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Abstract

An accurate and efficient numerical method for the steady, 2-D Euler equations is applied
to study steady shock waves perpendicular to smooth, convex surfaces. The main subject of
study is the flow near both ends of the shock wave. Some doubts are formulated about the
correctness of a known analytical model of the inviscid shock-foot flow. Yet, the numerical
results presented do not show that this analytical model is incorrect. For the inviscid shock-tip
flow, two existing analytical solutions are discussed. The numerical results presented agree
with one of these. Good numerical accuracy is achieved through a solution-adaptive, higher-
order accurate finite-volume discretization. Good computational efficiency is obtained by a
multigrid acceleration technique.
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1. Introduction

Near shock waves appearing with local supersonic zones in steady, inviscid flows along continuously
curved, convex walls (Figure 1), the following two intriguing flow regions exist:

e the flow region where the shock wave abuts the continuously curved, convex wall (the shock-
foot region) and

e the flow region near the other end of the shock wave (the shock-tip region).

M<1

shock-tip region

M>1

shock-foot region

Figure 1. Shock wave fencing off local supersonic zone
along continuously curved, convex wall.
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In this section we start by reviewing some known studies of the local flow in both regions.
Herewith we particularly look at aspects like accuracy and - in case of numerical studies - also
efficiency. In the following, the shock foot and shock tip are defined as the lower and upper end
point (not segment) of the shock wave.

1.1. Shock-foot region

1.1.1. Normal shock with normal extension. Concerning the shock-foot flow, the following
physically interesting situation occurs. By imposing the condition that the flow does not change
direction when passing through the shock foot, the shock is necessarily normal to the surface
and hence, passing through the shock foot, the gas motion satisfies the normal-shock relations.
Considering a shock wave which remains normal to some (arbitrary) distance above the surface
(Figure 2), the normal-shock relations remain valid up to this distance. In the following we refer
to such a shock as a normal shock with normal extension.

y

lR
Figure 2. Normal shock with normal extension.
Along the continuously curved surface sketched in Figure 2, the gas motion also satisfies the
equation of curvilinear motion
M2
%_ it (1)
Oy R
with y the coordinate normal to the wall and R the radius of curvature of the wall. (Throughout
this paper, R is assumed to be finite.)

It may be apparent that for a normal shock with normal extension, the post-shock flow which has
just satisfied the normal-shock relations, does not necessarily satisfy equation (1) any longer. We
show that this is indeed the case by deriving that for a normal shock wave with normal extension,
only one specific Mach number at the upstream shock-foot face exists, for which passage through
the normal shock foot does not lead to a conflict with respect to satisfaction of the equation of
curvilinear motion at the downstream shock-foot face. For this we introduce the subscripts 1 and
2 for the up- and downstream shock-foot face, respectively (Figure 2). Applying equation (1) at
the downstream shock-foot face, we have
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We proceed by expressing %ﬁ% according to (2a) and (2b) in terms of the pre-shock flow. For the
post-shock terms p; and MZ occurring in equations (2a)-(2b), we can directly write:
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Further, for the pressure gradient %1 in (2b), we have
op1 _ ypM?E
w - R (3c)

The gradient term % (%’;l) in (2b) requires some work. Given the normal extension of the shock

wave, we may use the normal shock relation (3a) for rewriting this gradient term. It follows that

% (ﬂ) = 74—+7TM1 aggl, which - assuming the pre-shock flow to be isentropic and applying (3c) -
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Equating (2a)-(2b) and substituting (3a)-(3d), yields then the following compact quadratic equa-
tion for MZ:

M*—(y+1)M2-1=0. (4)

From equation (4) it follows that the only specific Mach number M; - to be further denoted by
M7 - which allows a normal shock wave with normal extension, is:
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In more cumbersome derivations, this specific Mach number was already found by Tsien (1947),

Lin and Rubinov (1948), and Zierep (1958a).

1.1.2. Normal shock with oblique extension. Concerning the flow in the shock-foot re-
gion for Mach numbers M; different from My, Zierep (1958a) has obtained further analytical
results. In this section we review some of these results.

Zierep (1958a) found the known result that at the downstream side of the shock foot, for
M, # M - in general - a singular solution must occur, which has the following property: in its
foot, the shock wave has an infinitely large curvature. In analogy to the normal shock with normal
extension as depicted in Figure 2, the present shock can be illustrated as has been done in Figure
3. At an arbitrarily small distance above the surface it already has a finite degree of obliquity.
This singular change from normal shock wave (in the foot) to oblique shock wave (immediately
above the foot) implies that at the downstream shock-foot face an infinitely steep decrease in the
surface pressure occurs, which ensures that the conflict with respect to satisfaction of the equation
of curvilinear motion at the downstream shock-foot face, which was mentioned in the previous
section, does not occur. In the following we refer to shocks of this type as normal shocks with
oblique extension.
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Figure 3. Normal shock with oblique extension.

