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Abstract

The generalized eigenvalue problem Az = ABz is central to some important control theory appli-
cations, for example, the Lyapunov and the Riccati equations. In this report an algorithm is being
studied for computing deflating subspaces of the regular linear matrix pencil AB — A on parallel
computing systems.

More precisely, the algorithm is intended to compute the projector matrices P and I — P onto
deflating subspaces of the matrix pencil corresponding to the eigenvalues inside and ountside the
unit circle. The algorithm is based upon orthogonal transformations. It possesses a quadratic
convergence rate and simultaneously with the projectors it computes the condition number of the
problem. We study the extent to which this algorithm can be parallelized.

The algorithm has been implemented in a portable way suitable for shared memory parallel
computers. Applications of the developed code are made to the solution of the Lyapunov and the
Riccati equations. Timing results are provided for the Alliant FX/4.
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Introduction

In 1988 the Soviet academic publishing house “Nauka” issued the monograph [12] “Guaranteed
accuracy of the solution to systems of linear equations in Euclidean spaces” by S.K. Godunov
et al. The book states theoretical background and practical aspects of some algorithms in linear
algebra which are connected by the common idea to compute a solution with guaranteed accuracy.
The list of the problems considered in the book involves:

o evaluation of eigenvalues for symmetric matrices;

e solution of a well-posed system of linear equations;

e calculation of an orthonormal basis of eigenvectors for a symmetric matrix;
o calculation of the singular value decomposition;

o solution of the linear least squares problem.

All the algorithms are provided for the exploration of resolvability of the problem during
computation and for the evaluation of efficient (realistic) error bounds for the computed solution.

The approach used to treat the algorithms is based upon the backward error analysis and an
appropriate perturbation theory. The same approach was successfully used earlier by J. Wilkinson
in his classical treatise “The algebraic eigenvalue problem”. In [12] this method was advanced to
absolute mathematical strictness. )

The present work is devoted to the investigation of unsymmetric eigenvalue problems with
guaranteed accuracy. This kind of problems is much more complicated than the symmetric ones.
The complexity is due to the fact that small perturbations of input data may cause tremendous
perturbations of eigenvalues. It is worth to remark here that as a rule the input data are the results
of some measurements or previous calculations and contain rounding errors of these measurements
or calculations.

A standard example of such instability to small perturbations is the stability analysis (after
Lyapunov) for a lower bidiagonal 20-by-20 matrix A with —1 on the diagonal and 10 on the
subdiagonal. Replace the element A; 30 at the upper right corner of matrix A by € of small
-magnitude. Then the determinant of the matrix A — AI, where I is the identity 20-by-20 matrix,
equals (—1— 2)?° — 10'%. For € = 10718 which is less than the relative rounding error for the
majority of modern computers one can find that there is a root of the polynomial det(A — AI)
equal to A = ¥/10— 1> 0.1. Thus the stable matrix A with all eigenvalues being equal to —1
becomes unstable owing to very small perturbation of its elements. These circumstances demand
to regard the matrix A as an “ill stable” or “practically unstable” matrix.

A numerical criterion for the quality of the matrix stability which can be efficiently evaluated
on a computer was suggested in [5, 13]. Further development of these researches resulted in the
criteria of a dichotomy quality of the matrix spectrum with respect to the imaginary axis and the
unit circle [11, 7, 19].

By the spectrum dichotomy problem with respect to a closed contour v in the complex plane
we mean the following:

1. To find out whether there are some eigenvalues on the contour v or in a small neigbourhood
of 4.



2. If there are no such eigenvalues then invariant (deflating) subspaces corresponding to the
parts of the spectrum inside and outside the contour have to be computed.

Criteria of the dichotomy quality are the numbers which characterize the stability of these invariant
(deflating) subspaces for small perturbations of input data.

Under the spectrum dichotomy approach to eigenvalue problems the method of investigation
of the spectrum consists of:

a) partition of the complex plane by circles and straight lines into some parts;
b) evaluation of the dichotomy quality parameters for each circle and straight line;

c) computation of the deflating (invariant) subspaces associated with the parts of the spec-
trum inside and outside each circle or halfplane provided that the corresponding dichotomy
parameter is not too large;

d) computation of deflating (invariant) subspaces in the intersections of some circles and/or
halfplanes.

In fact, this method is quite similar to the well-known bisection method for symmetric tridi-
agonal matrices:

Bisection procedure Dichotomy procedure
Partition of the real azis by ¢ point into two Partition of the complez plane by a circle or
half-axes. straight line into two parts.
Computation of a number of eigenvalues Computation of ¢ number of eigenvalues
within each half-axis by means of the Sturm within each part by means of the specirum
sequences. dichotomy problem solver.

In both procedures the neigbourhoods of isolated parts of the spectrum are computed instead
of individual eigenvalues.

The spectrum dichotomy problem method is much reinforced by the dichotomy parameter
which can be efficiently evaluated on a computer. Thanks to this parameter we are able to develop
an effective perturbation theory for some unsymmetric eigenvalue problems and to investigate the
rate of convergence and stability of several effective numerical procedures. One may consider the
dichotomy parameter to be a condition number for the spectrum dichotomy problems.

The dichotomy parameter is a positive real number which characterizes the stability of invariant
subspaces of a matrix associated with two parts of the spectrum separated by a given closed
contour. If the value of this parameter increases then the corresponding invariant subspaces
become less stable. The stability deterioriates, for instance, when some eigenvalues come nearer
to the contour or when the angle between the invariant subspaces diminishes.

When the computations are executed with rounding errors one can argue that the given contour
does not “practically” separate the spectrum when the dichotomy parameter exceeds some quite
large number. The magnitude of this bound depends mostly on the relative rounding error of the
arithmetical operations. As usual, it is chosen in accordance with the requirements of guaranteed
accuracy and applications.

Classical eigenelements of a square matrix are the set of eigenvalues and a vector basis composed
of Jordan chains for a given matrix. In the dichotomy spectrum approach the main eigenelements
are the dichotomy parameter with respect to a given closed contour and, if this parameter is finite,
the invariant subspaces and the generalized Lyapunov function associated with the parts of the
spectrum inside and outside the contour.

There are some alternative approaches to guaranteed accuracy for unsymmetric eigenvalue
problems. The most important one is developed in [24, 25, 28, 8, 9]. Let us refer to it as the
Schur method. This method has already been existing quite long and its algorithmical aspects are
developed to a great extent [31, 22, 26, 27, 3].

Here I want to discuss briefly some theoretical difficulties in the Schur approach. Given an
N-by-N unsymmetric matrix A. The crucial idea of the Schur method is to reduce the matrix



A to upper triangular form by means of similarity transformations [30]. As usual the orthogonal
transformations are preferable and QR-like methods are used. As a result we have the Schur
decomposition A = Q" 1RQ, where Q is an orthogonal matrix. The matrix R is a “nearly upper
triangular” matrix, i.e. all the elements of R below the diagonal are of small magnitude but not
all of them are zeros.

The first problem is that the methods under consideration have no global convergence for any
matrix A [30]. Moreover, they can behave chaotically and the set of matrices on which chaotic
behavior occurs has positive Lebesgue measure in the space C™*™ [30].

The second difficulty is the justification of the fact that the matrix R can be used afterwards
as if it is upper triangular. The above example with the 20-by-20 matrix A clearly demonstrates
the possible danger of neglecting the lower triangle. In order to justify the utilization of R as a
triangular matrix in some situations the following procedure was proposed [24]. Let

Ri1 Ri2
R =
( Rz1 R )
with k-by-k matrix Ry; and (N — k)-by-(N — k) matrix Rj;. Assume that the matrix R2; has a

small norm. Then we can try to reduce the matrix R to upper block triangular form by means of
the following procedure: Find a matrix X of small norm such that

_ Ru Ru
RU_U( : Rn)

with the orthogonal matrix U of the form

= ( I -XxT ) ( (I+XxTx)"12 0 )

X I 0 (I+XXxT)"1/2
It follows that X has to satisfy the equation
XR11 - Rng. = R21 - XR12X

which is solvable if the spectrum of R;; has no intersection with the spectrum of Rj; and the
norm of R; is small enough.

Summarizing, we need to be able to compute the condition number of the so called Silvester
equation X Ry; — Ry2X = Ry which is, in fact, a (N — k)k-by-(N — k)k system of linear equations
[2, 15]. This may be quite expensive to compute [16].



Chapter 1

Eigenelements of a regular linear
matrix pencil

Given real N-by-N matrices A and B. Let us refer to the matrix pencil AB — A as regular with
respect to the unit circle, if det(A\B — A) # 0 for every complex number ) on the unit circle |A| = 1.
All matrix pencils being considered in this chapter are assumed to be regular with respect to the
unit circle. Throughout this paper we are interested only in right-hand side eigenelements for
matrix pencils.

1.1 Deflating subspaces of a matrix pencil associated with
the spectrum parts inside and outside the unit circle

At first I remind the definitions of eigenvalues and associated Jordan chains for the regular linear
matrix pencil AB — A.

The complex numbers A and 1/p (if x = 0 then 1/u = o) are the eigenvalues of the pencil
AB — A, if det(AB — A) = 0 or det(B — pA) = 0 respectively.

The vectors 1, 2, ..., 2¢ form a Jordan chain of the pencil AB — A corresponding to an
eigenvalue X if (AB — A)zy =0, (AB — A)z;+ Bz;—; =0, 1 =2,...,t, provided the linear system
(AB—A)z+ Bz; = 0 has no solution z. Similarly, the vectors z,, 23, ..., 2; form a Jordan chain of

the pencil AB — A corresponding to an eigenvalue 1/ if (B — pA)z, =0, (B — pA)z; + Az;_1 =
0,1=2,...,t, provided the linear system (B — uA)z + Az; = 0 has no solution z.

