1992

W.J. Fokkink

A simple specification language combining
processes, time and data

Computer Science/Department of Software Technology = Report CS-R9209 February

CWI is het Centrum voor Wiskunde en Informatica van de Stichting Mathematisch Centrum
CWI is the Centre for Mathematics and Computer Science of the Mathematical Centre Foundation

is the research institute of the Stichting Mathematisch Centrum
founded on February 11, 1946, as a non-profit institution aiming
otion of mathematics, computer science, and their application
sored by the Dutch Government through the Netherlands orga
sientific research (NWQO).

ight © Sﬁchting Mathematisch Centrum, Amsterdam

A Simple Specification Language combining
Processes, Time and Data

Willem Jan Fokkink

Department of Software Technology, CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract

Groote and Ponse have proposed a simple specification language based on CRL (Common Rep-
resentation Language) in [5]. This language, called uCRL, combines processes and data and
contains only essential constructs. In this paper pCRL is extended with time, resulting in the
language ruCRL.

Mathematics Subject Classification: 68N99.

CR Categories: D.2.1, D.3.1, D.4.1.

Key Words & Phrases: Specification Language, Real Time, Process Algebra.

Note: The author is partially supported by ESPRIT Basic Research Action 3006 (CONCUR).

1 Introduction

Groote and Ponse defined in [5] the language uCRL (micro CRL, where CRL stands for
Common Representation Language [15]). The language contains only the core constructs
present in languages such as CRL [15], PSF [13] and LOTOS [10].

In this paper pCRL is equipped with the feature real time and will be called ruCRL (real-
time pCRL). It consists of data, time and processes. The data are defined by declaring
sorts and functions working upon these sorts. The meaning of these functions is described
by equations. The process part is given in the syntax of ACP (3, 2]. It consists of a set
of actions that may be parameterised by data and are provided with a time stamp. There
are sequential, alternative and parallel composition, a shift operator and recursive processes.
Our time domain consists of the floating-point numbers, so infinite processes do not exist in

_TruCRL.

Several authors have given a real-time extension of a process algebra. We use the one for
ACP that was given by Baeten and Bergstra in [2]. They have introduced the notion of
integration, which expresses the possibility of an action occurring somewhere within a dense
interval. Klusener has modified the semantics and proved completeness in [12].

The structure of this paper is on purpose very similar to the paper in which Groote and
Ponse have introduced pCRL. Parts of the contents of [5] have simply been copied. Further-
more, many elements of [2] in the style of [12] have been added.

Report CS-R9209
ISSN 0169-118X

CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2 2 THE SYNTAX OF REAL-TIME pCRL

Acknowledgements. Jan Friso Groote and Alban Ponse defined the language pCRL. The
author would like to thank Jan Bergstra, the initiator of pCRL, Jos Baeten, Steven Klusener
and Alban Ponse for useful comnients on draft versions of this paper.

2 The syntax of real-time yCRL

In this section the syntax of ruCRL is presented. We use = to denote syntactic equivalence.

2.1 Names

We assume the existence of a set A of names, i.e. sequences over an alphabet not containing
'L) +) ”1 u_, '7>1<’>) " 6’1., a’ p,I1 2’ J’ x,-—)7 :1 =7_’ e’ S’ <’ (7)’ {} }, ‘7”

a space and a newline.

Moreover, N does not contain the reserved kewwords sort, proc, var, act, fune, comm,
rew and from.

2.2 Lists

In the sequel X-nelist, x-X-nelist and space-X-nelist (where nelist denotes non-empty list)
for any syntactic category X are defined by

X-nelist = X | X-nelist,X
x-X-nelist = X |x-X-nelist x X
space-X-nelist = X | space-X-nelist X

Let) denote the empty list. A list is a non-empty list or empty:

X-list = X-nelist|A
x-X-list = x-X-nelist|A
space-X-list = space-X-nelist | A

Non-empty lists are often described by the (informal) use of dots, e.g. by X ... X by, with m > 1
is a x-X-nelist where by, ..., by, are expressions in the syntactic category X.