Support for the correctness of this singular solution is seen to come from the fact that post-
shock expansions (though not infinitely steep, see Figure 4) are really observed in the results of
e.g. wind tunnel experiments. (For this support, Zierep (1958a) explicitly makes a reference to the
classical experimental results of Ackeret et al. (1946).) In our opinion, the physics in these wind
tunnel experiments is too different from inviscid physics to let them be of much support for the
correctness of an inviscid analysis.

Instead of from e.g. wind tunnel experiments, in our opinion, support for at least the singular
behavior of the post-shock surface pressure simply comes from theory. Viz., if the post-shock
pressure correction would have a finite steepness (Figure 4b), there would probably be a finite
region in which the equation of curvilinear motion is not satisfied, which - in a steady flow - is
physically impossible.
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Figure 4. Post-shock surface pressure corrections:
(a) infinitely steep expansion, (b) finitely steep expansion.

However, concerning the correctness of the specific singular solution found by Zierep, from a
theoretical point of view, also doubts arise. First, although Zierep’s analysis starts with the full
Euler equations, in becoming local (i-e. in approaching the wall along the shock wave), to these
starting equations it applies some simplifications which are based on questionable pre-assumptions
about how the flow locally behaves there. Second, we have the following more specific doubts about
the correctness of this singular solution. According to it, the normal shock with oblique extension
cannot exist in the range (M7, M{™], with My satisfying relation (5) and with M}™ satisfying
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(Notice that for any admissible value of « - i.e. any « from the range [1,3] - it holds M} < M)



Though we do not know any example of a steady shock wave normal on a convex surface in the
M;-range (M}, M) indeed, a physical understanding of this remarkable range of non-existing
shock waves is still missing. Further, concerning the upper bound M;™ of this range, in the
limit My | M} Zierep’s solution becomes so much singular that it conflicts with the standard,
uncurved-shock relations that were used in deriving it. To give some evidence of this discrepancy,
we consider the bi-segmental piece of shock wave which is depicted in Figure 5. This stylized piece
of shock wave is to be regarded as a discretization of the exact shock wave, which latter has been
indicated with dotted lines in Figure 5. The bi-segmental piece of shock wave consists of a segment
which stands normal on the wall and of an oblique segment on top of that. The foot of the normal
segment and the tip of the oblique segment are tangent to the exact shock wave. The segments
have the same length, so that the kink in the discrete shock wave is centered.

Figure 5. Bi-segmental piece of shock wave.

For this discrete, composite shock, we derive an expression for the transport of mass, z-momentum
and y-momentum across its upstream face, per unit of length and time. (Concerning the transport
of energy, the flow is assumed to be isenthalpic.) For this derivation, along the exact shock wave
we introduce the coordinate 7, that has the shock foot as origin. Next, we introduce the average
gas states
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at the upstream face of the normal and oblique segment, respectively (Figure 5). Then, for this
transport vector per unit of length and time, to be further denoted by F, we can write:

1 1 1.
F= if(qn) + 2 cos 3f(q.) + ) sin A g(qo), (8)
in which
pu
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with u and v the velocity components in z- and y-direction, respectively (Figure 5). In relation
(8); the last two terms are due to the curvature of the shock wave. For the angle G in these two
curvature terms we are going to use the detailed expression § = ((n) given in Zierep (1958b) and
we study the behavior of F in the limit Ay | 0. For 8 = (), Zierep (1958b) gives

n

where, rewriting from Zierep (1958b),
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and with M; the Mach number at the upstream shock-foot face. As an example, in Figure 6 we
depict (M) for a di-atomic gas (y = ), for which (5) and (6) yield: M} ~ 1.662, M;* = 2.
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Figure 6. ¢ = o(M;) from Zierep (1958b), for vy = I.
Given equation (11a), we verify:

e that a normal shock wave with normal extension as considered in section 1.1.1, can only
occur for M7, because o(M;) = 0 for M; = M} only,

e that no shock wave can occur in the Mj-range (M{, M{*] (the shaded range in Figure 6),
because there it holds o(M;) < 0,

o that a very singular shock-foot flow occurs in the limit M; | M;™*, since limp, | pp» o(M;) =
00, and



e that the shock wave has an infinitely large curvature in its foot for all (supersonic) M; < M}

and all M; > M7}™, because lim,o ';—7, = % = oo for all these values of M;.