The linear span Lo of all the Jordan chains associated with all eigenvalues ) satisfying the
condition |A| < 1is called the deflating subspace of the matriz pencil A\B — A corresponding to the
eigenvalues inside the unit circle. The linear span L of all the Jordan chains associated with
all eigenvalues 1/p satisfying the condition |u| < 1 is called the deflating subspace of the matriz
pencil AB — A corresponding to the eigenvalues outside the unit circle. The deflating subspaces
are a suitable generalization of invariant subspaces used in the matrix case.

The main properties of the eigenelements introduced above are revealed in the following theo-
rem on the Kronecker form of a linear matrix pencil regular with respect to the unit circle.

Theorem 1 If det(AB — A) # 0 for all complez X satisfying the condition |A\| = 1 then there ezist
nonsingular N-by-N matrices @i and Q, such that

Q:(AB — A)Q, = block diag{\I — Jo, ] — I}, _ (1.1)

Jo = block diag{Jil(Al), . -:Jim()‘m)}a l)\,l < 1,
Joo = block diag{Tj, (41), -, Ty () }s s < 1,



where I is the identity matriz of appropriate size and

v 1 O
Jt(ll) =
O v

is @ Jordan t-by-t block.

PROOF. As a matter of fact the proof of the Theorem 1 consists of the appropriate use of the
Jordan canonical form. Let us rewrite the matrix pencil AB — A in the following way:

AB—-A=(B-A)(A-1)(B-4)"'B+I].
There exists a nonsingular matrix F such that
AB— A= (B- A)F|(X-1)J+IF},

where J is the Jordan canonical form of the matrix (B — A)~!B.

Now we divide the matrix J into two diagonal blocks: J = block diag{Js, Ja2}, where J is the
block containing all Jordan blocks associated with the eigenvalues of the pencil A\J + I inside the
unit circle and J; is associated with the eigenvalues outside the unit circle. It is easy to make sure
that the matrices J; and J; — I are invertible.

The pencil AJ + I — J can be decomposed in the following way:

v (58P s )-(57 1)

Reducing the matrices J;}(J1 — I) and (Jz — I)~1J; to Jordan forms FiJoF] ' and FyJe Fy "
we obtain

_ T Fy 0 WY 0 F' o0 _1
’\B"A‘(B“A)F( 0 (Jz—-I)F2>( 0 AJOO—I)( o Ft )F

n
Let us rewrite the matrix @, in block form

Q‘l‘ = [Ql se QQO+1 “ee Qm+n]’

where the partition into block columns conforms to the sizes of the diagonal blocks in the decom-
position (1.1). Then evidently the columns of each block @; form a Jordan chain.

One can show that the deflating subspace Lo of the pencil AB — A corresponding to the
eigenvalues inside the unit circle is spanned by the columns of blocks @1, @2, - .., @m, and that
the deflating subspace Lo corresponding to the eigenvalues outside the unit circle is spanned by
the columns of the blocks @m41, @m+2, - - -» @mtn. Therefore, the intersection of the subspaces
Lo and Lo is equal to the null space and the sum of these subspaces is equal to the whole space
RV,

Vector subspaces are conveniently defined by means of projectors onto the subspaces. Let No
be the dimension of the subspace £o and let No, = N — Ny be the dimension of the subspace
Loo. Consider the matrices Py and P, designed with the help of decomposition (1.1):

P0=QT(IBI° g) 1-_1» Poo=Qr(g IIS )Q:l (1.2)

It is not difficult to see that Py is a projector onto the deflating subspace Lo of the pencil AB — A,
i.e. P = P, and the equality Poz = z is equivalent to the fact that the vector z belongs to to this
subspace. Accordingly, the matrix P, is a projector onto the deflating subspace L.



Observe that Py + P,, = I. This identity means that Py and P, is a pair of projectors onto
Lo and L.

Apart from the projectors Py and Py it is sometimes useful to deal with orthogonal projectors
I and I, onto the invariant subspaces of the matrix pencil AB — A. We deduce the formulas
that express the matrices Ilp and Il in terms of the matrices P and P,,. At first premultiply
the identity P§ = P, from the left-hand side by P§? as well as the identity PooPo = 0 by pE
Adding the results and grouping the left-hand side we obtain the identity

(PE Py + PEP,)P, = PEP,.
From this one can deduce the equalities
Py=(PEPy+ PEP,) *PE Py, Po= Po(P¥Po+ PEP,) 'PEP,.
The latter of these allows to check that the matrix
o = Po(Pg! Po + P& Poo) Py’ (1.3)

satisfies the system of matrix equations

3 =1, =0¥,
Pollp = Ilo,
o Po = Po,

which uniquely defines the orthogonal projector IIo onto the deflating subspace Lo of the pencil
AB — A. In a similar way the formula

He = Poo(Py Po+ PEPo) ' Ps, (1.4)

can be derived.
Below we also use the following identities:

I —To = PE(PoPf + PuPHE) Py, I—-1g = PE(PPE + P.PE)'P,. (1.5)

Finally, we reveal how norms of the projectors are connected with the angle between nontrivial
deflating subspaces Lo and L. Here nontrivial means that £o # 0 and L, # 0.

The angle ¢, 0 < ¢ < 7/2, between the deflating subspaces with projectors Py and P, is
defined by means of the formula

cosp = max M. (1.6)
Poz #0 |1Poz|| || Peoyll
Py #0
It can be shown that 1 1
sinp= — = ——— = s (Il — I 1.
= Bl = [Pl (T Tl (L.7)

where opin(IIo — II) is the least singular value of matrix Iy — .

1.2 The canonical form of a linear matrix pencil which is
regular with respect to the unit circle
Let us use the notations of Theorem 1 in order to define the sequence of matrices

P+0=P0=Q7(Igo g) :11 P—-0=Poo=Qr(g IO ) 1-_11
Neo
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g ) Q; ! for integer k > 1, (1.8)

Pi=Q ( g J(l,, ) Q:! for integer k > 1.

Pk:Qr(

The following identities are satisfied for these matrices FPj:

PP, = Piyq, if k and | have the same sign, (1.9)
PP, = 0, if k and ! have different signs. :

The index +0 has the sign plus but the index —0 has the sign minus.
Assuming that T = Q,@; we obtain from Theorem 1

Corollary. If det(AB — A) # 0 for each A, |A| = 1, then the pencil AB — A can be presented in
the canonical form
AB - A= T—I[A(P.H) + P..l) — (P_Q + P+1)] (110)

with nonsingular N-by-N matriz T and N-by-N mairices Pyo, P_1, P_o, P41, which are defined
by 1.8.

Note that the matrix T is equal to Pyo + P—; when B=1.
The canonical form (1.10) may be defined independently of the decomposition (1.1) from
Theorem 1. Such a characterization is contained in the following theorem.

Theorem 2 Given
AB — A =T A\Pyo+ P-1) — (P-o+ Py1)], detT #£0.
P}o—Pyo=0, Po=1I— Py, (1.11)
P_oPyy =Py P o= PioP_1=P_1Pyo=0

and all the eigenvalues of the matriz P_; + Py lie inside the unit circle. Then det(AB — A) #0
for each complez X on the unit circle |A\| =1 and

2x
T = i/ (B — e?A4)~1(1 + €'%) dg,
27|' 0

2%
Pyo= [_1_ (B - e‘¢A)-ld¢] T, (1.12)
27 0o

1 27 . .
Po=-— [— (B - e'¢A)-1e'¢d¢] T
27r 0

PRrROOF. We carry out all our arguments in a vector basis where the matrices P;o and P_o
have the diagonal form. Then the system (1.11) implies that

I 0 0 0
P+0:( f)’o 0),P_0=(0 IN ),

_( Ko 0O (0 0

P-l-l—(o 0)7P—1—(0 Koo),

where all the eigenvalues of K, and Ko, lie inside the unit circle. Therefore, det(B — e*?A) # 0
for each real ¢.

In order to derive the formulas (1.12) let us find out the relations between the sequence of
matrices P, and the sequence of Green matrices G for the finite difference equation Bz,—Az,_1 =
fn. Expand the periodic matrix function D(¢) = (B — e*#A4)~! into a Fourier series with respect



to the basis e*: D(¢) = Yoo _ Zre'*®. The coefficients of the Fourier series are evaluated by
means of the integrals \
™
Zh= — (B —e?A) te™*9dg. (1.13)
27 0

Hence the uniform boundness of the sequence || Zx|| follows easily for all integers k.

From the identity (B — e*?A)D(¢) = I the system of equations is deduced which connects the
matrices Zg:
I, k=0,
0, k#0.
Therefore the sequence of matrices Zj is the sequence of Green matrices Gg, i.d. Zx = Gg.