2.3 Sort specifications

A sort-specification consists of a list of names representing sorts, preceded by the keyword
sort.

sort-specification = sort space-name-list

2.4 Function specifications

2.4 Function specifications

A function-specification consists of a list of function declarations. A function-declaration
consists of a non-empty list of constant and function names, the list of sorts of their parameters

and their target sort:
function-specification ::= func space-function-declaration-list

function-declaration ::= name-nelist : x-name-list — name

2.5 The standard sorts Bool, Real and Time

In every sort specification the sort-declarations Bool, Real and Time must be included.
Bool contains the booleans, while Time is used to declare time as an ordered set and
Real is an auxiliary sort to define multiplication. Every function-specification has to contain
the following function-declarations:

T,F : — Bool

add,subt : Time x Time — Time
mult : Real x Time — Time
leg : Time x Time — Bool

Definition 2.1
- A real-number is of the form .ay...apEb with 1 < k < p, a; € {0,1,...,9} for1 <
t <k, aj,ap £ 0 andb € {Emin,-., Bmaz} (where p, Enin and Ep,.. are integer
parameters),

- A time-number is 0, co or of the form aT with a a real-number

The real-numbers and time-numbers are the constants belonging to the sorts Real and
Time respectively. The function-declarations a :— Real for a a real-number and ¢ :—
Time for ¢ a time-number are considered standard and do not have to be included in the
function-declaration-list.

The functions add, subt and mult describe addition, subtraction and multiplication of
real numbers, while leq denotes the ‘less-or-equal’ relation. We have subt(sp,s1) = 0 iff
leg(sg,s1) = T'. The rewrite rules needed to describe these functions are considered standard
and do not have to be included in the rewrite-rules-section.

Let sg, s, se be time-terms. Note that in general equations like subt(add(sg,s1),s2) =
add(subt(sg, s2),51) and even add(add(so, s1), s2) = add(add(se, s2),51) do not hold. Detailed
information about the floating-point arithmetic can be found in [9].

2.6 Rewrite specifications
" A rewrite-specification is given by a many-sorted term rewriting system.

rewrite-specification ::= wvartable-declaration-section

rewrite-rules-section

4 2 THE SYNTAX OF REAL-T1ME punl

The sorts of the variables that are used in a rewrite-rules-section must be declared in a
variable-declaration-section.

variable-declaration-section ::= var space-variable-declaration-list

In a variable-declaration, the name-nelist contains the declared variables and the name de-
notes their sort:

variagble-declaration ::= name-nelist: name

Data-terms are defined in the standard way. The name without brackets represents a variable
or a constant.

data-term = mname

| name(data-term-nelist)

The notion of a time-term originates from [12], where it is called a bound. The name
represents a time-variable or a constant.

time-term = mname

| add(time-term,time-term)
| subt(time-term,time-term)
|

mault(real-number, time-term)
The meaning of functions operating on data is defined by a rewrite-rules-section.

rewrite-rules-section = rew space-rewrite-rule-list
rewrite-rule = name = data-term

| name(data-term-nelist) = data-term

2.7 Process expressions and process specifications

We define what process-ezpressions look like, explicitly taking care of the precedence among
operators.

process-expression = parallel-ezpression

| parallel-expression + process-expression

parallel-expression = merge-parallel-ezpression
comm-parallel-expression
cond-expression

cond-ezxpression || cond-ezpression

time-term >> cond-exzpression

2.7 Process expressions and process specifications 5

merge-parallel-expression = cond-ezpression || merge-parallel-expression

| cond-ezpression || cond-expression

comm-parallel-expression = cond-expression|comm-parallel-expression

| cond-exzpression|cond-expression

cond-ezpression = dot-expression

| dot-ezpression < data-term > dot-ezpression

dot-expression := basic-expression

| basic-expression - dot-expression

basic-erpression I (interval-declaration, process-ezpression)

0({name-nelist}, process-expression)
7({name-nelist}, process-ezpression)
p({renaming-declaration-nelist}, process-expression)

¥(single-variable-declaration, process-expression)

l

l

l

|

| name
| name(data-term-nelist)

| name(data-term-nelist)(time-term)
| 6(time-term)

| 7(ttme-term)

l

(process-ezpression)

The + stands for alternative and the - for sequential composition.