Still a detail concerning the curvature of the shock wave in its foot at My = My: Zierep (1958a)

finds that this curvature is zero. In our opinion, from the present theory this answer cannot be
given, because in limpy, 17 limg o i—g— = ”é%%) 0, both limits can be taken strictly independent

from each other (M; does not depend on 7) and hence limpy, 1 My limg o aﬁ is undetermined. For

a finite (or even zero) shock curvature in the shock foot, ¢ = 0 is a necessary but insufficient
condition.
With (10) and the Taylor-series expansion

aln) = s + 152 +O(rP) (12)

where q; is the gas state at the upstream shock-foot face (Figure 5), through successively (7a)-(7b)
and (9a)-(9b), relation (8) for the flux vector F can be rewritten as

= [f(ql) + %Anafé?’l) + O(Anz)} +
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From expression (13) it appears that for finite values of ¢, in the limit An | 0 - despite the infinite
curvature - the standard, uncurved-shock relations can still be applied; the curvature terms vanish:
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However, from expression (13) it also appears that for infinitely large values of ¢, in the limit
An | 0, the influence of shock curvature cannot be neglected indeed. This shows the discrepancy
in the Zierep model in the limit M; | M{™.

1.1.3. Present shock-foot study. In the previous section we have made clear that some
sound reasons exist which motivate a numerical study of steady Euler flow in the shock-foot re-
gion. In our numerical computations we apply the full, steady 2-D Euler equations in the complete
computational domain. In doing so, we look at:

e the existence of a post-shock expansion as a function of M; and, if existing,
e its steepness for decreasing mesh width.

To get a good impression of the expansion’s steepness for decreasing mesh width, without making
excessive computational costs, we apply a technique which allows to efficiently zoom in at local
flow features: a solution-adaptive multigrid technique. A description of this technique is given in
section 2.



1.2. Shock-tip region

Concerning the shock-tip region, still today some uncertainties exist about how the shock wave
merges into the main flow. Some authors claim that the shock wave becomes of vanishing strength
into the direction of the sonic line (Figure 7a). Others claim that it bifurcates such that a triple-
shock-configuration (or upside down A-configuration) occurs (Figure 7b). Notice that a triple-
shock-configuration must contain at least one additional discontinuity. In Courant and Friedrichs
(1976, pp. 332-333), it is proved that three zones of different continuous states are impossible. (In
Figure 7b we added a contact discontinuity.)

Figure 7. Two types of shock-tip configurations:
(a) single-shock, (b) triple-shock.

Some profound analytical studies exist which support either the configuration in Figure 7a
or that in Figure 7b. Representative examples of these studies are those of Germain and Gillon
(1961), and Kraiko (1985), respectively. Germain and Gillon (1961) consider the transonic small
perturbation equation and find through a hodograph method that the connection of the sonic line
to the shock wave is in general tangent but distinguishable; generally the shock tip is a point of
inflexion (i.e. at their connection, shock wave and sonic line have oppositely signed curvatures).
According to Germain and Gillon, the entire shock wave is of strong type (so with transition from
supersonic to subsonic speeds only). They conclude that other types of shock-tip configurations
are possible, but only in exceptional cases. As opposed to this, Kraiko (1985) finds that the triple-
shock-tip configuration sketched in Figure 7b is the commonly occurring one. Most present-day
studies are in favor of this A-configuration as being the most common one. A superficial physical
reasoning supporting this is the known fact that in case of a convex surface, the compression waves
(the waves propagating from the sonic line) are known to taper faster than the expansion waves
(the waves running from the surface). The single-shock configuration in Figure 7a may be regarded
as a special case of the triple-shock configuration, viz. with the shock-triple-point in the highest
possible position.

Of all analytical studies on shock-tip configurations which are known to us, shortcomings are
that they are local and use rather simplified equations, such as the transonic small perturbation
equation. Though still with simplified equations, investigations of the local shock-tip flow as an
integral part of a much more global flow have already been made numerically. Examples of such
numerical studies are those of Murman (1974), Hafez and Cheng (1975), and Yu and Seebass (1976).
Each of these three numerical works still considers the transonic small perturbation equation.
Whereas the local tip flow certainly can be described by good approximation as a potential flow,
the global flow generally cannot. Not only for studying the shock-foot flow, but also for studying
the shock-tip flow, it makes sense to consider the full Euler equations. Further, in all numerical
shock-tip work known to us, besides that no use is made of the Euler equations, also no use is made
of locally refined grids. As a consequence, all of these numerical results are limited in accuracy
by the use of both the simplified equations and the relatively coarse grids. (Concerning the latter,



Murman (1974) explicitly states that ‘the exact structure at the shock tip cannot be resolved with
the mesh considered’.) So, not only for the shock-foot flow, but also for the shock-tip flow, it makes
sense to apply a grid refinement technique.