Properties of the matrices Py allow us explicitly to find a solution to the infinite system (1.14)
with the values ||Zx|| bounded for all integers k:

BZx — AZu_y = { (1.14)

Go= 2o = PyoT, Gi = Zy = P.T fork > 1,

‘ G_.1=2_1=-P_oT, Gk =2 = —Pe T for k < -2. (1.15)
Hence, T = Go — G-1.
Finally, the formulas (1.12) are obtained from (1.13) and (1.15). n

1.3 The parameter w—a criterion to determine whether a
regular linear matrix pencil has no eigenvalues on the
unit circle and within a small neighbourhood of it

Let det(B — e*?A) # 0 for all real 4, i.e. the pencil AB — A is regular with respect to the unit
circle. Consider the Hermitian matrix

27
= 51; (B — ¢2A4)"1(AA" + BB¥)(B — & 4)~d¢. (1.16)
0
The spectral norm, i.e. the largest singular value, of the matrix H is denoted by w = || H|| and is
referred to as the criterion of absence of the eigenvalues of pencil \B — A on the unit circle and
within a small neighbourhood of it.
Note that if the pencil AB — A is premultiplied by any nonsingular matrix from the left-hand
side then the Hermitian matrix H is not changed. Let a nonsingular matrix L satisfy the equation

LL¥ = AA¥ 4 BBY. (1.17)
Introducing the matrices Ao = L™'A, By = L~ B, we obtain the identity

1

2w
=5 (Bo- e'?Ao)"1(AAT 4+ BBH)(B, — € Ao)Hd¢. (1.18)
0

The pencil ABp — Ay satisfies the equation
AoAf + BoBf =1 (1.19)

We shall refer to such pencils ABy— Ag as orthonormalized pencils which are obtained with the help
of orthonormalization of pencil AB — A by the condition (1.19). Evidently, all orthornomalized
pencils being obtained from the same pencil AB — A differ by left-hand side matrix orthogonal
maultiples only.

The previous remarks prompt the idea that the parameter w reflects the spectral properties of

the orthonormalized pencil ABy — Ag. Actually, omin(Bo — e‘¢Ao) can be estimated by means of
w.

10



Theorem 8 Let AgAY + BoBE = I and det(Bo — e'? Ag) # 0 for each real ¢. Then

max |(Bo - €' 4o) 1| < 14w, (1.20)

Thus the eigenvalues of the orthonormalized matrix pencil ABo — Ao, and of the given pencil
AB — A equivalently, being regular with respect to the unit circle are separated from the unit circle
by the distance not less than 1/14w.

As an illustration to Theorem 1.20 we consider one example. Let B = I and A be a symmetric
matrix. We make use of the diagonal form of the matrix A: A = U¥ DU, where U¥U = I. Since
in this case

2
51; (B—e®4)"(AA¥ + BBY)(B - 4)Fd¢ =
0
1 2% . .
=v |5 [Ta-etn)y a4 oy D) 14| T
o]
then

w = max i/h e dé| | = max 144

T \er Jo T+ —2dicosg |) T i [1-d7|

where d; are the diagonal elements of matrix D. One of the orthonormalized pencils ABp — Ag is
equal to
g A -D

vH - ——
VI+Dz’

and, consequently,

Vit &

max|(Bo — ¢ 40) || = max
1

1—|di
So the following estimate holds for this example:
. 142
_ i -1 _— .
max [|(Bo — €' 4o) || < max Wi 2w

The above example demonstrates that the exponent of w in the estimate (1.20) is precise.

In numerical mathematics the question is extremely important about the stability of the com-
puted solution under small perturbations of the input data. As remarked above the parameter
w reflects the spectral properties of an orthonormalized matrix pencil ABy — Ao. Therefore the
problem about estimation of stability of w is posed as follows:

Let Ag and éo be perturbations of the mairices Ag, Bo and

Ao A + BoBE =1, ||(Ao Bo) — (4o Bo)| <6,

w =

1 2% . .
‘Zr. A (Bo — e'¢Ao)—l(Bo — e‘d,Ao)_Hd(ﬁ" ,

1 1 . . R . e -
— [ (Bo—e®Ap) Y (AoAH + BoBE) (B, — €' Ag)™H d¢" .
0

Then we have to evaluate the gquantily |& — w|.

In order to derive this estimate let us take advantage of the identity (K+ M)~ = K~ — (K +
M) MK, Since . )
(Bo — e'¢Ao)_1 = (Bo - e’d’Ao)_l—

—(Bo — ei¢Ao)_1[(.§o — Bo) - eid’(A-o — Ao)] (Eo — e'.'#A"o)dl,

11



the formula for @ can be rewritten in the way

% /2”(30 - e"d’Ao)—l{I - [(ﬁo - Bo) - e']t(jo - AO)](ﬁo _ ei¢jo)_.1}x

@ =

x (Ao AT + BoBEWI — [(Bo — Bo) — €*(Ao — Ao)] (Bo — € Ao) ™1} (Bo — e*'¢Ao)-Hd¢“ .
Hence,

|6 —w| < ” % /O 2"(Bo —e*?A0)"1A(Bo — % 40)H d¢|‘ ,
where
A = {I — [(Bo — Bo) — €*(do — Ao)](Bo — "¢ 4o) ™'} x
x (Ao AH + BoBE){I — [(Bo — Bo) — €*(do — Ao)](Bo — € Ao) ™1} — I
Then e
l‘ prl (Bo — €% A0) 1 A(Bo — €% 40) d¢“ =

27
([-21_71"/‘0 (Bo - eid’Ao)_IA(Bo — eid’Ao)—Hdtﬁ] z, :B)

= sup
ll=ll=1

27
= sup 1 (A(Bo — €% Ao)Hz, (Bo — e®Ao)~H :c)d¢‘ <
0

l=ll=1 147

1 27 i _
<1l sup |5 [ 1B = 0y olPag] = e

(2)-es

[I(Bo — e 40) ||
V26||(Bo — e*40) ||’
2
i -1
1 - v/25]|(Bo — ¢*¢4o) ||
< 1 . 1< 2406w
= 126 —2v26||(Bo — €% Ao)"t]| - T 1—26—406w

Estimate ||A]|:
[|(Bo — Bo) — **(Ao — Ao)|| < 6

I(Bo - e o)l <

llall < (1 +

As a result
' 26 + 406w

16—l < v 55 060
Of course, this estimate is valid only when 2§ + 406w < 1. Taking into account the inequality
w > 1 which will be proved below, the estimate (1.21) may be somewhat simplified:

(1.21)

~

w—w

< 42wé
= 1-—42wé’

— (1.22)

What is following now is aimed to find out the structure of the matrix H in terms of the
matrices Pi. Recall that

1 27 . X
= -2—;‘_- (Bo - e"pAo)—l(Bo - 81¢Ao)_Hd¢,
0

12



where Ao = L~1A, Bo = L-'B, LL# = AA¥ 4 BBY. Due to the equality AoAf + BoBg =1
the matrix T from the canonical form of the pencil

ABo — Ao = ATy Y (Pyo + P-1) — T }(P-o + Py1)
satisfies the identity
ToT§ = (P-o + Pra)(PE + P + (Pyo + P_1)(Po + PEY). (1.23)
The relations (1.15) imply that
. b .
(Bo—€40)™ = ) PiToe®. (1.24)
j=-o0
With the help of Parseval’s equality for the function (Bo — e*®A4o)~! we obtain the formula
H= ) PTTyPf. (1.25)
j=-c0

Substituting (1.23) into (1.25) and reducing parentheses by means of (1.9) we deduce the following
important identity:

o0
H=2) PPff—PyoP{—PoP%,. (1.26)
j=-o0

In particular this identity allows to derive the inequality

w>1 (1.27)
In fact,
H > PioPfo+ P_oPy, (1.28)
w = max |(Hz,2)| > jmax ([P+oPi% + P-oPs’ )z, z)| = I;ﬁ;l‘;l:xl(IIPJ‘:’B%II’ +[|P%e|?) > 1.

In the latter inequality it is sufficient to choose z satisfying the equality P_ﬁ)a: =zif Pjo#0or
PE g =z if Po#0.

Of great importance is an effective estimate of the matrices P; with the help of the parameter
w. It allows to justify many numerical procedures for exploration of the spectrum of unsymmetric
problems. Now we start to derive this important estimate.

For k > 1 the chain of inequalities is valid:

(PoHPE P f, Pl f) = (PLHP{ P{L,f, Pl f) = (PoH Py Pl f, PiL f)—
— ((PoP + PLP|PE L f, PEL ) = (P HPS P, f, PELL F) — (PELLf, BEL ) — (B £, BT ),
(PE £, PEf) + (PoHPS P £, PE f) = (PELLf, PEL, f) + (PoH P3' PEL.f, P, f)-
~ 2P, BEA) < (1 sy ) (PEAf PET) + (PO PGB f, PEE. £,
(P2 £, PEf)+ (PHPS'PE £, PEf) <

2 Ry pE H 2 *
< (1 - T‘HH) (Po'f, Py' f) + (PoHPy f,f)] <2 (1 - Fll—ﬂ) LA AP

Hence for k > 0 the inequality

(PE 7, PE £y = (PEPE f,PEPE §) = (R PEPEf, PEf) < (PR HPEPE f, PE f),

13



is valid, which yields the following estimates:

9 k
PP <|H|I[1- ——
127 < 12 (1= 5 7)

1 k E
—_— < /(1+w) .
“Pk” < \/a—) (1 1 ) we ,E>1
The case of k < 0 is treated in a similar way. Thus we proved the fo]lowing theorem which is

extremely important for the researches of convergence of power methods used for the calculation
of the eigenelements.

Theorem 4 If the linear matriz pencil AB — A is regular with respect to the unit circle then

k]
120 <V (1= 135 < Ve ki), (1.29)
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Chapter 2

An algorithm to compute the
projectors onto the deflating
subspaces of a linear matrix
pencil which is regular with
respect the unit circle

2.1 Description of the algorithm

We start with some heuristical motives which lead to the scheme of our algorithm. The system
of difference equations (1.14) for infinite sequence of ma.tnces Gy, may be replaced by the similar
system for the matrices

-1P—Z,P—11P—0’P+0)P+1|P+2:---'

The new system has the form
BP, — AP,_1 =0, k< -0,
Pio+ P_o=1, (2.1)
BP, — APy_1 =0, k> 1.
The system (2.1) is not suitable for numerical treatment because of the infinite number of

equations. In order to overcome this problem a modification of the system (2.1) is suggested
which is based on the fact that the norm of the matrices Pj decays rapidly when |k| — oo.