The merge || interleaves the behaviour of both arguments, except that some actions in
the arguments may communicate. The left merge || and the communication merge | behave
exactly as the parallel operator, except that for the left merge its first step must originate from
its left argument, while for the communication merge the first action must be a communication
between both components.

The > is the (absolute) time-shift, that has been introduced in [2]. A parallel-ezpression
s 3> p denotes the process p starting at time s. This means that all actions that have to be
performed at or before time s turn into deadlocks, because their execution has been delayed
too long.

The conditional construct dot-ezpression < data-term > dot-e:'cpression is an alternative way
to write an if - then - else-expression and is introduced by HOARE cs. [8] (see also [1]). The
" data-term is supposed to be of the standard sort of the Booleans. The <-part is executed if
the data-term evaluates to true and the b-part is executed if the data-term evaluates to false.

The integral Z denotes the alternative composition over a (finite) set of time-numbers. It
was introduced in [2]. We use the notion of a prefixed integral, which originates from [12].

2 THE SYNTAX OF REAL-TIME puCHL

declaration is defined by:
-declaration ::= name € <{time-term,time-term}> € {GI} B (.1

the interval-declaration denotes a variable and its scope is the process mentioned

l part of the integral.

unt & describes a deadlock, while the constant 7 deprives actions of their identity,

weir visibility.

sulation operator @ and the hiding operator 7 rename actions of which the name

- in the first part of the argument into 6 and 7 respectively. The renaming
more general. It renames the names of actions according to the scheme in its

it. A renaming-declaration is given by

renaming-declaration := name — name

»perator is used to declare a variable of a specific sort for use in a process-
v single-variable-declaration is defined by

single-variable-declaration ::= name : name

e

ir of this construct is a choice between the behaviours of the process-expressions
om substituting a value of the sort of the variable for the variable.

1ct name refers to a declared process, name(data-term-nelist) refers to a declared
10tes an action (in which case the data-term-nelist consists of a single time-term)
ta-term-nelist)(time-term) denotes an action.

. of process-ezpressions says that - binds strongest, the conditional construct
r than the parallel and shift operators, which in turn bind stronger than +.

pecification consists of a list of (parameterised) names, which are used as process
at are declared together with their bodies.

ification = = proc space-process-declaration-list
:laration ::= name(name) = process-ezpression
| name(single-variable-declaration-nelist)(name) =

process-erpression

1 specification

pecification all actions that are used are declared. If an action is parameterised
we must declare on which sorts an action depends.

action-specification := act space-action-declaration-list
action-declaration ::= name-nelist

| name-nelist : X -name-nelist

2.9 Communication specification 7

2.9 Communication specification

A communication-specification prescribes how actions may communicate. If it is specified that
inlout = comm, then each action in(ty,...,tx)(c) can communicate with out(#, ..., %},)(c') to
comm(ty, ..., t)(c), provided k = m and t; and t: denote the same data-element fori =1,...,k
and ¢ and ¢’ denote the same time-number.

commaunicalion-spectfication := comm space-communication-declaration-list

communication-declaration ::= name|name = name

2.10 Specifications

i

specification sort-specification
function-specification
rewrite-specification
action-specification
communication-specification
process-spectfication

spectfication specification

2.11 Some notations

In our syntax we allow a real-number .a;...axEl to be abbreviated to aj...a;.ajq...a if 0 <
l <k and to ay...ar if & =1.

