.)

Finally, note that adding this condition is equivalent to the replacement of
the condition Gg =1, Gjt by the condition Ry =1, R;T, where Ry and R; are the
resultants associated to the goals Gg and G;.
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DEFINITION 3.15 (Equality checks based on Resultants).

The Equals Variant/Instance of Resultanty i check is the set of SLD-derivations

EVR/EIRy, = Initials({D | D = ( Go =C;,01 G1 =...= Gk-1 =Cy,0 Gk)
such that for some i, 0 £ 1 < k, there is a
renaming/substitution T such that Gy =, GjtT and

Gg9O1...6¢ = GgO1...6it }).

O

The following example shows the difference between the goal-based and
resultant-based equality checks. It is so chosen that the distinction between
variants and instances does not play a role.

EXAMPLE 3.16.
Let P = { p(a) «. (C1),
p(y) «p(@). (C2)},

let Gg = < p(x).

An SLD-tree of PU{Gg}
based on goals:

«p(x)

(€2) (C1)
{y/x} {x/a}

«p(2) O
{x/a}

EVG/EIG
prunes
here

(C2);
{y'/z

o &
{z/a}

«pz) . O ,

EVR/EIR
prunes
here

An ‘SLD-tree’ of PU{Gq}
based on resultants:

p(x)&p(x)
(C2)

{y/x}

p(x)<p(2)

(c2y
{y'/z}

p(x)<p(z)

(C1)
{x/a}

p(a)«

-
{z/a}
p(x)¢

s il
oy e
&
&
4':m.,"
& K

FIGURE 3.1
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Without the condition Gg81...6x = GgB;...8;t we would only obtain the
computed answer substitution {x/a}, whereas we should also obtain the empty
substitution. This shows that the EVG and EIG loop checks are not sound.

In the leftmost tree in Figure 3.1, «p(z) is a variant of «p(x), so the
derivation is pruned by EVG at that goal. However, the corresponding resultant
p(x)¢—p(z) is clearly not a variant of p(x)¢—p(x), therefore the derivation is not
yet pruned by EVR. After another application of (C2), the resultant px)¢p(z")
occurs, which is a variant of p(x)«p(z). There the derivation is pruned by EVR.

The rightmost tree shows an ‘SLD-tree’ in which the goals are replaced by
the corresponding resultants. Note that a successful branch in a resultant-based
SLD-tree does not end by O, but by the computed answer of this branch. O

The following results are straightforward to prove.

LEMMA 3.17. All equality checks are simple loop checks.
The equality checks based on goals are stronger than the corresponding
checks based on resultants.
The equality checks based on instances are stronger than the corresponding

checks based on variants.

An informal motivation for the (weak) soundness of the equality checks has
already been given. A formal proof of this result can be found in [BAK].

THEOREM 3.18 (Equality Soundness).
i) All equality checks based on resultants are shortening. A fortiori they are

sound.

it) All equality checks based on goals are weakly sound.

For completeness issues, it is sufficient to consider the weakest of the
equality checks: the EVRy, check. We now introduce a class of programs for
which EVRy is complete. The necessary restriction is obtained by allowing at
most one recursive call per clause and allowing such a call only after all other
atoms in the body of the clause have been completely resolved. In order to avoid
unnecessary complications, we shall place the atom that causes the recursive call
(if present) at the right end of the body of the clause, and consider only



derivations via the leftmost selection rule. For a formal definition, we use the
notion of the dependency graph Dp of a program P.

DEFINITION 3.19.
The dependency graph Dp of a program P is a directed graph whose nodes are
the predicate symbols appearing in P and

(p,q) € Dp iff there is a clause in P using p in its head and q in its body.
Dp* is the reflexive, transitive closure of Dp. When (p,q) € Dp*, we say thatp
depends on q in P. For a predicate symbol p, the class of p is the set of predicate
symbols p ‘mutually depends’ on: clp(p) = {q| (p,q) € Dp* and (g,p) € Dp*}. O

DEFINITION 3.20 (Restricted program).

