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Abstract. In [4], a central limit theorem for the number of vertices of the convex hull of a uni-
form sample from the interior of a convex polygon is derived. This is done by approximating
the process of vertices of the convex hull by the process of extreme points of a Poisson point
process and by considering the latter process of extreme points as a Markov process (for a
particular parametrization). We show that this method can also be applied to derive limit
theorems for the boundary length and for the area of the convex hull. This extends results of
Rényi and Sulanke (1963) and Buchta (1984), and shows that the boundary length and the
area have a strikingly different probabilistic behavior.
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1. Introduction.

In 1963, Rényi and Sulanke derived asymptotic expressions for the expected boundary
length and the expected area of the convex hull of a uniform sample from the unit square
(see [5]). They stated in their introduction that the computations for more general convex
polygons are rather complicated (“ziemlich uniibersichtliche Rechnungen”). Moreover they
noted that the expected boundary length and the expected area of the convex hull behave
surprisingly differently, at least in a first analysis (“Hier ergiebt sich die auf ersten Blick
iiberraschende Tatsache, dafl sich Flacheninhalt und Umfang asymptotisch verschieden
verhalten”).
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A paper by Buchta (see [1]), shows that indeed the computations of the first moment
measures become quite complicated for polygons more general than the unit square, and
proceeding in this way to the computation of higher moments seems an extraordinarily
hard task. We show that the computation of asymptotic expressions for the first moments
becomes rather easy, if one looks at the process locally instead of globally, using an approach
which is most conveniently summarized by saying that “everything happens in the corners”.

Moreover, we will derive the actual limiting behavior (after rescaling), and show that
the area of the region between the convex hull of the sample and the boundary of the
convex polygon satisfies a central limit theorem, in contrast to the boundary length of
the convex hull. In fact we will show that the dominating asymptotic behavior of the
boundary length of the convex hull depends on a number of edges that remains bounded,
as the sample size tends to infinity, whereas the dominating asymptotic behavior of the
area of the region between the convex hull of the sample and the boundary of the convex
polygon will involve a number of edges tending to infinity, as the sample size tends to
infinity. In this sense the asymptotic behavior of the boundary length is even more local
than the behavior of the area.

Another expression of the phenomenon just mentioned, is that there is a natural
stationary process, describing the limiting behavior of the area of the region between the
convex hull of the sample and the boundary of the convex polygon, whereas no such
stationarity holds for the limiting behavior of the boundary length. However, we expect
that this striking difference in behavior would disappear when samples from convex figures
with a smooth boundary are considered. This would also provide an explanation for the
observations in [5] on the differences in this respect between samples from the unit square
and samples from convex figures with a smooth boundary.

The present paper is structured in the following way. Since we will relate the behavior
of the functionals of the finite sample process to the behavior of corresponding functionals
of a limiting Poisson point process, we first study the functionals of the limiting process.
This is done in section 2. Here we already see the difference in behavior of the boundary
length and the area: for the “area functional” of the convex hull of the Poisson point
process a central limit theorem is obtained in contrast to the “length functional”.

In section 3 we relate the results for the Poisson process to the finite sample behavior.
Computations of the relevant second moments are given in the appendix.

Since the computations, involving second moments, are considerably more complicated
than for first moments, we treat (for reasons of space) the case of uniform samples from
convex polygons separately. Moreover, this case has some pecularities which are not present
in say, the case of samples from convex figures with smooth boundaries or samples from
absolutely continuous distributions with infinite support, such as a two-dimensional normal
distribution.

2. Functionals of the convex hull of a Poisson point process.

We shall study functionals of the Poisson point process P on IR%, with intensity Lebesgue
measure. The functionals will depend on P via another process, which is defined by
Definition 2.2 in [4]. For convenience, this definition is repeated below.
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Definition 2.1. For each a > 0, W(a) is the point of a realization of the Poisson point
process P on R3 , such that all points of the realization lie to the right of theline z+ay = ¢,
which passes through W(a). I there are several of these points, we take the point with
the smallest y-coordinate.

We first consider the functional, corresponding to “area”. To this end, we introduce

the following process, describing a “growing area”, as a function of the parameter a in
Definition 2.1.

. Definition 2.2. Let 0 < a < b < co. Then A(a,b) is the area of the region, bounded on
the right and left by vertical lines through the z-coordinates of the points W(a) and W(b),
and bounded from below and above by the line y = 0 and the (left lower) boundary of the
convex hull of P, respectively.