2. Solution-adaptive multigrid technique

2.1. Review

The following two types of solution-adaptive grid methods can be considered:
e grid movement methods and
e grid enrichment methods.

For a survey of both types of methods we refer to Berger (1987). The essential difference between
both methods can be clarified by roughly stating that grid movement methods try to get a maximal
accuracy for a fixed cost (a fixed number of grid points), whereas grid enrichment methods try to
attain a fixed accuracy for a minimal cost (a minimal number of grid points). Difficulties of grid
movement methods are:

¢ the simultaneous accurate resolution of more than one flow feature and

e the control over grid properties which are of importance to the specific discretization method
considered (grid properties such as e.g. smoothness and orthogonality).

Difficulties of grid enrichment techniques are:
o to keep track (in the data structure) of the local refinements and
o to still assure conservation of mass, momentum and energy at the fine-coarse grid boundaries.

For the present flow features of interest (shock waves) we prefer to apply grid enrichment. Con-
cerning grid enrichment, also two types of methods can be considered:

e nested methods and
e unnested methods.

Both methods apply fine subgrids overlying coarser grids. Whereas in the nested approach these
fine grids are by definition aligned with the underlying coarser grids, in the unnested approach
they are not necessarily so. An example of an unnested method in which (multi-dimensional) fluid
flow equations are considered is the method of Fuchs (1990). Examples of nested methods con-
sidering (multi-dimensional) fluid flow equations, are the method of Berger and Jameson (1985)
and the method of Van der Maarel (to appear). In our opinion, nested enrichment has a direct
efficiency advantage over the unnested approach, because of its direct allowance for standard geo-
metric multigrid acceleration. Besides the possibility to use it for acceleration, another interesting
possibility of multigrid in this context is to apply it for estimating the local truncation error to be
used for the refinement criterion. Further, the nested approach also has the advantage that satis-
faction of conservation properties across aligned fine-coarse grid boundaries is more easily achieved
than across non-aligned boundaries. For the present application we prefer nested enrichment; we
proceed by further discussing it.



Without special care, in general, the set of nested, locally refined cells will be unstructured.
Yet, structure can be obtained by properly clustering cells which are flagged to be refined. (For
details on clustering we refer to Berger and Oliger (1984).) The previously mentioned method of
Berger and Jameson (1985) is an example of a nested enrichment method which applies clustering.
As opposed to that, the nested enrichment method of Van der Maarel (to appear) does not apply
clustering. Concerning the mutual difference in efficiency between both nested approaches (the
one without and the one with clustering), it is not clear to us which of both is most efficient. An
obvious efficiency drawback of the approach without clustering is that one needs to keep track of
all refined cells (as opposed to all refined subgrids only). Against that, clustering has of course
the drawback of refining cells which are not actually flagged to be refined. Besides that, clustering
may already by its use only, significantly increase the computational overhead. A major efficiency
advantage of the clustered approach is then often said to come from its better possibilities for
supercomputing. For vectorization, this is certainly true. For parallelization - in our opinion - the
possibilities are the same.

Because of its successful application in another interesting flow problem (Van der Maarel and
Koren, 1991), in the present paper we adhere to the nested enrichment technique without clustering.
We proceed by briefly describing its data structure.

2.2. Data structure

A detailed description of the data structure of our nested enrichment method without clustering
is given in Hembker et al. (1990). Here we just give a summary. We consider the steady, 2-D Euler
equations on a domain 2 C IR* with boundary Q. In the discretization,  is approximated by a
regular partition of disjoint quadrilateral cells. We consider grids on different levels of refinement,
on each level employing a regular partition of one or more subdomains of Q. The grid on level [ is
denoted by Q, I € {0,1,2,...,A,...,L}. The grids Q; up to and including 2, completely cover
§2. £ is the coarsest grid and 2, is called the basic grid. Starting from £, , up to and including
the finest grid 2, the grids do not necessarily cover the complete domain 2.