Given an atom A, let rel(A) denote its predicate symbol. Let P be a program. In a
clause H—A1,...,A; (n = 0) of P, an atom Aj (1 <1 <n) is called recursive if
rel(Aj) depends on rel(H) in P. Otherwise, the atom is called non-recursive.
A clause H—Aq,...,Apis restricted w.r.t. P if A1,...,Ap—1 are non-recursive.

A program P is called restricted if every clause in P is restricted w.r.t. P. O

Note that this definition allows at most one recursive call per clause. Thus
(disregarding the order of atoms in the bodies) restricted programs include so
called linear programs, which contain only one recursive clause and in this
clause only a single recursive call occurs. The name restricted program originates
from [SS], where essentially the same class of programs is defined and
investigated, although a more rigid format is used. Now we can formulate the
- desired completeness result. For its proof, we refer again to [BAK].

THEOREM 3.21. The loop check EVR], is complete w.r.t. the leftmost selection

rule for function-free restricted programs.

COROLLARY 3.22 (Equality Completeness). All equality checks are complete
w.r.t. the leftmost selection rule for function-free restricted programs.
PROOF. By Theorem 3.21 and the Relative Strength Theorem 3.13. O
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4. THE USE OF LOOP CHECKING IN PARTIAL DEDUCTION

In this section the relation between partial deduction and loop checking is
established. It appears that loop checks can be used in two different ways, each
requiring special characteristics of the loop check.

Suppose a program P and a finite set of atoms A are given. For every atom

A € A, a finite (unfinished) SLD-tree of PU{<A} must be constructed. When

constructing these SLD-trees, two loop checks can be applied at the same time.

1. A sound, but not necessarily complete loop check is applied as in standard
SLD-resolution. Goals that are pruned by this loop check are treated as failure
leaves.

2. A complete, but not necessarily sound loop check is used for loop prevention
(as it is called in [S2]). It ensures that the constructed tree is finite, thus
enforcing termination of the partial deduction procedure. The resultants
corresponding to the goals pruned by this loop check become part of the
partial deduction for P w.r.t. A.

In order to avoid trivial SLD-trees, these loop checks must be non-trivial,

L.e. it must not prune SLD-trees at their root. We now formalize this way of

using loop checks in partial deduction and we prove that the soundness and

completeness results of partial deduction persist.

DEFINITION 4.1 (Partial deduction with loop checking).
Let P be a program, A an atom and T a (completed) SLD-tree of PU{<A}. Let
Lg and L be two non-trivial loop checks such that L, is complete. Let Gy,...,G;
be the leaves of ch(fLs(T))1 that are neither failed nor pruned by L. Let
R1,...,Ry be the corresponding resultants. The set {Ry,.. Ry} is called a partial
deduction for A in P w.r.t. Lyand L.

For a set of atoms A = {Ay,...,As}, a partial deduction forAinPwrt Lg
and L is the union of partial deductions for Aj,...,Aqin P w.r.t. Lgand L.

A partial deduction for P w.r.t. A, Ly and L. is a program obtained from P
by replacing the set of clauses in P whose head contains one of the predicate
symbols appearing in A by a partial deduction for A in P w.r.t. Lsand L.. O

1 This unfinished SLD-tree is obviously finite and non-trivial.



THEOREM 4.2. Let P be a program, G a goal and A a finite set of atoms. Let L
and L be two non-trivial loop checks such that L. is complete. Let P’ be a
partial deduction for Pw.r.t. A, Lyand L. . Then
i) P'is sound w.r.t. P and G.

ii) If P"U{G} is A-closed and Lg is sound, then P’ is complete w.r.t. P and

G.

PROOF. i) The tree f1(fL (T)) in Definition 4.1 is precisely the finite non-trivial

SLD-tree required in Definition 2.1. The only difference is that the resultants

corresponding to the goals pruned by Lg are not included in P'. In other words,

there exists a program P" D P' such that P" is a partial deduction for P w.r.t. A.