For each ag > 0, we introduce the increasing filtration {.7-'[,,0,,,] ta> ao} of o-algebras
(2.1) Flag,a) =0 {W(c) : ¢ € [ao,a]}.
Then the process {(W(a),A(ao,a)) :a >ao} is a Markov process with respect to this

filtration. This process has the following martingale characterization.

THEOREM 2.1. Let Co be the set of continuous functions f : R} — IR, with compact

support contained in (0,00)? x [0,00), and let, for each a > 0, the linear operator L, :
Co b 4 Co be deﬁned by

y
) Eafl(e,)= [ w{flotony—us+ Jaud +auty — ) = e 9,2) o
for (z,y,2) € (0,00)% x [0,00). Then, for each f € Co and each ap > 0, the process
X1(@) = §(W(a), Alaoy)) — [ [Lef] (W(), Alao, ) de, a 2 ao

is a martingale with respect to the filtration {f'[ao,,,] ta> ao}.

PROOF: We have to show that, fora > 0:

limh™ B {f(W(a +), A(ao,a+ b)) — F(W(a), A(ao, @) | (W(a), A(do,a)) = (2,5,2)}
= [Lafl(z,y, 2)-
But, referring to Figure 2.1, it is easily seen that
A(ao,a + k) — A(ap,a) =h {%a’u2 + au(y — u)} +o(h),h 10,
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if W(a) = (z,y) and a jump from (z,y) to (z,y) + (au, —u) + (e1(h), e2(h)) occurs in the
“time interval” [a, a + k], where ||(ex(), e2(h))|| = O(h).
The remaining part of the proof is the same as the proof of Theorem 2.1 in [4]. |

It is convenient to write (2.2) in the following form:

(23) Lafl@w,2) = [ {50 +2) — f(w) M(a,w;2),
where, for a > 0, the jump measure M(a, w; -) is defined by

y .
(2-4) M(a,w; B) = / ulp(au, —u,1au’® 4 au(y - u)) du,
0

where w = (z,y,z) and B C IR® is a Borel set.

We now transform the process {(W(a), A(ay, a)) ta> ao} into a Markov process with
stationary transition probabilities. First, as in [4], we introduce the process {Z(a) : a € R},

by defining
X(a) = (U(e*) + €*V(e*)) / exp {1a},
Y(a) = e2°V(e%),
2(a) = (X(a), ¥()).
The process {Z(a) : a € IR} has the one-dimensional marginal distributions

(2.5) P{X(a) € dz, Y(a) € dy} = exp {—12?} dzdy,
see (2.26) and (2.27) in [4]. Next, defining A(ao,a) by
A(ag,a) = A(e,e%), a > ao
and using the 1-1 correspondence between Z(a) and W(e®), we obtain
lim k™ E {(2(a + h), A(ao,a + k)) - f(z,,2) | (Z(a), A(ao, a)) = (2, 3,2)}
(2.6) = /oyu {fzy—u,z+3a® + uy) — f(z,y,2)} du
+ (U= 32) g @ mr2) + Wyl aza.

As a corollary to Theorem 2.3 in [4], we get the following result.



THEOREM 2.2. Let, for each ag € IR, the process {(X(a),Y(a), A(a0,a)):a>ao} be

defined by |
X(a)= (U(e®) +e*V(e*))/ exp{3a},

 Y(@)=efV (),
A(ao,a) = A(e™, ),

where a > ag. Then, for each a9 € IR, this process is a Markov process with stationary
transition probabilities, and with an infinitesimal generator given by (2.6). Moreover, the
process is strongly mixing in the following sense. Defining the o-algebra

Fla,o0) = 0{(X(e), Y(¢)) : ¢ € [a,00)},
we have
(2.7) |P(AN B) - P(4)P(B)| < c- e~ 7",

if A€ f'{ao,a], Be f’[a“,w), where ¢ > 0 is a fixed constant.