Forl > 0, each cell of Q; is a member of a disjoint division (into a set of 2x2 smaller cells) of a cell
of Q,_,. The cells of ,_; and €, are coexistent, i.e. coarse cells are not removed from the system
when they are overlaid by fine cells. All cells in the geometric structure are related to each other
through a so-called quad-tree data structure. The location of each cell of £, is determined by a set
of coordinates (i, j) € Z2%. A kid of cell (%))s,; is either (. )2i2j, (Qy1)2i+1,25 (441)2i,2j+1 or
(Q41)2i+1,25+1- The edge (09));,; of (€,);,; consists of four rectilinear sides. The grid Q, consists
of a part 2 with cells that have been refined (i.e. have kids residing on level I + 1), and a part f

with cells that have not been refined (i.e. have no kids). The grids Q{ and ,,, cover the same
part of 2. The set of all non-refined cells is called the composite grid. It is the solution on the
composite grid that we want to compute.

2.3. Discretization method and solution method

The present solution-adaptive multigrid method for the steady 2-D Euler equations is based on an
existing non-adaptive multigrid method for the Euler equations. For details about this existing
method, we refer to e.g. Hemker and Spekreijse (1986), and Koren (1988). Here we proceed by
giving a brief summary only.

The method uses a cell-centered finite-volume discretization, in which an upwind numerical
flux function (a shock capturing scheme) is applied. The solution method to be applied requires
that the flux function is continuously differentiable. Well-known flux functions which satisfy this
requirement are those of Van Leer (1982), and Osher and Solomon (1982). Because of its consistent

10



boundary-condition treatment and also for accuracy reasons, we prefer the scheme of Osher and
Solomon. At each cell face this scheme approximately solves a 1-D Riemann problem. The dis-
cretization is first-order accurate by taking the left and right Riemann states equal to those in the
corresponding adjacent finite volumes. Higher-order accuracy is obtained by applying higher-order
accurate, piecewise polynomial state interpolation. To preserve monotonicity of the solutions, a
limiter is used. The multigrid method which is applied for solving the system of discretized equa-
tions is nonlinear multigrid (NMG), with collective symmetric point Gauss-Seidel relaxation as the
smoother. This method is very efficient for the first-order discretized Euler equations. Difficulties
arising when applying it to higher-order discretized equations are circumvented by introducing
iterative defect correction (IDeC) as an outer iteration to NMG.

In the present solution-adaptive multigrid method, the essentially new numerical ingredient is
the computation of the left and right cell face states at the fine-coarse grid boundaries. In Van der
Maarel (1992), a detailed description and accuracy analysis is given of the treatment of these inner
boundaries. Here we briefly summarize the main features. Across a fine-coarse grid boundary, a
difference of only one grid level is accepted. Along these boundaries, by proper interpolation from
the local coarse-grid cell-center states, the locally missing fine-grid cell-center states are computed.
These virtual states are then substituted into the numerical flux functions.

3. Numerical results

3.1. Test cases

Numerical computations are performed for flows of a di-atomic, perfect gas (y = %) around a
NACAO0012-airfoil. The computations are started - in a non-adaptive way - on the uniform 8 x 5,
O-type grid Q, which is partially shown in Figure 8a. The far-field boundary is located at about
100 chord lengths from the airfoil. The computations are continued, through a nested iteration, up
to and including 2, = Qg, the 64 x 40-grid which is partially depicted in Figure 8b. On top of €23,
local refinements are introduced. Details about the refinement schedule are discussed in section
3.2. In the nested iteration from Q; up to and including 2, = 3, the discrete equations solved are
first-order accurate only. Starting from §2; we begin to solve higher-order discretized equations;
those corresponding to the limited x = 0-scheme as introduced by Van Albada et al. (1982). (The
motivation for applying the x = 0-scheme is that this scheme gives the best convergence rate of
iterative defect correction, as has been proved by Désidéri and Hemker (1990).
The following two far-field boundary-condition cases are considered:

e M,=0.8,a=0,
* My =08, a=apm;,

with M, denoting the Mach number at the far-field inflow boundary and « the airfoil’s angle of
attack (incidence). The special incidence a; is that at which M; = M. The first, symmetrical
test case is arbitrarily chosen, so far as that we know from other computations that it yields a
flow with shock wave for which M; < M{ (= 1.662 for ¥ = L). Hence, for the first test case we
may expect a post-shock pressure correction. By local grid enrichment we study the corresponding
shock-foot flow, as well as the corresponding shock-tip flow. The second test case, with a = apy;,
is studied to verify whether, in agreement with the analytical results from section 1.1.1, the nu-
merical shock-foot flow is without any post-shock pressure correction indeed and - particularly -
whether, in agreement with the solution of Zierep (1958a), it is at the limit of existence. Since
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the value of apsx is not known in advance, for the second test case we have to iterate on a. The
a-iteration is described in the next section; it allows the capturing of a nice shock wave on the
convex surface, somewhere in between nose and tail, and with M; converging to Mj in the limit
of the iteration process. (The alternative approach of varying M., while keeping a = 0, cannot
lead to M; = M7 for the NACA0012-airfoil.)