Define the matrices P( ) = p"— oo Pitnp for integers k, where n is a sufficiently large natural

even number. Note that for k = np there are two matrices P( )0 and P,S +)0 Applying Theorem 4
one can show that for —n/2 < k < n/2 the following mequa.hty is valid

-n/(2(14w))

1P~ B < 2By,

which means that the matrix P,E") approximates the matrix Py for |k| < n/2 when n is quite large.

The sequence of matrices P,S") is periodical with period n and satisfies the system of matrix
equations

BP{™ — AP{™, =0, k+#np+0,

POL+ PN =1, k=np+0.
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Let us consider this system within the period [+0,n — 0]:

ZO + Z‘n = I1 2.9
BZy —AZy_1=0, 1<k<n, ()
where Zy = P,g"). When n is large enough the matrices Zo, Z3,..., 2y 3 are good approxima-
tions for the matrices Pyo, Py, ..., Pn/z and the matrices Z,/3, ..., Z, are the approximations for

P—‘n 2y .,P_o.

V/Ve only need the projectors P, o = Po and P_o = P For this it turns out that one may carry
out a fast orthogonal procedure to compute the approximations to these projectors, the matrices
Zo and Z,. Let n = 2™ and for some m, 0 < m < mo, the following finite difference identities
holds:

BmZk - AmZ]g_gm =0. (23)

Consider the equation (2.3) for the matrices Zx 2= and Zg:
B Zipam — AmZy = 0. (2.4)

Premultiply the equation (2.3) by a matrix X,, as well as the equation (2.4) by matrix Y,, and
add the results:

Y BmZryam + (XmBm — YmAm) 2k — Xm AmZx_gm = 0. (2.5)

For the matrices X,, and Y;, let us choose N-by-N matrices satisfying the system of matrix
equations
{ X XE 4+ Y, YE =1, (2.6)
XmBm — YmAm = 0. '
A method of calculation of such matrices will be described below.
Using the notations Amy1 = XmAm, Bmt+1 = Y Bm, the equation (2.5) is rewritten as:

B,,,+1Zk - A,,,+1Z,,_2m+: =0.

At the end of the iterative process of orthogonal elimination we obtain the linear system which
connects the matrices Zg and Z;me

Zo + Zame =1,
By Zame — AmoZo = 0. (2.7)
It is easy to verify that a solution of the system is equal to the matrices Zo = (Amo + Bmo ) ™! Bm,,
Zamo = (Amo + Bmo) 1 Am,. Hence for large mo the matrix (Am, + Bm, ) 1Bm, comes close to
the projector Py and the matrix (Am, + Bmo) ' Am, approximates Py,.

Summing up, we have formulated the main stages of the numerical procedure to compute the
projectors Po and Py, onto the deflating subspaces of the matrix pencil AB — A which is regular
with respect to the unit circle corresponding to the eigenvalues inside and outside the unit circle.

Stage I. The pencil AB — A is normalized in an appropriate way, i.e. the matrices By and Ag
should be computed such that AB — A = L(ABy — Ap) with a nonsingular matrix L. As a
rule it is the orthonormalization by the condition AoAg +BoB¥ =1

Stage II. The iterations to get the pair of matrices Ay, 41, Byt1 from the pair of matrices A,,, By
for 0 < m < mp are executed:

Am+1 = XmAm: Bm+1 = YmBm:

where X, and Y;, satisfy the system (2.6).
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Stage III. Choosing some large enough m, solve the linear system
Zo + Zco = I, AmOZQ - BmQZw = 0 (2.8)

with the unknown matrices Zo and Zo. When mg — oo the matrices Zo and Z, will be
accurate approximations to the projectors P and Py, of the matrix pencil AB — A.

If you need to compute the orthogonal projectors Ilp and I, onto the deflating subspaces Lo
and Lo of the pencil AB — A then instead of preliminary computation of the projectors Pp and Peo
and subsequent using of the formulas (1.3),(1.4) one can do the following. At ﬁrst compute the
orthonomalized matrix pencil AB,,, —-A,,,, from the pencil ABmo —Ap,, with Am Am +B,,,‘,Bmo =

I. Then define the matrices So = I — A A,,.o, S =I— B,no B,,,o. When mg — oo the matrices
So and S, converge to IIp and Il respectlvely

2.2 Proof of a convergence of the algorithm

We begin with the investigation of the second, main, stage of the algorithm. Remember that before
this stage a pair of matrices Ag and By has the canonical form 4o = Ty (P_o + P41), Bo =
To (Pyo + P-1) with a nonsingular N-by-N matrix To. We prove now that for the matrices
Ap, B, the following representation is valid:

Ap = TS (P_o+ Pim), Bm = T2 (Pyo+ P-zm). (2.9)

In order to show this let us rewrite the equation X, By, — YA, = 0, taking advantage of the
decomposition (1.1):

(XmTn)(Pro + Pogm) = (YT )(P-o + Pam) = 0,

-1 IN‘, 0 _ -1 ng 0 -1 _
[(me,,, Q) ( o )T (g g )|ert=0
It follows that all the solutions of the equation X,, By — YA, = 0 have the form

T 0 _ I -
Xm = Im+41 ( % IN“ ) Qr lex Ym = Im+1 ( 16’0 J'Z’”' )Qr le
with arbitrary matrix Fp, .
Since the matrices X,, and Y,, must satisfy the equation X,,,X,’,’,r + YmY,,If = I, the matrix
Fpo41 should be nonsingular. Therefore, a solution of the system (2.6) is representable in the form

Xm =Tpt1(Poo+ Pym)Tm, Y =Tpt1(Pro+ Pogm)Tm, (2.10)

where Tm+1 Q,- m+1
Substitute (2.10) in the equality X,;n XZ + Y, Y;Z = I, and after simple transformations we
obtain the recurrent formula for the matrices T, :

Tn11Tmy 1 = (Poo+ Pom) T T (PE, + PiR) + (Pyo + Poam) T TH (PR + PE). (2.11)

From the formula (2.11) it follows that the solution of the system (2.6) is unique to an or-
thogonal left-hand side premultiplier, i.e. all the solutions of the system (2 6) have the form

Xm = UnXm, Yim = UnYm, where Uy, is an arbitrary unitary matrix but X,,, Y, present some
partial solution of the system (2.6).

Now mvestlgate the third stage of the algorithm. Taking into account (2.9) we rewrite the
system (2.8) as

Zo+ Zoo = I, T7l[(P-o+ Pyme)Zo — (Pyo+ P-zmo)Zeo] = 0. (2.12)
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Let the matrix £ be such that Zo = P;o + € and Z, = P_g — €. Then from the second equation
of the system (2.12) we obtain

(P=0o+ P2mo)(Pyo+ &) — (Pyo+ P_gmo)(P-o—§) =0
(I + Pamo + P_gmo )€ = P_gmo — Pamo.
Theorem 4 guarantees the estimate
max{|| Pymol], [| P-amo|[} < 6 = yiwe ™2™/ (144),
Assume that mg is large enough and the estimate 26 < 1 holds. Then

26

1P—2mo = Pamo|| < 26, Gmin(I + Pama + P-gmo) > 1-26, [|¢l] < 75z

Finally, we obtain an expression for the convergence rate of the algorithm:

2/e™2"/ ()
1- 2y we 2o /()

max{]|Zo - Pol, [ Ze0 — Pooll} < (2.13)

This estimate is valid for such values of mo for which the denominator in (2.13) is positive.
Apart from the computation of the projectors onto the deflating subspaces the algorithm
possesses one more unexpected property: in the third stage the matrix H is easily computed.
Let us investigate the behaviour of the matrices T,,. By induction one can easily derive from
(2.11) the formula
2*—1
LT = ) (Pi+ P12 BT (PF + PR, _50), (2.14)
i=0
where P;y;_gn = P_o if j = 2¥ — 1. Compute the limit of (2.14) for k — co. In order to do that
we estimate the difference

2*-1
T TH - Z PBTIPE|<|| D BLTIP|+2)| Y BToTEPE, Ll <
j=-o l7]>2* =0
t1 2k 1 . _1F-t_ .
< AP | 5 L to Y e T sl |y ore TR
—e -t j=o 1-e -4
The latter estimate allows us to assert that
0
T.TH — Y PTTFPH (2.15)

j=-oc0
when k — co. The decomposition (2.9) implies the formula
(Am., + Bmo)-l = (I + Pymo + P—2M)_1Tmo-

For mg — oo it follows that

(Amo + Bm,) *(AE + BH )~ Z P, ToTs PF. : (2.16)

j=-o0

Since AoAf + BoBE = I, (1.25) implies that

(‘4"‘0 + Bmo)_l(Aflo + Bfl{o)—l -
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2=
—H= .211; (B —€e%4)"1(AA" + BB¥)(BY —e~**A¥) 4. (2.17)
o]

One can obtain the following more precise rate of convergence in (2.17):
| — (e + Be) ™ (A5 + B{) 7'l <

4w3/2e—2"/(1+w) + 2w2e—2" /(14w) + 9k+2,,0-2"/(1+w)
s 1—4\/we-2"/(11w) ’

(2.18)

J
This estimate holds, of course, when 1 — 4\/5e_é|3 > 0.