PROOF: The statement about the (statiohary) Markov structure immediately follows from
(2.6), and (2.7) follows from (2.30) in [4]. |

Theorem 2.2 implies that the sequence X, X3,..., defined by
(2.8) X; = A(0,i) — A(0,i —-1),i=1,2,...,
is a stationary sequence of random variables, satisfying the mixing condition
|P(AN B) - P(A)P(B)| < c- e~ 7",

if A€ o{Xy,...,Xx} and B € 0{Xk4m : m > n}, where k,n > 1 and cis as in (2.7). If
we can show that EX} < o0, for all k > 1, we would get

(29) {A(0,n) = nEX,}/1/Var(A(0,n)) 2 N (0,1),

i.e., A(0,n) would converge in distribution, after standardization, to a standard normal
distribution. :

The finiteness of all moments EX} follows from the following lemma.
LEMMA 2.1. For each a > 1 the moment generating function

A = Eexp{)A(1,a)}
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is finite for ) in a neighborhood of the origin.

PROOF: Conditionally on (U(1),V(1)) = (z,y), the area A(1,a) is bounded above by
3(a — 1)y? (the area of the triangle with vertices (z,¥), (z + y,0) and (= + ay,0)). In
Lemma 2.4 ([4]), the marginal distribution of the Markov process {W(a) : a > 0}, was
computed. By part (7) of this Lemma, we have

_ . \2
P {W(a) € (dz,dy)} = exp {_(z_—;;ﬂ} dzdy, 0<z,y< oo.
iFrom this, we obtain
(2.10) Eexp{AA(1,a)} < /R’ exp{-3(z+y)® + 1)(a - 1)y*} dz dy,

+

and the right side of (2.10) is clearly finite for ) in a neighborhood of zero (depending on
a). |

Since X; = A(1,e), it follows that the moment generating function of X; exists in a
neighborhood of the origin. So it is clear that all conditions for a central limit theorem
of the form (2.9) are fulfilled, and all that is left to do is to compute first and second
moments. We will compute these moments for the process {A(ag,a) : @ > ao} in its
original parametrization, since the computations are somewhat simpler in appearance,
and can be transferred immediately to the process in its stationary form (and hence to
properties of the sequence X3, X>,...).

We have the following result, which is quite similar to Theorem 2.4 in [4].

THEOREM 2.3. Leta > 1 and a =a — 1. Then:
(i) EA(1,a) = }loga,

(i)  Var(A(1,a)) = % loga + 'sli (tan™? \/5)2

200 2 -1 tan~! (ya) 2 -2 -1
+9{3a + Ta +4}-—-——\/5 9{3(1 +6a7'}.

We note in passing that part (ii) of Theorem 2.4 in [4] contains a typing error:
2
%(tan‘l(b/a))2 should be § (tan"1 (v/(b/a - 1)) (the correct formula is in fact given
on p. 365 of [4]).

The proof of Theorem 2.3 will be given in the appendix. As a corollary we obtain the
following central limit theorem.



COROLLARY 2.1. For any sequence (ay) such that a, > 1, for eachn, and limp_—.oc an = 00,
we have

(2.11) {A(1,a.) — }loga.} /\/%loga,, 2 N(0,1), asn — oo,

where N'(0,1) denotes the standard normal distribution.

PROOF: We note that, by Theorem 2.3,

- 50
Li -1 il =—
amn Var (gx) 189’
where X; is defined by (2.8). It follows that we can write A(0,n) as a series that has a
finite second moment and whose terms are a-mixing and stationary. Using a generalized
form of the classical Central Limit Theorem, we may now complete the proof, in exactly

the same way, as was done in the proof of Corollary 2.3 in [4] (with N(1,a,) everywhere
replaced by A(1,a,)). §

We briefly comment on the more general situation of a Poisson process P with inten-
sity Lebesgue measure in the region R), defined by

Ry={(z,9):y20,z-Ay>0}, A€ R.

Taking A = 0 we get the case we have considered so far. Here we only consider the case
A > 0, since the case A < 0 is quite similar. Defining W(a) as before (see Definition 2.1),
but with the parameter a varying over the bigger interval (—\, 00), we get the following
marginal density for W(a):

(= +ay)®
2(a + N)
This follows from the fact that the probability that a realization of the Poisson process
has no point in the triangle with vertices (A(z + ay)/(a + A),(z + ay)/(a + X)), (0,0),

(z + ay,0) is given by exp {—%(m + ay)z/(a + /\)}
We next redefine A(a,b) in the following way.

(2.12) P{U(a) € dz, V(a) € dy} = exp {— } dzdy, (z,y) € Ri.

Definition 2.3. Let —)\ < a < b < 0. Then A'(a, b) is the area of the region, bounded on
the right and left by lines parallel to the line z = Ay through the points W(a) and W(b),
and bounded from below and above by the line y = 0 and the boundary of the convex hull
of P,, respectively.