Thus, due to the absence of negation, a correct answer for P'U{G} is also a

correct answer for P"U{G}, and hence by Theorem 2.4 also for PU{G}.

ii) (This proof closely follows the proof of Theorem 4.1(b.i) in [LS]). Suppose

that © is a correct answer substitution for PU{G}. Then there is an SLD-

refutation D of PU{G} giving a computed answer G~ < G~6. We prove by

induction on |D| that there is an SLD-refutation D* of P'U{G} giving a

computed answer G~o* < G~0.

For |D| = 0, i.e. G = O, the claim is trivial. If the clause applied in the first
step of D is (a variant of) a clause in P, then the induction step is also trivial.
Otherwise the selected atom A in G must be an instance of an atom in A, because
PU{G} is A-closed; say A1 € A and Ay = A. The steps in the refutation of
PU{G} in which A and its derived atoms are selected, constitute a refutation of
PU{«A}. Hence the completed version of the SLD-tree of PU{<—A1} that was
constructed during the partial deduction contains a successful branch B that uses
the same steps (possibly in a different order). B gives a computed answer
substitution T such that A1T < A1yo. By the Switching Lemma (Lemma 4.6 in
[LS]), the refutation steps of D can be reordered such that the new refutation D'
begins with the steps proving A (more precisely: an instance of A more general
than Ao), in the order in which they occur in B.

Here two cases arise. If B is pruned by L, then the SLD-tree of PU{<A1}
contains a branch B' that is not pruned by Lg and that gives a computed answer
substitution ' such that A1T < A1T. This gives rise to yet another refutation
(D") of PU{G}: the steps proving A according to refutation B can be replaced by
steps proving A according to refutation B' (as A1t < Ac). If B is not pruned by
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Ls then D" = D', B' = B and 7' = 7. In both cases, the computed answer
substitution 6" of D" satisfies G~¢" < G~0.

For some goal Gj on the branch B/, the corresponding resultant R; must be
included in P'. Let H be the head of R;. Then H < A7 < Ao, say Ho = Ac. As
we may assume that D" and H have no variables in common, it follows that Hoo
= Aco. Thus H and A unify, hence R;j can be used to resolve A, giving a
resultant R'. By Lemma 4.12 of [LS], the SLD-derivation corresponding to B,
starting from <A instead of <A yields R' in place of R;. As, modulo a
renaming and the presence of the rest of G, this derivation forms exactly the first
i steps of D", these steps can be replaced by the application of R, reaching the
(i+1)st goal of D" in one step; the resulting derivation still has 6" as its computed
answer substitution. If i = 1, then |B'| = 1 and R; is a variant of the clause used
in B'. Otherwise we can apply the induction hypothesis on this goal; the result is
the refutation D* of P'U{G} with a computed answer substitution 6™ such that
G~o*<G~0<G~0.

Thus 6 is a correct answer substitution for P'U{G}. O

We now apply this part of the theory to the program given in Example 2.5.
Especially the effect of the addition of a sound loop check is remarkable.

EXAMPLE 4.3.

Suppose that the SLD-tree of PU{«solve([tc(x,c)])} of Example 2.5 had not
been finished at the resultant solve([te(x,c)])«=solve([r(x,z)]),solve([tc(z,c)]),
but continued as shown in Figure 4.1.

The resultant solve([tc(a,c)])<solve([tc(a,c)]) could well be pruned by a
sound loop check, e.g. EIRy.. The two other resultants could be pruned by some
complete, but unsound loop check L. (see Section 5).

Now the resulting partial deduction P3 for P w.r.t. {solve([tc(x,c)])}, EIRL
and L contains the following clauses for ‘solve’:

solve([tc(b,c)]) «,
solve([tc(a,c)]) < solve([tc(b,c)]),
solve([tc(b,c)]) « solve([tc(c,c)]).



solve([tc(x,¢)]) < solve([tc(x,c)])

solve([tc(b,c)]) &« solve([tc(x,c)]) < solve([r(x,z)]),solve([tc(z,c)])
solve([tc(x,c)]) « clause(r(x,z),y"),solve(y"),solve([tc(z,c)])

solve([tc(a,c)]) < solve([]),solve([tc(a,c)])

solve([tc(a,c)]) «— solve([]),solve([tc(b,c)])

solve([tc(b,c)]) « solve([]),solve([tc(c,c)])
solve([tc(a,c)]) < solve([tc(a,c)])

solve([tc(a,c)]) < solve([tc(b,c)])

solve([tc(b,c)]) « solve([tc(c,c)])