1.0
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0.5
0.3

y
0.0
Yy

0.0
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-0.5

-1.0

-0.5 0.0 0.5 1.0 1.5 -0.3 0.0 0.3 10 15

Figure 8. Details of coarsest grid and basic grid around NACA0012-airfoil:
(a) 8 x 5-grid Q, (b) 64 x 40-grid Q.

3.2. Algorithm

In this section we give the solution-adaptive multigrid algorithm with incidence iteration. For
this, we denote by Nl(q,) = 0 and Ni(g;) = 0 the first-order respectively second-order discretized
Euler equations at grid level [, = 0,1,...,A,..., L. Further by S;(¢;) we denote the smoothing
procedure, by I}_, a prolongation operator by NMG(l,q,,r;) the nonlinear multigrid algorithm
(with r; some right-hand side), and by | - || some suitable norm. Then, in quasi-Algol style the
complete algorithm reads:

declarations:

integer I,A, L;

real a, oo, M1, dMy, (dMi)o4, 7, tolerances-of-NMG, -IDeC and -dM;;
boolean incidence-correction, no-more-cells-added;

array qi, Ti;

initializations:

incidence-correction := true (or false); o := 0; go := some initial solution; gy := So(go);

nested iteration:
for [ :=1step 1 until A do g :=I}_,q_1; NMG(l, ¢;,0);
nonlinear multigrid iteration:

until || Na(qa) ||< tolerance-of-NMG do NMG(A, qa,0);
NMG(A) qA, 0))

12



defect correction iteration:
until || Na(ga) ||< tolerance-of-IDeC do NMG(A, ga, Na(ga) — Na(qa));

incidence iteration:
if incidence-correction then
begin
dMy := (M1)a — MY; aoq = @; a = 19
until || Nx(ga) [|< tolerance-of-IDeC do NMG(A, gr, Na(ga) — Na(qa));
(dM)ora = dMy; dMy == (M1)p — MY,
until dM; < tolerance-of-dM; do
begin
a:=a-— My ; Qold = @
dM7 —(dM7)gq + Sold )

a—agld .
until || Nx(qa) ||< tolerance-of-IDeC do NMG(A, ga, Na(ga) — Na(qa));
(dM1)oa == dMy; dMy := (My)s — MY,
end;
end;

grid adaptation:
for [ := A +1 step 1 until L do
begin
no-more-cells-added := false;
until no-more-cells-added do
begin
adapt {Q,,...,Q;};
until || Ny(q) ||< tolerance-of-IDeC do NMG(L, qi, Ni(qt) — Ni(a1));

end;
if incidence-correction then
begin
dM1 = (Ml)l — M{,
until dM; < tolerance-of-dM; do
begin
a:=a-— dMl—dIyA}II a1 Qold =
no-more-cells-ad‘aded := false;
until no-more-cells-added do
begin
adapt {Q,,...,Q;}
until || N;(q) ||< tolerance-of-IDeC do NMG(L, qi, Ni(@) — Ni(q));
end;
(dM1)°1d = dMl; dM1 = (Ml)l - Mik;
end;
end;