Instead of Theorem 2.1 we now get:



THEOREM 2.4. Let Co be the set of continuous functions f : RS — IR, with compact

support contained in (0,00)? x [0,00), and let, for each a > —), the linear operator
L. : Co — Cy be defined by

[Laf](2,y,2)
= /oyu {f(z +au,y —u,z + 2a+ Nu? + (a + Nu(y — v)) - f(z,y,2)} du,
for (z,y,z) € (0,00)? x [0,00). Then, for each f € Cy and each ag > ), the process
X4(a) = f(W(a), A'(ao,a)) — / [Lef] (W(c), A'(ao, <)) de, a > ao,

is a martingale with respect to the filtration {.7-'[,,0,,,] ta> ao}.

The process { (U(a), V(a), A'(ao, a)) : @ > —A} can now be transformed into a Markov
process with stationary transition probabilities, just as before. First, we introduce the
process {Z(a) : a € IR}, by defining ‘

X(a) = {U(e* = X) = AV(e®* = \) + e*V(e® — A}/ exp {3a},
1
Y(a) =e2V(e® = 1),
Z(a) = (X(a),¥(a).
This process has the same structure as before, in particular (2.5) and (2.6) are satisfied. It

follows that A'(a,b) has the same distribution as A(a + A,b+ 1), and we obtain the same
central limit theorem as before (with the parameters a and b shifted to a + A and b+ ).

In section 3 we shall derive from Corollary 2.1 a central limit theorem for the area
of the convex hull of a uniform sample from a convex polygon. We now first turn to the
other functional: the boundary length. In analogy with the area, we introduce a process,
describing the “growing boundary length”.

Definition 2.4. Let 1 < a < b < 0o. Then L(a,b) is the boundary length of the convex
hull of P between the points W(a) and W(b) minus U(b) — U(a).

For 0 < @ < b < 1, we define L(a,b) to be the boundary length of the convex hull of P
between the points W(a) and W(b) minus V(a) — V(b).

So, for 1 < a < b < 00, L(a,b) is the boundary length of the convex hull of P between the
points W(a) and W(b) minus the projection of this part of the boundary on the z-axis,
whereas for 0 < a < b < 1, we compare the boundary length of the convex hull of P with
its projection on the y-axis. As before, we get that the process { (W (a), L(ao,a)) : a > ao}
is a Markov process with respect to the filtration {f[ao,a] ta> ao}. Moreover, we get the
following martingale characterization.



THEOREM 2.5. Let Co be the set of continuous functions f : RS — IR, with compact

support contained in (0,00)? x [0,00), and let, for each a > 1, the linear operator L, :
Co — Co be defined by

(2.13) [Lafl(z,y,2) = Lyu {f(a: +au,y —u,z+uy/1 +}a2 - au) —-f(z,y,z)} du,

for (z,y, z) € (0,00)% x [0,00). Then, for each f € Cp and each ao > 1, the process
Yy(a) = £ (W(a), Kan,0)) = [ [Eef] (W(0), Lao, ) de, a > an,

is a martingale with respect to the filtration {f'[ao,a] ta> ao}.

In this case it does not seem possible to transform the process to a Markov process
with stationary transition probabilities. Nonetheless Theorem 2.4 is helpful in computing
the first and second moment measure of the process.

THEOREM 2.6. For the boundary length L = L(0,00), of the convex hull of the Poisson
process P, we have

@) EL(0, 00) ~ 1.13283
(ii) VarL(0, 00) = 1.88969

The proof follows from numerical integration of the expressions for the moments of
L(3,t), t > 0,as t tends to infinity. It is given in Appendix B.

3. Functionals of the convex hull of a uniform sample.

The results of the previous section and the strong approximation result, Lemma 2.2 in [4],
yield limit theorems for the functionals of the finite sample.

First we need to recall the definition of the process, running through the vertices of
the left-lower boundary of the convex hull of a uniform sample from the interior of the unit
square. (Definition 2.1 in [4])

Definition 3.1 For each a > 0, W,(a) is the point of the sample, such that all points of
the sample lie to the right of the line = + ay = ¢, which passes through W,(a). K there
are several of such points, we take the one with the smallest y-coordinate.

In [4], it was shown that the point process {y/nWy(a) : @ > 0} converges in distribution to
the point process {W(a) : a > 0}.