We now give some definitions concerning time-terms. Let sg,s; be time-terms and a a
real-number. In this paper we use the following standard notations:

so +51 denotes add(sg,s1),

sop — 81 denotes subt(sp,s1),
a-sp denotes mult(a,sp),

sp < sy denotes leg(sg,s1) =T,

s1 < sg denotes leg(sg,s1)=F.

Definition 2.2 Let V be a set of time-numbers.

- maz(V) denotes the maximum of V, that is the time-number ¢ € V such that ¢’ < c
foralld €eV.

- min(V) denotes the minimum of V, that is the time-number ¢ € V such that c < ¢' for
ald eV.

We put maz(8) = min(d) = 0.
Definition 2.3 Let c,cg,c; be time-numbers. We say that

- ¢ 1s in the interval (co,c1) iff co < c and ¢ < ¢y,

8 3 STATIC SEMaw 1 1Us

- ¢ is in the interval (cg,c1] iff co < c and ¢ < ¢y,
- ¢ ts in the interval [co,c1) iff co < ¢ and ¢ < ¢y,

- ¢ is tn the interval [cp,c1] iff co < c and ¢ < 1.

2.12 The from construct

For a process-ezpression or a data-term t, we write t from E for a specification E where
we mean the process-ezpression or data-term t as defined in E. Often, it is clear from the
context to which specification E the item ¢ belongs. In this case we generally write ¢ without
explicit reference to E.

3 Static semantics

Not every specification is necessarily correctly defined. In this section we define under which
circumstances a specification has a correct static semantics. Furthermore, we define some
functions that will be used in the definition of the semantics of ruCRL.

3.1 The signature of a specification

The signature of a specification consists of a five-tuple. Each component is a set, containing
all elements of a main syntactic category declared in a specification FE.

Definition 3.1 Let E be a specification. The signature Sig(E) = (Sort, Fun, Act,Comm,
Proc) of E is defined as follows:

o If E =sort ny ... ny withm > 1, then Sig(E) et {mr1,..ymm},0,0,0,0).

e If E=func fd, ... fd, withm > 1, then Sig(E) & 0, Fun,,0,0), where
Fun % {nij == S| fd; =ni1y.miy, > 8;,1<i<m, 1 <j <L}
U {n,‘j : 80 X .. % Sk, — Si |
fd; = i1y ey 1 Si X .l X Sit, = 5;,1<i<m,1 <7<}

If E is a rewrite-specification, then Sig(E) def (0,0,0,0,0).

If E = act ad; ... ady, with m > 1, then Sig(E) def (0,0, Act,0,0), where

Act & {nij ledi =mny1, . ni,, 1 <i<m, 1 <5 <1}

U {n,-j $ 8 X .. X Sik, |
ad; = nyy,..,n 2 Sip X . X Si;;1<i<m,1 <5<}

3

o If E=comm cd; ... cdp, withm > 1, then Sig(E) % (0,0,0,{cd; | 1 < i < m},0).

If E = proc pd; ... pd,, withm > 1, then Sig(E) &f 0,0,0,0,{pd; | 1 < i< m}).

3.2 Variables 9

e If E = By By with Sig(F;) = (Sort;, Fun;, Act;, Comm;, Proc;) fori = 1,2, then
Sig(F) def (SortyUSorty, Funy UFung, Act; U Acty, Comm; UComms, Proc; U Procy).

Definition 3.2 Let Sig = (Sort, Fun, Act, Comm, Proc) be a signature. We write

Sig.Sort for Sort,
Sig.Fun for Fun,
Sig.Act for Act,
Sig.Comm for Comm,
Sig.Proc for Proc.

3.2 Variables

The next definition says which names can play the role of a variable without confusion with
defined constants. Moreover, variables must have an unambiguous and declared sort.