FIGURE 4.1

In contrast to Example 2.5, where A had to be extended, P3 is already A-
closed. So by Theorem 4.2, P3 is complete for PuU{«solve([tc(x,c)])}.
Moreover, whereas the SLD-trees of PU{ «solve([te(x,c)])} and
Pou{ «solve([tc(x,c)])} contain an infinite branch, the SLD-tree of
P3u{ «solve([tc(x,c)])} is finite. In this case the use of a sound loop check
» during partial deduction (making the clause solve([tc(a,c)])«—solve([tc(a,c)])
disappear) can replace the use of a loop check at run-time. Obviously this will
not always be the case. a

5. COMPLETE LOOP CHECKS

Most papers on loop checking ([Be, B1, BAK, BW, Co, vG, PG] consider the
application of loop checks at run-time, on an SLD-tree generated by a PROLOG-
like interpreter. Consequently, the soundness of a loop check is usually
considered to be more important than its completeness. Only a few loop checks
that are not weakly sound have been studied in some detail (e.g. in [BW]), and
even those loop checks are mostly not complete.
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So for the purpose of partial deduction, a sound loop check can be chosen
from the literature. In this section we concentrate on the complete loop check
needed. This loop check in general is not weakly sound. Our first observation
concerns the relationship between complete loop checks and the selection rule.

5.1. Complete loop checks and the selection rule

Sound loop checks indicate that there is certainly a loop (or at least a redundant
goal). If that is the case, then the derivation is best stopped immediately: the
remainder of the derivation can succeed, giving a redundant answer, finitely fail
or be infinite (depending on the selection rule), but in all cases there is no point
in constructing it. This explains why such loop checks are normally independent
of the atom selected in the current goal.

The complete, but generally unsound loop checks studied here indicate the
possibility of a loop. Such a possibility is obviously related to the selection of
the atom. Selecting another atom could be perfectly safe (i.e. not possibly loop).
Moreover, this selection could remove the possibility of a loop, either by finitely
failing or by instantiating the ‘possibly dangerous’ atom to a harmless instance.

Thus it is worthwhile to use a loop check that prunes only if it finds that the
selected atom is ‘dangerous’, and to adopt a selection rule that avoids pruning
(selecting a ‘dangerous’ atom) as long as possible. (In the same way,
floundering is avoided in the presence of negation by the use of a safe selection
rule.) In [BL] partial selection rules are used that do not select ‘dangerous’ atoms
at all: by stating that ‘the computation terminates in deadlock when no literal is
available for selection’, the loop check is described implicitly by the partiality of
the selection rule.

Four of these selection rules are given; they are all of the same form: an
atom A is ‘dangerous’ if it is produced by an atom A’ higher up in the derivation
such that

1) A and A' are variants (A<A'and A'<A)
2) A is an instance of A' (A'<A)
3) A'is an instance of A (A<A)

4) A and A' have a common instance  (for some B: B <A and B < A).

Loop check 4) is obviously stronger than 2) and 3), which are in turn stronger
than 1). Unfortunately, none of these loop checks is complete, a simple
counterexample being the program {p(x)<—p(f(x))} and the goal «p(a).



The simplest complete loop check is without doubt the use of a depth-bound
on derivations (L = {D | |D| = d} for some d = 1). But such a loop check is not
very useful for partial deduction purposes. In order to obtain a partial deduction
for P w.r.t. A that is A-closed, every atom occurring in a pruned goal must be an
instance of an atom in A. Thus pruning goals regardless of their structure usually
results in an ‘explosion’ of the set A.