Let A, denote the difference between the area of the unit square and the area of the convex
hull of n uniform points in this square. Analogously, L, denotes the difference between
the boundary length of the unit square and the boundary length of the convex hull of
the uniform sample. It is clear from Theorem 2.3, that A, is of order _0.&2 as n — 00.
However, it follows from Theorem 2.5, that the expectation of L, tends to zero at a rate
of 7—, whereas the variance decreases as ; for n — oo.

The rate for the area Ay, is not surprising, since, as was shown in [4], EN,, is of order
logn, for n — co. Moreover, by a well-known relation (see e.g. [3]) between the expected
area and the expected number N, of vertices of the convex hull, we have

EA, = lEN,._l.
n

To give an idea of the proof of our main theorem, we have to recall some of the results in
(4], on which the theorem heavily depends.
Consider the region R, of the unit square, that lies to the left and below the curve
C(¥%82) where C(a) is defined by

C(a) = | J Ci(a),

with -
o ={@v:j<vsie=a}

Ca(e) = {(z,9) 2w = ga ases<i]

Cx(@) = {(2,9) 3 <z <1y = o}

It was shown in [4], that the vertices {Wy(a): a > 0} of the convex hull of the uniform
sample, belong to the region R, with a probability tending to 1, as n — oco. (Corollary
2.1in [4])

Now consider a Poisson point process {, on JR% with intensity nx Lebesgue measure
and let 7, be the sample point process corresponding to the sample of size n from the unit
square. Then, it was also shown in [4], that there exists a probability space such that the
probability that the realizations from 7|r, (7. restricted to the region R,) and from ¢|g,
differ, tends to 1, as n — oco. (Lemma 2.2 in [4])

Let us introduce the following notation:
#(¢n) is a functional of the convex hull of the process (,, where in our case, ¢ is one

of the following
N, the number of vertices

A, the remaining area
L, the remaining length,
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where A, and L, are defined more precisely at the beginning of this section.

A suffix Bn, as in ¢g,(Cn), is used to express the fact that we consider the functional
¢ only for values of the timeparameter in the interval [3,,1/ Ba] and B, = !9%'-'

The crucial argument is the following. Summarizing the results from [4], we get,
speaking very loosely,

3.1) 68, (1n) = 38, (alR.) = a(n) 7 8, (€nlR,) = a(n) ™ 85, (6n),

for some function a(n) of n, and with the equalities only holding on a set having a prob-
ability mass, tending to 1 and for n tending to infinity. In words: If we want to study
a functional of the convex hull of the sample point process, we might just as well study
the same functional of the convex hull a Poisson point process, as long as we restrict our
attention to those lines generating the convex hulls with slopes in the interval [85,1 /Br]
and only for n large enough.

The function a(n) is as follows:

1 if =N,
a(n)= n lf¢=An
Ji i é=Ln

First, we show that it is sufficient to consider the part ¢g,0of ¢. By symmetry, it is enough
to prove the following lemma.

LEMMA 3.1. With B, = %82 we have

) EAL(0,Ba) ~ 1 39g—‘1f;’£’-‘, 287 —» 00
(i) EL,(0,8r) ~ c2 lofgln’ asn — 00,

for some constants c;,c3.

The proof is given in Appendix C.
We may now state the main result of this section.

THEOREM 3.1. We have, as n — oo,

{An — 4b,} [2¢a 3 N(0,1),

_2logmn _ 100logn
where b, = 3—5—n and ¢, = 189—5-—“ ;

N(0,1) denotes the standard normal distribution.

PROOF: From Theorem 2.4 and the ‘equalities’ (3.1), we may deduce that

(3.2) {An(Bn,1/Bn) — bn} [2¢a D N(0,1),as 1 — oo.

11



Furthermore, by Markov’s inequality and Lemma 3.1,

P{An(o)ﬂn) Z G} S %EAn(O,ﬂn) —_ 0, n — 00.

C n cﬂ

Hence

An - bn =An(,3n, l/ﬂn) - bn

Cn Cn

B N(0,1), by (3.2).

+ op(1)

Of course we may proceed in the same way for the other corners. The only thing left to
show is that the random variables A,(8,,1/ Br), for the different corners, are asymptoti-
cally independent. Since this involves exactly the same argument as the one used in the
corresponding Corollary 2.4 in [4], we refer to the last part of the proof of that Corollary.
This proves the Theorem. [ |

Next, consider a uniform sample from a convex plane polygon with k(> 3) vertices. In the
same way that led us to Theorem 3.1, we may derive from Theorem 2.1 and the remarks
made thereafter, the following more general result.