Definition 3.3 Let Sig be a signature. A set V containing elements (z : S) with x and S
names, is called a set of variables over Sig iff for each (z : S) € V:

e for each name S’ it holds that = :— S' ¢ Sig.Fun,
e S € Sig.Sort,
e for each name S’ such that S' # S it holds that (z : S') € V.

Definition 3.4 Let var-dec be a variable-declaration-section. The function Vars is defined
by:

Vars(var-dec) % {(z;;: S;) |1 <i<m,1<j <L}
if for some m > 0 var-dec = var z11,...,Z11; : S1 .. Tml, ey Tl ¢ S

In the following definitions we give functions yielding the sort and the variables in a data-term
t. If for some reason no answer can be obtained, a 1 results.

Definition 3.5 Let t be a data-term and Stg a signature. Let V be a set of variables over

Sig. We define:

(S ift=zand(z:S)eV,

S ift=n,n:— 85 € Sig.Fun and forno S'# S

n:— S’ € Sig.Fun,

S ift=nts, ... tm),
n: sortgig y(t1) X ... X sortgig p(tm) — S € Sig.Fun and for no
S8'# 8 n:sortgigy(ti) X ... X sortgigy(tm) — S’ € Sig.Fun,

1 otherwise.

sortgig y(t) e

.
Definition 3.6 Let Sig be a signature, V a set of variables over Sig and let t be a data-term.

{{z:89)} ift==z and (z:S) eV,
Varsiy (%) def | 0 : ift=mn and n:— S € Sig.Fun,
i B U1<i<m Vars."g’v(ti) ft= n(th ey tm);
{1} otherwise.

We call a data-term t closed w.r.t. a signature Sig iff Varg;, ¢(t) = 0.

3 STATIC SEMAN.11CS

¢ semantics

»n must be internally consistent. In this section we define what are the conditions
ation to be SSC (Statically Semantically Correct).

3.7 Let Sig be a signature and V be a set of variables over Sig. We define the
SSC w.r.t. Sig’ inductively over the syntaz of a specification.

ification sort ny ... ny, withm > 0 is SSC w.r.t. Sig iff all names ny, ...,y
rwise different.

ification func ny,..,nqy, : S11 X ... X St — S

Nmis ooy My, Sml X .. X Smkm — Sm
>0, >1,k2>0 for1 <i<mis SSC w.r.t. Sig iff

rall1 < i < m the names ni1, ..., n;, are pairwise different,

ralll < i < j < m it holds that if ny = njp for some 1 < k < il; and
< k' < jlj, then either ki # kj, or Sy # Sy for some 1 <1< k;,

rall1<i<m and 1< j<k; it holds that S;; € Sig.Sort and S; € Sig.Sort.
fication of the form: wvar-dec

rew-rul
lar-dec is a variable-declaration-section and rew-rul is a rewrite-rules-section is
r.t. Sig iff
r-dec is SSC w.r.t. Sig,
w-rul is SSC w.r.t. Sig and Vars(var-dec).

ble-declaration-section var nii,...,nik, 1 S1

Tnly oy Pk, & Sm
20,k 21 forl1 <i<m s SSC w.r.t. Sig iff
#npj whenever i £4i orj £ 3 for1 <i<m, 1< <m, 1<j <k and
;jl < ki';
- set Vars(var ni,...,n1k, : S1 ... Tomly oo ok, © Sm) @5 @ set of variables over
7.

te-rules-section rew rwy ... rw,, withm >0 is S5C w.r.t. Sig and V iff

w; =n =t for some 1l <1< m, then

n :— sortg;, ¢(t) € Sig.Fun,
t is SSC w.r.t. Sig and 9,

w; = nty,...,tg) =t for some 1 <i<m and k > 1, then

3.3 Static semantics 11

* n 2 sortgg p(t1) X ... X sortgig y(te) — sortgi, y(t) € Sig.Fun,
x t,t; (1 <j<k)are SSC w.r.t. Sig and V,
*x A data-term n with n a name is SSC w.r.t. Sig and V iff (n: S) € V for some S, or
n :— sortg;, y(n) € Sig.Fun,

A data-term n(t1,..,tm) (m > 1) is SSC w.r.t. Sig and V iff n : sortg, p(t1) X ... X
sortsig v(tm) — sortsigy(n(ts,...,tm)) € Sig.Fun and ty, ..., t;m are SSC w.r.t. Sig and
V.