5.2. The OverSizeCheck

More sophisticated loop checking mechanisms are discussed in [S1]. The
following definition gives their general framework, leaving two parameters
open: a depth-bound and a size-function on atoms. Roughly speaking, the loop
check prohibits the selection of ‘oversized’ atoms. An atom is ‘oversized’ if it is
‘produced’ by at least depth-bound earlier selected atoms with the same predicate
symbol that have a smaller or equal size. Let #S denote the number of elements
of a set S and rel(A) the predicate symbol in an atom A.

DEFINITION 5.1 (OverSizeCheck).
Let d = 1 and let the function size be defined for all atoms (details on size follow
later). The OverSizeCheck of d and size, OSC(d,size) =
Initials({Gg = G1 = ... = Gg | for 0 <i <k, Aj is selected in Gj and
#{i] 0 <1 <k, rel(A;) = rel(Ax), Ak is the result
of resolving A; and size(A;) < size(Ap)} =d}). O

Notice that d = 1 ensures that OSC is a non-trivial loop check. The
- following remark follows immediately from the definitions.

REMARK 5.2.

For every function size, if 1 < d; <dp then OSC(dj,size) is stronger than
OSC(dy,size). For every d 2 1, if for all atoms A and B: size(A) < size1(B)
implies sizep(A) < sizea(B), then OSC(d,sizey) is stronger than OSC(d,size1). O

The size of an atom is usually just a natural number. This is the case for the
versions 1 and 2 of OSC in [S1]. In version 1, the size-part of the condition is
completely absent (equivalently, for all atoms A: size(A) = 0). Thus for every
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predicate symbol only d atoms may be selected. By Remark 5.2, this is for a
given value of d the strongest possible version of OSC.

In version 2, size(A) is the total number of variable, constant and function
symbol occurrences in A. Example 5.7 shows an application of these versions.
We now prove that OSC is complete if size returns natural numbers.

THEOREM $5.3. Let d > 1 and let for every atom A, size(A) € IN. Then
OSC(d,size) is complete.

PROOF. Suppose that D = (Gg = G = ...) is an infinite SLD-derivation. Since

D is infinite, at least one atom in Ggo has infinitely many selected

descendants, hence the proof tree of this atom is infinite. Applying Konig’s

Lemma on this proof tree shows that it has an infinite branch, so there exists an

infinite sequence of goals GmO’Gml"“ (0 £mg < myp < ...) containing atoms
AQ,Al,... such that for every i = 0:

- Aj is the selected atom in Gmi’

- Aj+1 1s (the further instantiated version of) an atom A;,1', which is introduced

in Gm;+1 as the result of resolving A;.

The situation is depicted in Figure 5.1, selected atoms are underlined.

Go =(eenee Ao ...... )
* # 91...9m0
Gmg =(ecore Aganns) (Ao =AgO1...6m))
/ \ * em0+1
Gm0+1 =(.ee .. Ar'... ... )
* * 611]0+2...6m1
Gml = ( ...... é_] ...... ) (Al = A1'9m0+2...9m1)
/ \ * 6m1+1
Gm1+1 =( ...... A2' ...... )
* # em1+2...
etc.

FIGURE 5.1



As we have only a finite number of predicate symbols, at least one predicate
symbol p occurs in infinitely many atoms A;. Let I = {i | rel(A;) = p} and let
i1,...,ig be the smallest d members of I. Letk = max{size(Aij) |1<j<d}. Two
cases arise.

1. For some n € I: size(Ap) > k. Then OSC(d,size) prunes D at G, (or earlier).
2. For all n € L size(Ap) < k. Then in the worst case (Aj)iel consists of d atoms
of size k, then d of size k-1, ..., then d of size 1, then d of size 0. That makes
(k+1)d atoms. So OSC(d,size) prunes D at the goal in which the (k+1)d+1th
atom of (Aj)je1 is selected (or earlier). O

In some cases a more complex size-function is convenient. We show that
instead of the natural numbers, any well-quasi-ordered set can be used. (For a
survey on well-quasi-ordered sets see [Kr]. They are frequently used in
termination proofs for term rewriting systems, see e.g. [DJ].)