Finally, consider the question on avoiding of a failure during the computations for the third
stage of the algorithm. Recall once again that a solution to the system (2.8) is of the form
Zo = (Amo + Bmo) 'Bmgs Zoc = (Amo + Bmy) ' Am,- Therefore, one has to find out about the
condition number of the matrix Ap, + B, As ||Am+1]| < [|Amll, [|Bm+1]] < ||Bm]|, we have

l|4mo + Bomo || < || 4o]l + [|Bol| < 2. (2.19)

If mg is large enough then
[l(Amo + Bmo) ! < Vo + 1. (2:20)

2.3 The stopping criteria for the algorithm

In practice the necessity to detect the convergence of the algorithm occurs. The maximal number
of iterations may be extracted from the inequality (2.13). If we limit the range of w by the interval
[1, Wmax] then the maximal number of iterations mq can be equal, for example, to

mo = integer part of {1+ log[(1 + w)log(2v/w/e)]/log 2}, (2.21)

where € is the relative rounding error for arithmetic operations.
In order to stop before mg iterations we make use of the matrix identity P2 — P = 0 which
means that N-by-N matrix P is a projector.

Suppose now that we have N-by-N matrices Ao, and B,, which are suspected to be a result
of the convergence of the algorithm. Compute the matrices

Peo = (Aco + Boo) 'Boo and R = [Poo(Aco + Bao) ™2, (I — Poo)(Aeo + Boo) 1]

Now we estimate the difference

1 27 . )
D=5 A (Boo — Ac€™®) ! (Boo — Aoe*®)™Hdg — RRH |

in terms of the quantities
& =||PZ — P|| and r = ||R||.
Theorem 5 If§ < 1/4 then there exist @ matriz P such that P2 = P and ||I3—P°°|| <é6/(1-26).
ProoF. Exploit the Schur form of the matrix P.:
%k

(23]
a2

P, =U" ) U, UEU=1.
O aN
We have | — a;| < 4, therefore if § < 1/4 either lei] < 6/(1—26) or |a; — 1] < 6/(1 — 26).
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Thus the eigenvalues of the matrix P, are separated into two groups: the eigenvalues in the
neighbourhood of zero and the eigenvalues in the neighbourhood of one. Choose the Schur form
of P, taking into account this structure:

_u( Ko K
Pu=U (0 KI)U,

where Ko has all eigenvalues from the neighbourhood of zero, but K; has all eigenvalues from the
neighbourhood of one. Then P2 — P, = & implies that

Kg—Ko KoK+ KK; — K _ . _ P P
( 0 K}~ K =UeU"={ 9 & )

Therefore, we have two matrix equations:
K} — Ko= &0, K} -K,=9;.

A solution to K2 — Ko = ®¢ can be written in the form Ko = -;-(I - VI +4%), where the
square root from the matrix is taken by the principal value, i.e.

VI+4%,=1+= (4<1> )+ ’(2 )(4<1> ) +

Hence,

3| 5
Koll < 201 - I—aEq) < 2ol 12l _ :
I1Eoll < ( 12oll) < T 5@0] < T 28] ~ T-25

In a similar way
é

T

Let us construct the matrix P by the formula

"__ H 0 K
P=U (0 I)U’

then, evidently, P2 — P =0 and

; Ko 0 5
"P"P‘””:"( 0 m—I)”ST’Tz‘E'

Introduce the following notations:
A=P_Py, B=(Aw + Bx)P, A= (Ax + Bx)( - P),
- L AA\-1(B _ A io\-H
O=|= ] (B-Ae?) (B - A?)"Hdy|.
27 Jo
Then A+ B = Ao + Booy A — Ao = (Aeo + Boo)(—A), B — Beo = (Ao + Boo)A,

1 27 . . 1 27
_ ipy\—1 _ ip\—H D A D\—-1( D A i\ —
D= 27!' (Boc Ace ) (Boo Axe ) d¢ — or 5 (B — Ae 4’) I(B — Ae ¢) Hd¢ =

~

% (B~ A ({T - [(Boo — B) — (eo — DB — Auoe) T}

X{I — [(Boo — B) — (Aeo — A)e'?)(Boo — Ac€’®) 1} — I)(B — Ae'®)~Hdy,
DIl < &[(1+ 2[|AllllAco + Boo|l[|(Boo — Acoe®) 1) — 1).

20



As (B - Ae®)1=P(A+B) 1+ (I- P)(A + B)"e~%, then ||(B — Ae*?)~?|| < V23,
1(Beo — Acoc®) | < II(B — Ae)7H|/(1 - 2]|Al[[|Aeo + Booll|(B — Ae™) M) <

< V25 /(1 - 2||All[| Aeo + Beol|V28),

4]|Al[|| Aoo + Boo||v28 46|| Ao + Boo||V20
1— 4||Al|l|dco + Boo||V26 ~ 1 — 26 — 46| Aco + Boo||V20

Let R = [P(A+ B)1,(I — P)(A + B)~1], then

1Dl <@ <

12 = Bl = I/A(Ao + Beo) ™!, —A(Awo + Boo) Il < V2I|A]III(Aeo + Beo) I,

(A + Bo) Ml < V2||RI|, [IR - Rl < 2[|AJllIE].
Therefore, |V@ — r| < 2||Al|r, D < D + ||RR¥ — RRH|| <
< D+||(R - R)(R - R)¥|| + || R(R7 - R)|| +||(R - R)R¥| <
4v26||Aeo + Boo||r 42 46
1- 86— 4v26||Ao + Boo|lr = 1—46’

D < 2 450+ V24w + Bw|ir)
=" 1- 86— 4v26||Acc + Bool|r
Finally, some words about the relation of R to

< D+r2(4lall+4lal?) <

1 2x

H=— [ (Bo— Ace’®) " (Bo — Aoe*®)~Hd¢.
27 Jo

One can show that the following invariance property holds

% :‘I‘(B"Hz_l - Am+lei¢)—1(Bm+1 - A,,.+.1e"4’)‘Hd¢ =
= El?fo”(Bm — Apne*?) Y (B — Amei?)~Hdg.
Therefore,
RRY = H.

(2.22)

(2.23)

(2.24)

It is worth to remark here that (2.24) is valid for floating point calculations only if 7 is not very

large.
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Chapter 3

The problem of separation of the
matrix spectrum by the
imaginary axis

The developed method of computing the spectrum dichotomy problem for a linear matrix pen-
cil which is regular with respect to the unit circle can be successfully applied to the spectrum
dichotomy problem for a single matrix with respect to the imaginary axis.

3.1 Eigenelements of a matrix which has no eigenvalues
on the imaginary axis

The main results of this section are obtained by S.K. Godunov and A.Ja. Bulgakov [11, 6].
Given an N-by-N matrix A which has no eigenvalues on the imaginary axis. Differentiable
everywhere, except zero, the bounded matrix function G(t) satisfying the diﬂ'erentia.l equation

d
EEG(t) - AG(t) = 6(t)I (3.1)

. and the condition at t =0
G(+0)-G(-0) =1, (3.2)

is called the Green function of the diﬂ’eréntia.l operator I% — A. By 6é(t) we denoted the delta-
function with the centre at zero.

According to the Jordan theorem there exists a nonsingular matrix @ which reduces the matrix
A to the canonical form

Q~1AQ = block diag{J,,J_}, (3-3)

where the matrix J; contains all the Jordan blocks with the eigenvalues within the left-hand
side halfplane while the matrix J_ contains all the Jordan blocks with the eigenvalues within the
right-hand side halfplane.

With the help of (3.3) one can easily verify that the Green function is unique and equal to

tiy

0 ot
() §)e e20

G(t) =
a(p o )a tso

e

(3.4)

From here it follows, firstly, that G(+0) is the projector onto the invariant subspace of matrix
A corresponding to the eigenvalues inside the left-hand halfplane but —G(—0) is the projector
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onto the invariant subspace of A corresponding to the eigenvalues inside the right-hand halfplane.
Secondly, the following equalities hold:

G(t)G(s) = G(t+s), ts >0,

G(t)G(s) =0, ts<0. (3.5)

Apply Fourier transformation to the equation (3.1):
(#€1-4)G(¢) =1 (36)

The Parseval’s equality gives the matrix

Hy= / " GH ()Gt = % f_m (i€ — A)~F (T — A)~"d¢. (3-7)

Let us refer to the number
x(4) = 2||4[||Hall 2 1 (3.8)

as the dichotomy parameter of matriz A. This parameter is the criterion of absence of the eigen-
values of matrix A from the imaginary axis and a small neighbourhood of it.
The parameter «(4) allows to estimate the magnitude of omia(#I — A):

max{2]|A||l|(¢ - A)7H[} < 14(4). (3.9)

Let A be a perturbation of the matrix A and |4 — A|| < §]|4|| with quite small tolerance 6.
Then .
x(4) — x(4)

1+ 14x(4) 156x(A)
| S <

=T 146k(A) = 1— 146x(A)’

(3.10)

One can prove a fundamental theorem (analogue of Theorem 4) about an estimate of the Green
matrix G(t) in terms of x(A).

Theorem 6 If det(iI — A) # 0 for all real ¢, then the following estimate holds

|G| < Vet~ (3.11)

3.2 Modification of the algorithm

The algorithm to compute the projectors Pp and P, together with the generalized Lyapunov
matrix can be slightly modified in order to compute the projectors G(+0), —G(—0) and the
matrix H,4 for the matrix A having no eigenvalues on the imaginary axis. The modified algorithm
-also consists of three stages.

Stage I. At first, compute the matrix exponential of the matrix B = A¥ /(2||4]|). The invariant
subspaces of the matrix A¥ associated with the eigenvalues on the left-hand (right-hand)
side from the imaginary axis obviously coincide with the deflating subspaces of the matrix
pencil AT — e® associated with the eigenvalues inside (outside) the unit circle.