A time-term n with n a name is $SC w.r.t. Sig and V iff (n : Time) €V orn is a
time-number,

The time-terms add(sg,s1) and subt(sp,s;) are SSC w.r.t. Sig and V iff sg,s1 are
teme-terms that are SSC w.r.t. Sig and V,

A time-term mult(a,s) is SSC w.r.t. Sig and V iff 5 is a time-term that is SSC w.r.t.
Sig and V and a is a real-number,

e A specification . act ad; ... ad,, withm >0 is SSC w.r.t. Sig iff

— for all 1 <t < m the action-declaration ad; is SSC w.r.t. Sig,
— for all1 <1 < j < m it holds that Sig(act ad;).Act N Sig(act ad;).Act = 0.

* An action-declaration ny,...,n,, with m > 1 is SSC w.r.t. Sig iff

— forall1 < i< j < m it holds that n; # n;,
— for all1 <1 < m and for all process-expressions p it holds that n; = p ¢ Sig.Proc.

An action-declaration ny,...,ng, : S1 X ... X Sy with k,m > 1 is SSC w.r.t. Sig iff

— forall1 <1 < j < m it holds that n; # n;,

— for all 1 < i < k it holds that S; € Sig.Sort,

— for all 1 < i < m and for all names z1, ...,z and process-expressions p it holds
that ni(z1 : Si,...,zx : Sk) = p € Sig.Proc.

e A specification comm niilnig = n13 ... Bmilma = nm3z with m > 0 is SSC w.r.t.
Sig iff

— foreach 1 < i < j < m it is not the case that n;1 = nj1 and nio = nja, or ni; = njo

and ng = 1351,

— for each 1 < i < m either n;; € Sig.Act or there is a k > 1 such that ng :
S1 X ... X S € Sig.Act,

— foreach 1 <1< m, k> 1 and names Sy, ..., Sy it holds that if n;; : S1 X ...x S €
Sig.Act then njp : Sy X ... x St € Sig.Act and nj3 : S1 X ... X Sy € Sig.Act,

— for each 1 < i < m it holds that if n;; € Sig.Act then njy € Sig.Act and n;3 €
Stg.Act.

12 3 STATIC sEMAN .ol

o A specification proc pd; ... pd,, withm >0 is SSC w.r.t. Sig iff

~ foreach 1 <1< j<m:
* if pd; = n; = p; and pd; = n; = p; then n; # n;,
* if for some k > 1 it holds that pd; = n;(zy : Sy,...,zp : Sp) = p; and pd; =
nj(zy : 81, ..., 7}, : Si) = pj then n; # n;j,
— if pd; = n; = p; , then p; is SSC w.r.t. Sig and 0,
—ifpd; = ni(zl 81, ey Ty Sk) =pi (k 2 1); then
* k> 1 or S; # Time or n; ¢ Sig.Act,
* the names i, ...,z are pairwise different and {{z; :8;) |1<j <k} is a set
of variables over Sig,
* pi is SSC w.r.t. Sig and {{z; : S;) | 1 < j < k}.
* A process-expression p; + p2, a dot-expression py - P2 and parallel-expressions p || pa,
P1|p2, p1lp2 are SSC w.r.t. Sig and V iff p; and ps are SSC w.r.t. Sig and V.