DEFINITION 5.4.
A set U is well-quasi-ordered under a quasi-ordering > if every infinite sequence

u1,us,... of elements of U contains a pair u; and ug such that j <k and yj < uk. O

The following lemma is a special case of a result well-known from the
literature. For completeness sake we repeat the argument here, following [DJ].

LEMMA 5.5. Let U be a well-quasi-ordered set under > and let n 22 be a natural
number. Then every infinite sequence uj,u,... of elements of U contains a
sub-sequence ujj,...,ui, Such that uj; S ujp <... < Uj,.

PROOF. By induction on n.

For n = 2, the claim corresponds to the definition of a well-quasi-ordered set.

Assume that the claim holds for a certain value of n. Then we can define a

function row such that for every infinite sequence S = (uj)ie] of elements of U,

row(S) = (ujq,...,Ui,) is a sub-sequence of S such that uj;<...<uj,. Let

end(row(S)) denote ij.
Let uy,us,... be an infinite sequence of elements of U. The required sub-
sequence of length n+1 is constructed as follows.
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Define inductively jo= 0 and fork > 0, ji = end(row((ui)i>jk_l)). Consider
the infinite sequence (ujy)k>0. As U is well-quasi-ordered there exist pand q
such that p < q and Ujp < Ujg- The sequence row((ui)i>jp_1) is an increasing
sequence of length n that ends in Ujp- Adding Ujq to this sequence yields the

required increasing sequence of length n+1. O

THEOREM 5.6. Let d > 1 and let U be a well-quasi-ordered set. If for every atom
A, size(A) € U, then OSC(d,size) is complete.
PROOF. Suppose that D = (Gg = G1 = ...) is an infinite SLD-derivation. Let I

be defined as in Theorem 5.3. By Lemma 5.5 the sequence (size(Aj))ie | contains
an increasing sequence of length d+1. Let Ang,...,Ang,1 be the sequence of

corresponding atoms. Then OSC(d,size) prunes D at the goal in which Ay, ; is
selected. O

Version 3 of OSC in [S1] can serve as an example. There
U = {(p.n) | p is a predicate symbol with arity k and n € INk} and
(pn)<(@m)ifp=qandn<m lexicographically.

It is easy to see that for a language with finitely many predicate symbols, U
is indeed well-quasi-ordered under >. Defining termsize as size was defined in
version 2, the size of an atom A = p(ty,...t) is defined as

size(A) = (p,<termsize(t;),.. .termsize(ty)>).

EXAMPLE 5.7.

This example shows the application of the three versions of OSC mentioned
above. Throughout this example the depth-bound used is 1 (a poor choice in
practice, but it serves to keep the example small). Consider the following
variation of the reverse program that reverses a list of natural numbers (formed

by the constant 0 and the successor-function s), but leaves out the 0’s in the
reversed list.

P = { reverse( [],x,X) «. (C1),
reverse(  [0|x],y,z) ¢« reverse(x, Y, Z). (C2),

reverse([s(w) | x], y, z) < reverse(x, [s(w) | y], z). (C3) 1.



Figure 5.2 shows where the three versions of OSC prune the SLD-tree of
PU{«reverse([0,5(0),5(s(0)) | x1, [ 1, ¥)

«reverse([0,5(0),s(s(0)) | xI, [ 1, ¥)

(C2)

«reverse([s(0),ss(0) | x], [ 1, y) version 1 prunes here
(€3)

«reverse([s(s(0)) | x], [s(0)], y) version 2 prunes here
(C€3)

«reverse(x, [s(s(0)),s(0)], y)

(C1) (C2)' (C3)’
{x/[ 1,y/[s(s(0)),s(0)] {x/0 | x1} {x/[s(w") | x']}
O «reverse(x', [s(s(0)),s(0)], y) «reverse(x', [s(w"),s(s(0)),s(0)], y)

T version 3 prunes here T

FIGURE 5.2

According to version 1, the predicate ‘reverse’ may be selected only once.
Thus it prunes the second goal. Version 2 does not prune the second goal,
because its size is strictly smaller than that of the initial goal. But the second and
third goal have the same size, so version 2 prunes the third goal. Version 3 uses
a different size-function. According to this function the third goal is smaller than
the second, because its first argument is smaller. So version 3 does not prune
* until the given part of the list has been completely processed: after that the first
argument cannot shrink any more and as the second argument stays the same or
grows, version 3 prunes there. O