end

For a similar, quasi-Algol description of the nonlinear multigrid algorithm NMG(l, g;, ;) we refer
to Hackbusch (1985). Notice that the incidence iteration is a Newton iteration which is free in the
sense that it allows values of a for which (M), lies in the ‘forbidden’ range (M7, M;*]. (We allow
this wittingly in order to investigate the existence of this range.) Notice further that the defect
correction iteration applies one nonlinear multigrid cycle per IDeC-cycle only. (In Koren (1988),
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this IDeC-cycling was found to be the most efficient.) Concerning the grid-adaptation procedure
adapt {Q,,...,9,}, we simply check for each finite volume on the composite grid whether, for
any of its four cell faces, a sonic point occurs along one of the four corresponding wave paths in
state space. If one (or more) sonic points are detected, that cell, as well as some buffer zone of
neighboring cells on the composite grid, are flagged to be refined. An important detail in this
wave path approach is that it is not considered in cell face normal direction nor in a possible
shock wave direction, but - instead - in flow direction. In computing the flow direction at each cell
face, use is made of the density-dependent relation derived in Koren and Hemker (to appear). An
objection that can be made against this sonic-point-wise enrichment is that although the accuracy
of the numerical solution is improved, the degree of improvement may be small, because cells
with large errors may remain coarse and hence persistent in keeping the global solution accuracy
low. However, concerning the alternative grid refinement approach which equidistributes the local
truncation errors below some treshold value, we would like to remark that for the nonlinear Euler
equations - in general - no rigorous guarantees are given about the level of the global discretization
error for any finite level of truncation error. Though it is possible to also de-refine cells which have
been refined once but no longer need to be so, here we do not do so. (In applying both refinements
and de-refinements, in steady computations we have once observed periodically oscillating grids.)
With A = 3, with the tolerances for both || N;(g;) || and || Ni(q;) || equal to 10~%, and with the
tolerance for dM; equal to 1073, the algorithm yields the results given in the next section.

3.3. Results

3.3.1. Results for a = 0. For o = 0 we considered L = 5,6,7 and we took the buffer zone of
flagged cells equal to zero. In Figure 9, a detail of the various converged composite grids is given,
with shown on these: the sonic lines.
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Figure 9. Converged composite grids with sonic lines, o = 0:
(a) L=5,(b)L=6,(c) L=T1.

14



0.8

0.6
L

p/pt

0.4
L

0.8
0.8

0.6
"
0.8

0.2

=y &
& S~
g‘ SN
-« <4
o o
o o
S s s -
0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8
X X X
b c

Figure 10. Surface pressure distributions, a = 0:
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In Figure 10, the corresponding upper surface pressure distributions are given. Clearly visible
in the latter figures is the occurrence of a post-shock expansion. We proceed by investigating the
steepness of this expansion for decreasing mesh width. Assuming that in the exact solution, in
conflict with theory, no infinitely steep post-shock expansion occurs (%% > —o00), we introduce

the following expansion error §:
Ops Op2
5= (22 %2 15
L ( Oz ) . Oz (152)
which we assume to be positive for all L. Then, given the assumed finity of the exact post-shock

expansion and given the formal second-order of accuracy of the discretization method applied (see
Van der Maarel (1992) for some formal evidence of this), we can certainly write

P
6L+1 = (%) éL, p>0, (15b)

where p denotes the local order of accuracy of the discretization method in the post-shock region.
Given relations (15a)-(15b) and the previous assumptions, it should hold

o)  _ 5&) (%) _(%)
(33’)1,—1 <6z L> oz ) Oz L+1. (15c)

In Table 1 we give the values of (%%)L that we actually found in the numerical experiments for

L = 5,6,7. It appears that relation (15c) is not satisfied by the present three numerical results,
which - in agreement with theory - shows that the numerical post-shock expansion converges to
an infinitely steep expansion.

Table 1. Post-shock expansions, a = 0.

9p2

L ( 9z )L
5 -0.28
6 -0.36
7 -0.50
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Concerning the shock-tip flow, for all values of L considered, we did not observe the triple-
shock-configuration as advocated by Kraiko (1985). The configurations found are like the one
which is supported by Germain and Gillon; in all cases the shock does not bifurcate (see Figure
11 for one detailed view of this). The subtle inflexion point is not (yet) observed.
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Figure 11. Mach number distribution around shock tip, L =7, a = 0.