THEOREM 3.2. Let A(C,) denote the area of the convex hull of a uniform sample of size
n from the interior of a convex polygon C with k(> 3) vertices and area A(C). Then, for
the remaining area

An = A(C) — A(Ch),

we have, as n — oo,

where N'(0,1) denotes the standard normal distribution.

The behavior of L, is rather different. Essential in Theorem 3.1 is the asymptotic negli-
gibility (see [3]) of the individual components of A,,. However, as is seen from Theorem
2.5, the dominating asymptotic behavior of L, depends on a bounded number of parts.
Another way of expressing this, is saying that the pieces of nA, constitute a series that
diverges as n — oo, whereas the pieces of \/nL, constitute a series that converges in dis-
tribution to a (random) summable infinite series. Although the latter infinite series can
be considered as a functional of the limiting Poisson point process, this characterization
does not seem to lead to a simple limit theorem for Ly, like Theorem 3.2 for A,. The only
information we have so far about the limiting distribution is given in Theorem 2.5, where
the first two moments are specified.
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Appendix A. (Proof of Theorem 2.3).
ad (i). As shown in the proof of Theorem 2.1,

lim 3 B {A(e,a + BIW(a) = (=,3)}
(5.1) / (auy — —auz)du
= —ay

24
It follows that, for a > 1,

EA(1l,e) = 55;‘/1‘ sEV(s)'ds = %loga

since EV(s)* = by Lemma 2.4 in [4].

552’
ad (ii). We consider the second moment of A(1,a):

1
lim +E {A(1,a +h)" - AL, 0)|Fna }

= l;fi% %E {A(a,a + 1) + 2A(1’“)A(a’a + 1)|Fir,a)}

v 1.2 5 1
= uqyau — sau du + ——-aA(l a)V(a)®.
0
Hence

2EV(s)ﬁds + — 5 sE(l, 3)V(s)*ds

(5.2) EA(1,a)® = D

120
The first integral of (5.2) is easxly computed to be 22 loga

For the second integral, we use a time reversal argument similar to the one given on page
343 in [4].

It follows that

(5.3) E {A(1,s)|W(s)} = 2 | ,.lsE (U)W (s)]} dr,

where we use (5.1).
So we have to compute EU(r)*V(s)!. We first take r = 1. From Lemma 2.4 in [4], it
follows that

EUQ1)'V(s)* = %EV(I)‘U(I)“ exp {-%avu)?}
(5.4) - -5-4;EV(1)2U(1)4 exp {—%aV(l)z}

— -;%EU(I)4 {exp {-%UV(IY} - 1} )

13



where 0 := s — 1.
We introduce the following notation:

I { j;” y* e—1ov’ (f:° e'}'zdt) dy , keven
k=
Byt etor’ay . kodd.

While performing the computation of the expectations in (5.4), one is led to the use of the
integrals Iy, that are easy to evaluate. In fact, we can write (5.4) as

2 .
5—2-{02(18 — I) + (607 — 0)Is + (0 — 50?)1s
+(30% — 60 — 2)I4 + (50 + 2)I5 + (—30 — 12) 1
105 - 6Io + 2EU(1)*}.

Elementary computations show that for k = 1,2,...
tan=! /o
Iy = —F—
Vo
hol
o

2k -1 1
Ly_g — Iy,
o

Using these recurrent relations, we may now conclude that

way <8 (2A, B\t e 1602 8 4
(63 BV(E)'UW) =2 (S+3 NG 5 Gt -3 )

To simplify the notation slightly, we define the function ¢(o) to be equal to the right-hand
side of (5.5). Then, by the definition and the stationarity of the process {Z(a) : a € R},
we get

(5.6) EV(s)*U(r)* = .p(f -1) ,s>r>0.

Remark: Using Lemma 2.4 in [4], one may compute that

EUQ)'V(1)* = %.

From (5.5), it follows that
EU()'V(1)t = liix‘} (o)
and this limit may indeed be shown to be equal to %.
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Now, the second term in (5.2) equals
25 [° *1 s
ﬁ‘/l sds/1 -’ztp(; -1)dr
25 a 1 a/r :
—2—8§/l ;dr/1 up(u — 1) du,

by Fubini’s theorem and a change of variables.
To find a primitive of up(u — 1), we write it as (u — 1)p(u — 1) + p(u — 1).