The formulation of version 3 of OSC shows that it is always possible to
incorporate the predicate symbol of an atom A in size(A) and to make elements
with different predicate symbols incomparable. In this sense the requirement
rel(Aj) = rel(Ag) in Definition 5.1 is superfluous. But normally it serves well to
simplify the definitions of U, < and size. Moreover it highlights that the
OverSizeCheck takes the structure of the current goal into account, the feature
that was missing in the simple depth-bound check.
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The question which depth-bound and size-function are optimal shall remain
unanswered here. It is not even clear how to compare different choices, let alone
how to identify the optimal choice. The above framework for OSC allows for a
wide range of complete loop checks, from very simple to very complex. But as
is noted in both [BL] and [S1, S2], in practice a complex loop check is not
necessarily better than a simpler one. An explanation for this phenomenon is that
even if the partial deduction process is not in a loop, the result of stopping it at a
certain point can be better than the result of stopping it later.

5.3. A related work
A closely related approach is pursued in [BASM]. First they give the following
characterization of finite (unfinished) SLD-trees, using well-founded sets.

DEFINITION 5.8.

Given a completed SLD-tree T, we associate to each node (goal) G of T a natural
number (this number is needed to distinguish different occurrences of the same
goal). The set of goal-occurrences in T is Gt = {(G,i) | G is a goal of T and i is
its associated number}. If the goal occurrence (G,i) is an ancestor of (G,j)inT
then we write (G,i) >1 (G',)). O

DEFINITION 5.9.

A strict partially ordered set U,>yj is well-founded if there is no infinite sequence
u,up,... of elements of U such that uj >y ujyp forallj = 1.

A well-founded measure on a strict partially ordered set S,>g is a monotonic
function from S,>g to a well-founded strict partially ordered set U,>u.

An SLD-tree T is well-founded if there exists a well-founded measure on
GT,>T. ]

THEOREM 5.10 ([BdSMY]). An SLD-tree T is finite iff T is well-founded. O

This theorem can be used as follows. Given an SLD-tree T, we fix a well-
founded set U,>y and a function f from Gt to U. We obtain a finite pruned
version T' of T by pruning each node (G,i) in T unless f(G'))) >y f(G,i), where
(G'))) is the parent of (G,i) in T. T' itself is not well-founded w.r.t. U,>y, but



removing the leaves from T' yields a well-founded tree w.r.t. U,>y. By
Theorem 5.10 this tree is finite, and hence T is finite.

The only-if part of Theorem 5.10 implies that for each finite initial subtree
T' of T, we can find suitable U,>y; and f. Thus this method cannot help us by
allowing only ‘good’ nodes to be pruned.

We now compare this method with OSC(1,size). First of all, this method is
not a loop check: it allows us to prune two derivations that are variants of each
other and that occur both in the complete tree at different places. This is caused
by an important difference between the functions f and size: where size takes
only the selected atom as input, f takes the whole goal and its associated number.

A more technical difference is the use of well-quasi-ordered sets for OSC
and well-founded sets here. Well-quasi-ordered sets seem to be more limited, as
they allow only a finite number of incomparable elements. But they allow that
distinct elements a and b are equivalent, i.e. a < b and b < a. One must realize
that a derivation step G = H here requires a strict decrease: ‘H < G’, whereas
OSC prohibits increase: ‘not H = G’. Thus when G and H are incomparable,
they are pruned by this method, but not by OSC; the treatment of incomparable
elements here is the same as the treatment of equivalent elements by OSC.

In order to make it easier for the user to specify which nodes are to be
pruned, at the same time providing more guidance to the user as to where
pruning could give ‘good’ results, a more complex characterization of finite
SLD-trees is provided. It allows us to divide nodes in a finite number of classes,
and to compare two nodes only if they are in the same class. In practice, the
class of a node is often based on the predicate symbol of the selected atom in it.
- However, the theory does not require this. In OSC, this practice is ‘built-in’
through the requirement ‘rel(A;) = rel(Ax)’. The measure associated to a class is
usually some kind of term-size of the selected atom, like in OSC.