Compute the matrix L satisfying the equation

1
LI¥ = f e'BetB” g (3.12)
o
and define the matrix pencil

ABo — Ao = L7Y(AI - €B). (3.13)
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Stage II. This stage remains without any changes. Recall that here we carry out iterations to
get the matrix pair Ap,, By from Apm_1, Bp_1 for m = 1,2,...,mo. For example, we can
apply to a block matrix

"Am—l Bm—l 0
the orthogonal transformations from the left-hand side which annihilate the block in the
frame. As a result we obtain the matrix

Cn Rm Dn
—Am 0 Bn

containing the necessary matrices A,,, Bp,.

Stage ITI. Compute the matrices
Hu, = (Amo + Bmo) " (Afs, + Biy) ™", Grmo = [(Amq + Bmo) ™' Bumo] ™. (3.14)
For mo — oo we have Hp,, — 2||4||Ha, Gm, — G(+0). -

Consider the question about the rate of convergence for the proposed modified algorithm. It
is not difficult to show by means of the estimate (3.11) and the formula

k
P.=G" (—) 3.15
aaf) (5-19)
that the inequality (2.13) is transformed into the following:

2/Re= ™1

”(A‘Hlo + -Bﬂ‘lo)_lea - GH(+0)II .<.. 1— 2‘\/—"2_2%—1/“ . (3-16)
One can also deduce the rate of convergence for the generalized Lyapunov matrix:
"2"A||HA - (Amo + Bmo)_l(AfIno + Bf}!{o)—lu S
2k2e=270/R | 4x3/2e—2™07 8 | 9motl co—2T0" [k
< o re (3.17)
1—4./ke=2m""/x
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Chapter 4

On the implementation of the
algorithm

An implementation of the algorithm described in chapters 2 and 3 has been developed for parallel
computing systems with shared memory. In order to keep portability we have used BLAS routines
for the elementary matrix operations [10]. The parallel processing capabilities are assumed to
be exploited mostly inside the BLAS kernels. So we do not explicitly deal with the problems
of synchronization between processors and leave them for developers of compilers and the BLAS
routines. The programming technique used is clearly stated in [10] and in chapter 1 of [14].

The developed implementation is a part of library LINA which contains solvers for basic linear
algebra problems with guaranteed accuracy. In the design of LINA the LAPACK programming
style was kept [1], so LINA can be used as a complement to LAPACK with a few small modifica-
tions. It may also be used independently. In LINA we exploit a few modified LAPACK routines
in order to maintain this independency. These modified routines pertain to the Householder
transformations.

One can see below that the most time consuming parts of the algorithm are the matrix-matrix
products and the Householder transformations. The first one is a Level 3 BLAS operation. The
Householder transformations are used to reduce matrices to upper triangular form (QR factorisa-
tion) and the Householder transformations computed in the QR factorisation are applied to some
matrices. We make use of the blocked versions of the Householder method as in the papers [4, 23].

4.1 The second stage of the algorithm

Recall that at this stage the N-by-N matrix pencil ABp41 — Amy1 is calculated from the pencil
AB., — A, by means of the formulas A1 = X Am and Bty = Yy By, Where N -by-N matrices
'Xpm, Yo satisfy the system Xy X2 + YV E =1, XpnBm — YmAm = 0.

To compute the matrices X,, and Y;, we use the following procedure:

1. At first, the QR factorization for the 2N-by-N matrix ( B:;" ) is computed, i.e. an 2N-
—4aAm
by-2N orthogonal matrix @,, and an N-by-N upper triangular matrix R,, are calculated

such that
B, \_{( Rn
(2 )=(%)

The matrix Q,, is constructed as the product of the Householder transformations

N

Qm = H(I - 'u.ju?), where u;‘?uj =2. (4.1)
=1
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The algorithm to compute the QR factorization is described in almost every handbook on
numerical linear algebra, particularly, in [14].

X2\ _r(0
(¥2)=9(7)
Let us look at this procedure more attentively. Note that the matrix Q,, is not explicitly

formed and it is available in a product form, since the vectors u; are simply recorded in place of
the columns they have been used to annihilate. Therefore, one has to optimize the calculation of

2. Then we compute the matrix

K

[ -wu)e, (4.2)

i=1

where C is an arbitrary matrix with 2V rows and K < N. If we do it consecutively then the
procedure may be coded in terms of the Level 2 BLAS:

¥ = CJ uj (matrix x vector),

Cj+1=Cj — u;y] (rank-one modification), (4.3)

where we denote [JI_, (I — u;ju] )C by Cj.
We make use of the blocked version of the Householder method suggested in [23]. The product
(4.2) is calculated by means of accumulation of several Householder transformations into a single

block transformation:

K[k ik

ﬁ(z —wu)C=[[[ ] -wuul)e.
=1

i=1 j=(i—1)sk+1
One can show that the product of £ Householder transformations may be written as
E
[ -wud)=1-vTUT,
=1
where U = (u1,u2,...,uz) and T is an upper unit triangular matrix. This fact can be easily

verified by induction. If V = I — UTUT, then

VI —wuT) =1 (U,) ( fg‘ ’1” ) (U, u)T
where h = ~TU7T u. The computation of
(I-vTUT)C =C-UT(UTC)

is rich in matrix-matrix operations. The timing results showing the performance rate of such
version of the Householder method can be found in [10].

Thus, the second stage of the algorithm may be implemented either in terms of the Level 2
BLAS or in terms of the Level 3 BLAS.

4.2 The third stage of the algorithm

At the third stage we need to compute the inverse of the matrix Aw + By, a few matrix-matrix
products and some singular values. :

Our general strategy to compute matrix inverses and the singular values consists of a reduction
of the problem for dense matrices to the problem for bidiagonal matrices with the help of the
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Householder transformations. For example, let A bea given nonsingular N -by-N matrix. Applying
the Householder transformations to A from the left and the right hand sides [14] we obtain the
bidiagonal factorization

PAQ =B, (4.4)

where P and Q are the products of the Householder transformations and B is an upper bidiagonal
matrix. Then,

A1=QB'P. (4.5)

As to (4.5), the same technique like in the previous section is suitable for an implementation
of applying the Householder transformations in @ and P.

Evidently, the singular values of the matrix A coincide with the singular values of the bidiagonal
matrix B. Denoting the bidiagonal matrix as

d1 €2 O
dz e3
B = . )
dyv_1 en
O dy

one can show that the singular values of B coincide with the N largest eigenvalues of the symmetric
tridiagonal 2N-by-2N matrix

0 dy '1
dl 0 €2
e2 0 ds O
dg 0 €3
T= €3 0 da
. eN 0 dn
L dy 0

An excellent strategy to compute a few eigenvalues of a symmetric tridiagonal matrix on parallel
computers is suggested in [18]. This method is based on the Sturm sequences approach.

Now let us discuss the parallel aspects of the computation of (4.4). The standard implemen-
tations of the bidiagonalization procedure are easily coded in terms of Level 2 BLAS. If

N-1
pP= H (I —uiul), ulu;i=2,
i=1
N-1
Q= H (I —vvl), vfvi=2, vv_1=0,
i=1

J J
Ao=4, 4; =[] - wu] A - vl ),
i=1 i=
then the j-th stage of the procedure consists of two steps: 1
1. calculate the vector u; from the vector 4;[j: N, j : j] and the matrix A;j=(I- uju}')Aj_l;
2. calculate the vector v; from the vector A;[j:j,j+1: N)and the matrix A; = A~j (r -—vjv;‘-").

Here we denote by M[i; : 12,71 : j2] the submatrix of a matrix M consisting of the rows iy, +

1,...,i2 and of the columns ji,j1 + 1,...,j2. These two steps are coded by means of Level 2
BLAS similar to (4.3).
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Our block version of the bidiagonalization differs from the compact block Householder method
described in [23]. The block version of the bidiagonalization is a further development of the block
Householder method from [4]. The crucial idea is to use the following representation:

3 1
A =[]0 - wul)AT] - vir]) = A- U;X] — i, (4.6)
i=1

=1
where l=j—1lorl=3j,
U] = [’U,l,‘uz, .o .,uj], .‘,l - [171,"12; .. '7”‘]7

X, and Y; are j-by-N and I-by-N matrices respectively. The vectors u; defining the Householder
transformations are placed into the vector-columns A[i : N, : 4] in the lower triangle. Accordingly,
the vectors v; are placed into the vector-rows A[i:¢,72+ 1: N] in the strict upper triangle.

In order to compute the j-th column of X, z;, we compute the j-th column of 4;_; ;_1, a;,
with the help of the formula A — U;j_1X] ; — Y;_1V;" . Then the vector u; is constructed from
a; by the usual procedure

1
U; =
77 2017+ Tazllas;0)

where a;; is the first component of a; = (ajj,-..,an;)%, the sign function satisfies sign(0) = 1
and e; = (1,0,...,0)7. Therefore,

(aj + sign(aj;)|lajlle;), (4.7)

A— (Uj—1,u)(Xjo1,25)T = Y50 VE = (I —wju] (A - Ui X] - Y4V, =

= (A-Uj—1X]_1 = YaViT) — wind (A = Ui X7, — Y50V)y),
2j = (A - Uj-1X]_1 = Y-1V;E 1) uj. (4.8)

In order to compute the j-th column of Y}, y;, we compute the j-th row of 4;;_1, @;, with the
help of the formula A — U;X] —Y;_1V;Z ;. Then the vector v; is constructed from d; in a similar
way as in (4.7). Therefore,

vi = (A= U; X7 — Y1V )v;. (4.9)

So far we described the strategy to accumulate several Householder transformations during
" the bidiagonalization of matrix A. This may be coded in terms of Level 2 BLAS. When we have
accumulated k left and right hand side Householder transformations in the matrices Uy, X, Vi,
Y%, then the submatrix Ak +1: N,k + 1 : N] can be updated by Level 3 BLAS operations:
A-TUXT -1 VT. :

Note that these bidiagonalization algorithms are easily extended to the case of an arbitrary
rectangular matrix A. Timing results to compare Level 2 BLAS and Level 3 BLAS implementations
will be presented.