We shall use the indefinite integrals given by (4.2), (4.3) and (4.4) in [4], as well as the
following:

(5.7)

/ 'Vu—1(u— )—9/2—"-13311 Vu—-1(u—-1)""2

_1 11 1 und
Nu—1P 2u-1¢ u-1' * u

/ 1 Vu (u—l)’"’:—--—tan vu—1(u-— 1)"”’/2

_%(2(“11)2_(”11)_1.,5";1),

Then we have

afr
(5.8) / wplu — 1) du = (2 — 1) — &(0),
N1

16(6 72  10) tan~!yz
where ®(z) ——?{;5.{—-572-4-:}__‘7;__

16 [ 6 62 32 4

+?{—+5m2 +t+3 logz+1} z>0
4*.43

and ®(0) :=lii%(l>(z) ==

For the double integral in (5.7), this yields
/ ?—(irlgdr — ®(0)loga

1

_94;( 3 7 tan-'yva—1 64 3 + 6)
- 1

(a—1)2+a—1+4 Va-1 T 25 \(a-1)?

32, 2 32 4443
+2—5(tan va-1) +25(loga) =3 2110ga,

whence the theorem follows.
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Appendix B. (Proof of Theorem 2.5).
To be able to do the computations, observe that, by Definition 2.4

(5.9) L(,a) = L(%, 1)+ L(1,0) + U(1) + V(a), a>1.
ad (i). From Theorem 2.5 we get

lm %E {L(a,a + h)|W(a) = (z,3)}

=£’uz{m—a}du
=%y3(\/l_+_a?—-a).

Hence, for a > 1, we have

EL(1,a) = % /1 ) (\/1 + 82— s) EV(s)\dz

(5.10) _ \/2_”/0 __—,l—mdz
1 833/2 ’
since EV(s)® = Zs%
Moreover,
[ 1 1
(5.11) EU(1)= /0 /o yexp {—5(:1: + y)z} dzdy = Z\/2—1r

Since EL(1,1) = EL(1,a), we get, combining (5.10) and (5.11),
EL(0,00) = 2 {alingo E(L(1,a) + U(l))}

1 V14821
==V2r{1- —_—ds
2 1 233/2

ad (ii). Using (5.9), observe that, by symmetry and the fact that the processes
{W(a) = (U(a)) : a > 0} and {(v(®), UZl):a> 0} are identically distributed,

Var L(%,a) = 2E’L(%, 1)? +4EL(1,a) {U(1) + V(1)}
(5.12) +2EL(3,1)L(1,0) + E{U(Q) + V(1))?
1 2
- {EL(;,a)} .
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First, we have

E{U)+V()Y = /o°° /o“(z +y)2e ¥4 drdy = 2.

Next, to compute EL(1,a) {U(1) + V(1)}, remark that

E{L(1,a)|W(1)} = % /1 ’ (\/1 T s 3) E{V(s)*|W (1)} ds.

Hence

EL(1,4) {U1) + V(1)} = % /1 (VIFe - s) EV(s)* {U(1) + V(1)} ds.
;From Lemma 2.4 in [4], we get

3 2 _1o4?
E{V(s)’lW(1) = (z,9)} = uie
(5.13) 3 Y1
3 et 3 ~}ou? g
40 ¢ ' +4a 0 ¢ “
where, again, 0 := s — 1.

Consequently,

EV(s)*{U(1)+V(1)} = %Evu)2 {UQQ) + V(1) e~ v’

3
40

EVQ){UQ1) + V(1) e 3oV’
V()

+ o E{UQ) + V(1) /0 =39y,

Similar computations as in Appendix A, yield

EV(s)’{U(1) +V(1)} = x(s - 1),

where
1 1 1 tan~' 7
x(2) = 2z +1)2 4z(z+1) + 4z Jz
Hence
(5.14) EL(1,a) {UQ) +V(1)} = /1 (s—1) (Vitst—s}ds.
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Next, we need the following analogue of (5.2):

. 2
EL(l,a)2=§/ {___"1"‘"’2“’} ds

1 S
+ g /1 ’ {\/1+_32 - s} EV(s)L(1, s)ds

The second integral can be written as

(5.16) -92- [“ {V 14 82— 3} /1’ ____"lt'ga—"EV(syU(r):’dr,

using, again, a time reversal argument. :
To compute the expectation, first take r = 1. From Lemma 2.4 in [4] and (5.13), we may
conclude

(5-i5)

BULYV(s)* = $(s - 1),

9 (15 1 9 (15 6 1)\ tan'z
'/’(‘”)"EE(?’LF)‘T&(F’LF_Z)—\/E_’ >0

where

As is easily seen, we now also have
EU(r)*V(s)® =9 (-E - 1) , 8>r>0.