A special class (Cp) is added for those goals of which the user knows that
they terminate or yield a goal in another class without pruning (typically goals of
which the selected atom has a non-recursive predicate symbol, and the empty
goal). They are not compared to any other goal.
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DEFINITION 5.11.

An SLD-tree T is subset-wise founded if there exists a finite number of sets

Cos...,CN such that

1) GT =U{Cx | 0 <k <N},

ii) for each i = 1,...,N, Cj,>T has a well-founded measure f;, and

iii) for each branch D of T and for each non-leaf (G,i) € Co therein, there exists a
node (G',j) in D such that (G,i) > (G',j) and

- either (G',j) € Ci for some k > 0,

-or (G'j)isaleafin T. : O

Notice that Co,...,Cn need not be a partition of Gt. Condition iii) ensures
that goals in Cp indeed terminate or lead to a goal in another class. This
definition is still general enough to allow the following theorem.

THEOREM §.12 ([BASMY). An SLD-tree T is finite iff T is subset-wise founded.
O

Thus any complete loop check can still be described as an instance of this
method. A more interesting question is whether it can be done in a ‘natural’ way.
For example, it is suggested in [BASM] to formulate the use of a combination of
a criterion C(G) (e.g. one of the criteria suggested in [BL]) and a simple depth-

bound d by using a single class with the measure

) d if d7(G) = d or C(G). ) _
f(G,i) = { d-dT(G) otherwise , where d1(G) is the depth of G in T.
One could argue that this measure is not ‘natural’, because it depends on the
location of a goal in the tree.

Finally an even more complicated method is introduced in [BASM], which
we shall not discuss here in detail. The aim of this method is to facilitate the
incorporation of a condition like ‘Ay is the result of resolving A;’ in OSC. This
condition is important: otherwise the partial deduction for a goal «q(...)
producing a goal «p(...),p(...) might be stopped when the second p-atom is
selected, because it is ‘similar’ to the previously selected first p-atom. The
definition is still general enough to define all pruned trees.

In my opinion this method is only of practical interest for ‘natural’ choices
of Co,...,CN and fy,...,fN. Although the choice of a depth-bound as used in



OSC will always remain arbitrary, it could be worthwhile to integrate the
possibility of a depth-bound in this method as well. This could be done easily by
allowing a derivation to ‘disobey’ the required monotonicity a (fixed) finite
number of times, as is done in OSC.

In its full generality this method is too strong for practical purposes, but it
might be of theoretical interest. A given loop check can always be seen as an
instance of this method, but then the interesting question is how ‘natural’ this
instance is. The answer to this question might be more informative than the
answer to the question whether a given loop check can be seen as an instance of
OSC, which is simply ‘yes’ or ‘no’.

Finally, the method of [BdSM] can be automated. When this has been done,
implementing an instance of this method requires only that Co,...,CN and
f1,...,fN are typed in. For a ‘natural’ instance, this should take little effort.

6. CONCLUSIONS

Summarizing, we have the following results:

- Loop prevention methods for partial deduction can be formulated within the
framework of loop checking presented in [BAK].

- However, loop prevention requires a complete, probably unsound loop check,
whereas the use of a loop check at run-time requires a sound, probably
incomplete loop check. This explains why loop checks proposed in the
literature for use at run-time are not suitable for loop prevention.

- - Nevertheless, sound loop checks can be added in a useful way to the partial
deduction scheme, as outlined in Section 4. This can result in the removal of
loops from the generated program.

- Further research on complete loop checks is required. In this respect, it is
important that using the most selective (weakest) complete loop check not
necessarily leads to the best possible generated program.

- The completeness of a loop check can be proved by showing that it is an
instance of the framework presented in [BASM]. Once the method based on
this framework is automated, ‘natural’ instances of it can be implemented
easily.
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