3.3.2. Results for a = am;. For a = ay; we considered L = 3,4,5 and for the buffer
zone - for reasons of robustness - we took two cells. Analogous to the previous results, in Figure
12 we give the converged composite grids with corresponding sonic lines and in Figure 13 the
corresponding surface pressure distributions. The main thing that we notice from the surface
pressure distributions is that the post-shock expansion has vanished indeed. In agreement with
theory, downstream of the shock wave, all three surface pressure distributions in Figure 13 nicely
show a pressure increase only. A remarkable phenomenon that we observed here for all three grid
cases was non-convergence of the defect correction iteration NMG(L, gz, Nr.(gz) — Nz(gz)) (but
still no divergence) as long as (M;)r was in the range (M}, M}*] during the incidence iteration.
The reason why we show here results for L = 3,4,5 only (instead of for L = 5,6, 7 as we did for
the previous test case) is that the solution method diverges for L > 6. Something related to this
holds for the buffer zone of two cells to be refined additionally; with a buffer zone of less than two
cells we diverged even for L = 5. Concerning the shock-tip flow, similar to the results for a = 0,
the configurations found agree best with those of Germain and Gillon (1961).
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The convergence problems that arose for this test case seem to indicate that indeed no steady shock
wave perpendicular to the wall can exist in some range with M} as the lower bound. A question
which then arises is: if there is a steady flow solution beyond Mj which is still tangent to the wall,
how does that flow solution look like ? A conjecture that we have with respect to this question
is that for say increasing Mach number M, a steady normal shock wave at M; (a normal shock
with normal extension) may bifurcate into two steady oblique shock waves (Figure 14a): a major
oblique shock as the remainder of the single shock at M; and - in front of that - a minor oblique
shock, which has just developed. (Both shocks have a common shock foot and stand oblique on the
wall in such a way that the flow remains tangent to the wall when passing through the double-shock
foot.) Starting from a configuration as depicted in Figure 14a, for decreasing Mach number M,
the acute angle between both oblique shock waves in their common foot is supposed to converge to
zero; the double-shock-foot configuration is supposed to transform into a normal, single-shock-foot
configuration at M7}. As opposed to that, for increasing Mach number M., the minor shock is
supposed to further increase in strength, size and obliquity. A nice feature of the double-shock-
foot configuration in Figure 14a is its possible relation with the triple-shock-tip configuration from
Figure 7b. Whereas the single-shock-tip configuration from Figure 7a could be considered as a
special case of this triple-shock-tip configuration, viz. with the shock-triple-point in the highest
possible position, the double-shock-foot configuration from Figure 14a may be considered as the
other extreme case of the shock-triple-point configuration, viz. with the shock-triple-point in the
lowest possible position. From this viewpoint, it might be possible to match analytical solutions
for the flow in the shock-tip region on the one side and the flow in the shock-foot region on the
other side.

Possibly a steady double-shock-foot configuration as depicted in Figure 14a can only exist for
very specific boundary conditions. Solutions that will certainly prevail over this double-shock-foot
solution are those which simply have an oblique single-shock foot (Figure 14b). In these flow
solutions the flow is separated from the wall in passing through the shock foot and no unique
(inviscid) solution exists in the separation zone. These solutions are probably mostly unsteady.

Figure 14. Possible oblique shock-foot configurations beyond
normal, single-shock-foot configuration at M;:
(a) double-shock foot (without separation),
(b) single-shock foot (with separation).

Concerning this supposed unsteadyness, interesting results can be found in Dervieux et al.
(1989), where for a circular cylinder at My, = 0.5, Euler flow results are presented which have
been obtained by various numerical methods. It is interesting to see that when using unsteady
numerical methods for this circular-cylinder test-case, fully subsonic initial solutions first seem
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to evolve to a specific quasi-steady solution, which becomes unsteady when continuing the time
integration. Inspecting all circular-cylinder results in Dervieux et al. (1989), our conjecture is that
the aforementioned, specific quasi-steady solution is at M; = M7. It seems that the genesis of
unsteadyness is when M; exactly equals M}. Results which make this particularly plausible are
those of Pandolfi and Larocca (1989), and Satofuka and Morinishi (1989).

4. Conclusions

Despite the theoretical doubts expressed about the correctness of Zierep’s solution for the shock-
foot flow, from the numerical results also presented in this paper no evidence has arisen which
says that Zierep’s solution is wrong in the practically relevant M;-range (1, M7¥). In fact we only
disagree with Zierep about the detail that at M; = M the shock wave is uncurved in its foot;
in our opinion this curvature is (still) undetermined. Concerning the singular shock curvature as
found by Zierep for M; < M7 and M; > M{™*, we have investigated whether there is a discrepancy
between, on the one hand, the result that in its foot the shock has an infinite curvature and, on
the other hand, the uncurved-shock relations that Zierep applied in deriving this result. We have
found that in fact only for lim M; | M{™ there is such a discrepancy. However, it is very likely that
with increasing Mach number, at M; = M} the normal single-shock-foot configuration changes
into a qualitatively different shock-foot configuration which, for further increasing Mach numbers,
never rechanges into the original normal single-shock-foot configuration.

Our main suggestion for further research is to make a qualitative study of the different possible
shock-foot-flow solutions beyond M; = My. Given the possible change at M; = M} from stea-
dyness to unsteadyness, such a study might be of some practical relevance as well (buffeting). It
would be interesting to also invoke the shock-tip configuration in such an analysis.

Concerning the present solution-adaptive multigrid method, this seems to be an accurate and
efficient tool for detailed studies of various other phenomena from steady gas dynamics.
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