4.3 The first stage of the algorithm

We have two different procedures for the first stage of the algorithm: the first one for the spectrum
dichotomy problem with respect to the unit circle and the second one for the spectrum dichotomy
problem with respect to the imaginary axis. Let us discuss them in this order.

Given the N-by-N matrix pencil AB — A. We compute an orthonormalized pencil ABy — A4,
which satisfies the matrix system '

AoAg + BoBgI =1,
AB — A= L(ABo — Ao), detL 0.

We compute the matrices Ag and By as follows:
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1. Compute the bidiagonal factorization of the N-by-2N matrix (A B):
P(A B)Q=(Z 0),

where P is an N-by-N orthogonal matrix, @ is a 2N-by-2N orthogonal matrix and I is an
N-by-N lower bidiagonal matrix.

2. If the condition number of T is not large enough, compute
(Ao Bo)=(I 0)Q .

The condition number of T is equal to cond(X) = Omax(L) /Omin(E), where omax and omin are
the largest and the smallest singular values respectively. In fact, the parameter cond(X) is the
condition number of the whole first stage of the algorithm. For the implementation we make use of
the same technique for the Householder transformations like in the previous sections. For example,
for the bidiagonalization we use noncompact accumulation of the Householder transformations of
the form (4.6). However, the compact accumulation is used to apply them to a matrix.

Now consider the first stage of the modified algorithm, i.e. the algorithm for the spectrum
dichotomy problem with respect to the imaginary axis. It is more sophisticated than the previous
one. At first, we need to compute the norm of a given N-by-N matrix A. This should be done
by bidiagonalization and subsequently by the computation of the largest singular value of the
bidiagonal matrix. The possibilities for parallelism in the procedure are discussed above.

Afterwards we have to compute the matrix B = AT /(2||4]|) the 2-norm of which is equal to
1/2. Now one has to compute the matrices

< BI 2 ]
B =E%=I+B+1—;!—+...+%—+...,
j=0

1
C’=/ etBetB” dt.
)

To compute e? we make use of two methods: Taylor series and Padé approximation [21]. These
methods are both suitable for our case because the matrix B has a small norm.
When using Taylor series the polynomial of a matrix B has to be computed:

B? Bk
Tk(B)=I+B+”'+_]T+'”+F.

The number of terms k depends on the relative rounding error € of the computer used. We find
k from the relation ||B||**+1/(k + 1)! ~ e. When € = 2.22 x 10716, for example, k = 13 fits. The
following Horner scheme is used to evaluate Tj(B): -

My =I+B/k, M; =I+Mj+1B/j, j=k-1,...,1, Tk(B) =M,.
Thus, this procedure requires k — 1 matrix-matrix products which should be implemented in terms

of Level 3 BLAS.

When using Padé approximation the rational function Rge(B) of a matrix B has to be com-
puted, where

Y=o (24 — 5)'a!

. 2
One can show [21] that Rye(B) = eB+% with BE = EB and ||E|| < 6 = 22‘29(%%. The
relation § ~ ¢ determines ¢ (¢ = 6 fits).

In the course of forming R,,(B), we compute the matrices

g

Ngg(B) = ZCij, Dyg(B) = ch(_l)ija Ryy(B) = [qu(B)]_quq(B)~
i=0 j=0
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One way to carry this out is to compute the sequence of powers B, B2, ..., BY, next the poly-
nomials Nyq(B) and Dgg(B) and, finally, the matrix [Dygg(B)] ™! Nygg(B). It requires g — 1 matrix-
matrix products and a solution of N linear systems with the same matrix. In this case the matrix
[Dgq(B)] ™1 Nyq(B) can be calculated with the help of Gaussian elimination without pivoting [29].

Hence, the Padé approximation requires approximately twice as less floating point operations
asthe truncated Taylor series approximant.

In order to compute the integral C = fol etBetB” dt involving the exponential of a matrix we
also used two methods:

Taylor series This method is based on the representation;

1 - oo £J(Q)
/0 etBQet? dt = ZT’ (4.10)

j=1

where @ = Q7, £(Q) = BQ + QBT is the Lyapunov operator for the matrix BT and
£(Q) = £L(-..(£(Q))...) is a recursive application of £. In fact, the representation (4.10)
is the Taylor series for e£Q. Thus, we can approximate C by the truncated series:

k

Ce=), Ej(I).

!

i=1

The parameter k is defined by means of the relation 1/(k+ 1)! ~ €. For e = 2.22 x 1016 we

can choose k = 18. This procedure may be coded using only k¥ — 2 matrix-matrix products
because £(I) = B + BT.

Padé approximation A general technique to compute diverse integrals involving the exponential
of a matrix is suggested in [29]. This technique combined with the diagonal Padé approxima-
tions for the exponential of a matrix was implemented for the spectrum dichotomy problem
by Margreet Louter-Nool. Now we sketch the basic idea of this method.

For our case we need to compute the exponential

exp ([ ‘ﬁT i ]) = [ 1;2 g,: ] (4.11)

It can be shown that fol etBQetB” dt = FJ G5. To compute the exponential (4.11), the above
stated method of Padé approximants is used. Taking into account a particular structure of
the matrices one can verify that this method requires 2¢ matrix-matrix products and a
solution of two simultaneous systems of linear equations for N-by-N matrices. As a result
of this method the exponential of B and the integral C are computed simultaneously. Note

that the previous method computes only C. A very detailed description of this method is
contained in [29)].

Summing up, for computing e? and fol e*BetB” dt the Taylor series method requires 28 matrix-
matrix products (12 for computing the exponential and 16 for computing the integral) whereas
the Padé approximation method requires 9 matrix-matrix products and the solution of two simul-
taneous linear systems of the form AX = B with N-by-N matrices A and B. For the solution
of these systems the Gaussian elimination without pivoting is suitable. The estimates for floating
point operations are valid for the relative precision of arithmetic operations equal to 2.22 x 10~18,
So, the second method should be twice as fast as the first.

At the end, having the matrices e® and C = fol e'BetB” dt we need to calculate the matrix
pencil AL~! — L~'e®, where the N-by-N matrix satisfies the equation: LLT = C. The matrix L
can be computed by any parallel implementation for the Cholesky decomposition [10]. The inverse
of the lower triangular matrix L may be computed by a Level 3 BLAS subroutine.

30



4.4 Timing results

In this section some timing results are presented. The algorithm for the spectrum dichotomy
problem has been implemented exploiting BLAS routines. We deal with DOUBLE PRECISION
floating point numbers. The main technique used for parallelism is the block version of the
Householder method discussed above in detail.

For numerical experiments the ALLIANT FX/4 was used which is installed at CWI, Amster-
dam. This computer has four parallel vector processors working with shared memory. We used
the BLAS library supplied by the vendor and the optimizing FORTRAN compiler with automatic
optimization (vector and concurrent) of FORTRAN loops.

The theoretical peak performance of the ALLIANT FX/4 is rated at 11.8 Mflops for a single
processor and 47.2 Mflops for a complex of four concurrent processors. However, the performance
rate of DGEMM routine from Level 3 BLAS achieves about 18-20 Mflops at 4 processors.

Now let us consider the timing results for the bidiagonalization procedure. The library LINA
contains a routine named DGEBDB which executes both Level 2 BLAS as well as Level 3 BLAS
codes for bidiagonalization. Theoretical aspects of these procedures are discussed in Section 4.2.
Below (Table 4.1) we give the CPU time in seconds for execution on four concurrent processors.
When executing the routine on a single processor the CPU time is approximately three times less
than in the case of 4 processors. As a test matrix, an N-by-N matrix A with elements of the form
A;j =i+ (j — 1) * N was taken.

N [ BLAS 2 | Blocksize for BLAS 3 implementation
4 T 8 [ 16 ] 32 | 64 | 128
25 0.03 0.07 (008|008 — | — —
50 0.08 0.17 { 0.18 { 0.19 | 0.21 | — —
100 0.34 0.50 | 0.53 | 0.57 | 0.65 | 0.73 | —
150 1.08 1.20 [ 1.22 | 1.31 | 1.46 | 1.72 | 2.14
200 2.63 240 | 2.44 | 2.57 | 2.82 | 3.36 | 4.26
250 5.563 447 | 438 | 4.64 | 5.15 | 5.90 | 7.40
300 10.1 7.44 | 7.26 | 7.66 | 8.11 | 9.37 | 11.8
400 26.2 17.2 |1 16.6 | 17.8 | 18.3 | 20.8 | 26.3
500 52.8 32.9 | 31.9 | 34.0 | 34.4 | 39.0 | 49.5

Table 4.1: The timing results for the bidiagonalization by means of the Householder transforma-
tions

In order to estimate the performance of DGEBDB we make use of an “effective” number of
floating point operations, i.e. the number of flops in the non-block algorithm of the bidiagonaliza-
tion. One can verify that the procedure requires about %N 3 floating point operations. Thus, when
N = 500 the “effective” performance rate achieves 6.3 Mflops for Level 2 BLAS implementation
and 10.4 Mflops for Level 3 BLAS implementation.

It is interesting to compare the performance of the non-block version and the compact block
version of the QR factorization. In fact, this procedure is the most time-consuming part of
the spectrum dichotomy problem solver. In [10] one can find the timing results for the CRAY
computers. Here (Table 4.2) we present some timing results for the ALLIANT FX/4 on four
concurrent processors. Again we used the N-by-N matrix A with the elements A;; = i+(j—1)*N.
The CPU time is measured in seconds.