Hence, (5.16) equals
| 2 [ *V1i+rZ—r /s
; < V/ 2 _ o w2
(5..17) 9[ ( 1+s s)[ = Y (r l) drds.
Finally, proceeding along the same lines, we obtain

(518) EL (;11- 1) L(1,a) = % /1 ’ { Vit .s} L 1 E::_la/; (-j- - 1) drds.

Although the integration may be pushed a bit further, we have to evaluate the integrals
(5.14), (5.15) and (5.17), and (5.18) numerically as ¢ — oco. Together with (5.12), this
yields the theorem.
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Appendix C. (Proof of Lemma 3.1).
Let ¢ stand for either Ap or Ln. Then

E {#(0,a + k) — $(0,a) | Wa(a)} = (n — Dhfa(y) + O(h?),
for0<a<1,0<z,y<1,z+ay <1 and for some function f,,depending on a. Hence

£6(0,6) ~ (3) / da [[ )2 - Aute)) ded,

0<z+ay<1

where A, (:z:, y) denotes the area of the region cut off from the unit square to the left of the
' line l, : z' + ay' = c through (z,y).
We now have

/ " da / / Fo)Q = Aa(z,y))" " dzdy

0<z+ay<1

(5.19) / da / faly ){ 1(”“”)2} dzdy
0<z+ay<a
Ty

It can be shown that we only need to consider the first integral (see Appendix A3 in ([4]).

(:) Take ¢ = Aa.
Then, it follows from the proof of Theorem 2.3, that

.fa(y) = —ay
Hence, the first integral in (5.19) equals

(5.20) 2 / * ada / 11— Eyn-1 dug
< 2 J, y % Y
0<u<a
0<y<u/a
1 1, e, et
—'-2-; A ;da,/o v(l—v) dv

But

;a n— 1 n n
[ oa-or=tan=—ga- 30" - 250 1- za)

oot 12)(n T2) {1 -@- E“)m}
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Hence (5.20) is asymptotically equivalent to :

1 [Bn e 1 Bn ina
—%‘/0 ae da—m[) € da»

t Ton(n +11)(n +2) /oﬁn % {1 —exp {"%"“}} i

N clog logn
, n3
‘This yields part (i) of the Lemma, since we now have

E4,(0,8,) ~ c(;)
(¢¢) If ¢ = Ly, then, fora <1,

, a8 N — 00.

loglogn loglogn
~ Cl =
n3 n

, a8 — 00

fuly) = 2 LEC =1 s
a\y) = 3 e y.
Hence ‘
Bn 14+a2—1 1
n a e
EL(0.80) = () [ RAEE Ly, [ 390~ ey dedy

0<z+ay<1
Again, it is enough to consider the following integral:

ﬂn‘/1+a2_1 3 u2 ne1 .
[) —————da / y°(1- -2;) dudy
0<u<a
o<y<u/a

Bn / la
= .%_2_/ __l_j-_af_—_lda/z v3/2(1 — v)"1 gy
0 0

a

2972
1 Bn \/ 2 _ %a
S—/ __I_%Eda/ v3/? do, since 1l —v <1,
V2 /o a®/ 0
/ﬂ" Vi+a2-1
=<0 ——— —da
0 a
logn

~ Cg N oo

This completes the proof of the Lemma.

REFERENCES

[1] Buchta, C., Stochastische Approzimation konvezer Polygone., Z.Wahrscheinlichkeitstheor. Verw.
Geb. 67 (1984), 283-304. .

[2] Efron, B., The convez hull of a random set of points, Biometrika 52 (1965), 331-343.

(3] Feller, W. (1971), “Introduction to Probability Theory and its Applications,” 2nd ed., Wiley, New
York.

[4] Groeneboom, P., Limit Theorems for Convez Hulls, Probab. Th. Rel. Fields 79 (1988), 327-368.

[5] Rényi, A., Sulanke, R., Uber die konveze Hille von n zufallig gewdhlten Punkten., Z.Wahrscheinlich-
keitstheor. Verw. Geb. 2 (1963), 75-84.

20