An “effective” number of floating point operations is about §N 3 for the QR factorization.
Therefore, the “effective” performance rate achieves 6 Mflops for Level 2 BLAS implementation

and 15.3 Mflops for Level 3 BLAS implementation. The performance rate on a single processor is
about three times less.
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N [ BLAS 2 | Blocksize for BLAS 3 implementation
4 [ 8 [ 16 ] 32 | 64 | 128
25 0.01 0.03 { 0.03 | 003 | — — —
50 0.04 0.06 | 0.06 | 0.07 | 0.08 | — —
100 0.19 0.18 1 0.18 | 0.20 | 0.24 | 0.30 | —
150 0.59 0.45 | 0.43 | 0.46 | 0.53 | 0.68 | 0.94
200 1.41 0.93 | 0.84 | 0.88 | 1.04 | 1.30 | 1.70
250 2.90 1.71 | 1.53 | 1.54 | 1.75 | 2.12 | 2.85
300 5.31 2.85 | 2.54 | 2.62 | 2.86 | 3.32 | 4.35
400 13.6 6.47 | 5.74 | 5.95 | 6.10 | 7.03 | 8.90
500 27.6 124 | 10.9 | 11.4 | 11.3 | 12.5 | 15.1

Table 4.2: The timing results for the QR factorization by means of the Householder transformations

Note that the optimal blocksize for the block Householder method is equal to 8 for all our
experiments.

It remains to compare the procedures for the calculation of the exponential of a matrix and
the integral C = [, e*Pe!B” dt. We obtained the following results:

Taylor method | Padé method
N [ time | Mflops | time | Mflops
100 | 3.49 17.9 1.71 16.0
200 | 26.6 18.7 12.5 17.6
300 | 88.2 19.0 40.3 | 184

Table 4.3: The timing results for the Taylor method and for the Padé method

Finally, I present the timing results for the entire implementation of the spectrum dichotomy
problem solver. When executing the solver for the spectrum dichotomy problem with respect to
the imaginary axis the total CPU time for four concurrent processors was 35.8 seconds. When
executing the solver for the spectrum dichotomy problem with respect to the unit circle the total
CPU time on 4 processors was 35.7 seconds. These times were obtained for 100-by-100 matrices.
The stopping criterion we used is (2.21) from Section 2.3, so the number of iterations for the second
stage of the algorithm was equal to 33. This number is sufficient to let the algorithm converge for
sufficiently ill-conditioned problems with the condition number less than or equal to 102.

The number of floating point operations for the spectrum dichotomy problem solver with
respect to the imaginary axis equals about 402N2 and the number of floating point operations
for the spectrum dichotomy problem with respect to the unit circle comprises about 360N3.
Therefore, the performance rate of these two implementations is equal to 11.2 Mflops and 10.1
Mflops, respectively.

Numerical experiments with 300-by-300 matrices show a performance rate of the spectrum
dichotomy problem solver of about 13 Mflops when the blocksize equal to 8.
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Chapter 5

Some applications

The first problem being considered is the problem to compute an orthonormal vector basis of
some deflating or invariant subspaces. For example, given an N-by-N matrix pencil AB — A and
the circle of radius r with center a. If one need to calculate the right deflating subspace of the
pencil AB — A corresponding to the eigenvalues inside this circle then the problem is reduced to
the spectrum dichotomy problem with respect to the unit circle for the pencil y(rB) — (A —aB).

Let A be an N-by-N matrix. It is easy to prove that the spectrum dichotomy problem for
the matrix A with respect to the straight line a + 2t, —oo0 < t < 00, is reduced to the spectrum
dichotomy problem for the matrix ﬂzﬂ(A — aI) with respect to the imaginary axis. Thus, in order
to solve the spectrum dichotomy problem with respect to arbitrary circles and straight lines we
must be able to solve the spectrum dichotomy problem for complex matrices and complex matrix
pencils.

Consider now the problem of how to calculate an orthonormal vector basis of a subspace
when having computed a projector matrix onto this subspace. Let P be a projector matrix, i.e.
P2 — P = (. One can verify that the subspace associated with P is the right null subspace of
the matrix I — P, that is the subspace of the form {v | (I — P)v = 0}. The latter problem, the
computation of the null subspace of a matrix, can be solved by means of SVD, the singular value
decomposition.

The singular value decomposition for dense matrices is computed by reduction to the bidiagonal
matrix case. This reduction is carried out by means of the Householder method. The parallel
aspects of the bidiagonalization have already been discussed. Analogous to the SVD for bidiagonal
matrices, we only need a few singular vectors, therefore the method from [18] fits.

5.1 The Riccati equation

In this section we apply the spectrum dichotomy problem solver to the solution of the Riccati

equation arising in control theory. The problem of solving this equation is very attractive and
many authors contributed to it [27].
We consider the algebraic Riccati equation of the form

Q+ATA+AA—-ABR'BTA =, (5.1)
where the matrix pair (A4, Q) is detectable, the matrix pair (A4, B) is stabilizable, @ = QT >0,
R = RT > 0. For the definitions of “detectable” and “stabilizable” we refer to the literature, for

example, [17].
Let us rewrite (5.1) as follows:

( _AQ BRLE ) [ . ] = [ . ] (A— BR™BTA). (5.2)
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Therefore, the Hamiltonian matrix

_ pp-1pT
H= ( _AQ BfATB ) (5.3)

has an invariant subspace spanned by the columns of the matrix [ 1{ ] if and only if the Riccati

equation (5.1) has a solution A.
One can show that the 2N-by-2N matrix H has N stable eigenvalues (i.e. Re(A) < 0 ) and
N eigenvalues in the right hand side halfplane. Moreover, in this case equation (5.1) has the

unique nonnegative definite solution A and the columns of [ i ] span the invariant subspace of

H corresponding to the stable eigenvalues. Thus, to solve (5.1) is equivalent to the computation
of the invariant subspace of H.

We discuss now an application of the spectrum dichotomy problem solver to the Riccati equa-
tion. For this case one has to make use of the solver for the spectrum dichotomy problem with
respect to the imaginary axis. Recall that the matrix pencil ABg — Ap is formed in order to start
the iterations, where By = L™, 4o = L~ 'eX, K = HT/(2||H||), LLT = fol etKetK" 4t By
means of the iterations of the algorithm we compute a convergent matrix pencil ABy, — A . Since
Ay = Too(I — P) with the matrix P being the projector onto the invariant subspace associated
to the stable eigenvalues of H, the right null subspace of the matrix A, is the invariant subspace
of H which we need to compute. Let us partition the matrix A, as follows:

Aw = [AD), AQD)).
Then a solution of the least squares problem
ADA = —a0)

gives us the solution of the equation (5.1). Thus, we have no necessity to calculate explicitly the
projector matrix P in order to compute the matrix .

All stages of the algorithm calculating the solution A of (5.1) are provided with the condition
numbers. Hence, an entire error analysis is available for the algorithm. By the way, we also use
the Householder method to solve the linear least squares problem, so the block versions of the
method are applied in this case.

Now we present timing results for an implementation of the algorithm of a solution to the
Riccati equation. The numerical experiments were executed on the ALLIANT FX/4. For N = 50 it
required 39 seconds to find a solution. This CPU time corresponds to the worst case of convergence.

5.2 The Lyapunov equation
The Lyapunov equation is a particular case of the Riccati equation:
ATA+AA4+Q=0. (5.4)

Here the matrix A is stable and Q@ = QT > 0. In fact, the modified algorithm, which is intended
for the solution of the spectrum dichotomy problem with respect to the imaginary axis, computes
a solution of the Lyapunov equation with @ = 2||A||I. This special case of the right hand side is
chosen in order to introduce the condition number for the matrix stability problem as k(A4) = ||Al],
where ATA + AA = —2||4||I. '

But if one still wants to solve (5.4) for an arbitrary matrix Q then the first stage of the modified
algorithm should be slightly modified. At first, we compute the matrix B = AT/ (2]]4]|) and then
we have to compute fol etBQetB” dt. Decomposing this integral as LLT = fol eBQetB" dt and
calculating the inverse of L~ (if possible !) we form the matrix pencil ABy — Ag = AL~1 —[~1¢B,
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Now one can carry out the iterations of the second stage of the spectrum dichotomy problem
solver. After convergence, we obtain the solution of (5.4) in the form

A= (A + Boo) }(Awo + Bso) L.

There exists a more efficient way to compute a solution of (5.4) which is suitable for any matrix
Q provided the matrix A is stable. The formulas of the method are extremely simple. At first,
one has to calculate the matrices

E;, = ezp(tA) and Hy = / eMTQe‘Adt
0

for 7 = 1/(2||4||). Then the iterative process is executed:
H;=H;_,+EF \Hi_1E;_,, E;=E} . (5.5)

If the matrix A is stable and the condition number k(A) is not very large then the iterative process
(5.5) converges very rapidly. The method (5.5) takes a number of the floating point operations
which is about three times less than that of the spectrum dichotomy problem solver; it may
be coded in terms of the Level 3 BLAS routine DGEMM. Therefore, this latter solver for the
Lyapunov equation seems to be the most efficient parallel method among all the existing methods.
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Conclusions

In this report the technique for solving some eigenvalue problems has been discussed which is an
alternative to the Schur method. When executing on sequential computers our method may be
5-10 times more expensive than the Schur method. On parallel computers, however, these two
methods give approximately the same time-to-solution because our method may be effectively
coded in terms of Level 3 BLAS with the performance rate not far from the performance rate for
DGEMM whereas the Schur method does not reach such a high performance for parallel computers
(about 1 Mflops on ALLIANT FX/4).

In addition, our method is equipped with the strict mathematical theory for the convergence
rate and for the rounding errors [20]. For the Schur method it is very expensive to obtain the
rounding error bounds.
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