A parallel-expression s> p is SSC w.r.t. Sig and V iff p and s are SSC w.r.t. Stig and
V. :

A cond-expression p; 4t ps is SSC w.r.t. Sig and V of

— p1 and py are SSC w.r.t. Sig and V,
— t is SSC w.r.t. Sig and V and sortg;, y(t) = Bool.

The basic-ezpressions d({ni,...,nm},p) and r({n1,...,2m},p) with m > 1 are SSC
w.r.t. Sig and V iff
—foralll§i<j5mn,-¢n]-,

— for 1 < i < m either n; € Sig.Act or n; : 81 x ... X S} € Sig.Act for some k > 1
and names S, ..., Sg,

~ p 1s SSC w.r.t. Sig and V.

The basic-ezpression p({ny — ni,..,nm — nh.},p) with m > 1 is SSC w.r.t. Sig and
V iff
— for 1 £i < m either n; € Sig.Act orn; : S1 X ... X S € Sig.Act for some k> 1
and names Sy, ..., S,
— for each 1 <i < j < m it holds that n; # n;,

— for1 <i<m, k >1 and names Sy, ..., Sy, it holds that ifn; : S1x...x Sy € Sig.Act,
then also n} : S1 x ... x Sy € Sig.Act,

— for 1 <i < m it holds that if n; € Sig.Act, then also n! € Sig.Act,
—.p ts SSC w.r.t. Sig and V.

A basic-ezpression I(z € V,p) is SSC w.r.t. Sig and V iff

— for each name S' it holds that z :— S' & Sig.Fun,

3.3 Static semantics 13

— the process-expression p is SSC w.r.t. Sig and (V\{{z: S") | S’ a name}) U {(z :
Time)},
— V =dsq, s1}>, where the time-terms sg and s; are SSC w.r.t. Sig and V.

A basic-expression Y(z : S,p) is SSC w.r.t. Sig and V iff

- S € Stg.Sort, S # Time,
— p is 8SC w.r.t. Sig and V\{{z: S') | ' a name} U {{(z : .5')},
— for each name S’ it holds that = :— S' & Sig.Fun.
A basic-expression n is SSC w.r.t. Sig and V iff n = p € Sig.Proc for some process-
erpression p.
A basic-expression n(ty, ..., ty) with m > 1 is SSC w.r.t. Sig and V iff
— n(zy @ sortgigy(t1),....Tm : sorigi,y(tm)) = p € Sig.Proc for some names
T1,.-,Tm and process-ecpression p and the data-terms ti,...,t,, are SSC w.r.t.
Sig and V, or
— n € S1g.Act, m =1 and t; is a time-term that is SSC w.r.t. Sig and V.

A basic-expression n(ty, ...,t,)(s) is SSC w.r.t. Sig and V iff

— n:sortgigy(t1) X ... X sortgiy y(tm) € Sig.Act,
— the data-terms t1,...,t,, and the time-term s are SSC w.r.t. Sig and V.

A basic-expression (p) is SSC w.r.t. Sig and V iff p is SSC w.r.t. Sig and V.
e A specification E; Ey is SSC w.r.t. Sig iff

— Ej and Ey are SSC w.r.t. Sig,

— Sig(F1).SortN Sig(Es).Sort =0,

—ifn:81 x..x 8, —8¢€Sig(E).Fun for somem >0 thenn:8; x ... x S, —
S' ¢ Sig(Es).Fun for any name S',

—~ Sig(Ey).Act N Sig(Ey).Act =0,

— if nylng = ng € Sig(E;).Comm then for any names nj and nf nilng = n§ ¢
Sig(E2).Comm and nyln, = nf ¢ Sig(E>).Comm,

— if pdy € Sig(E1).Proc and pdy € Sig(Ey).Proc, then
* of pdi = ny = p; and pdy = ny = p3, then n; # ny,
* if pdy = n1(21 2 81,y Zm 2 Sm) = p1 and pdy = no(2) 1 51,y 2+ Sm) = p2
for some m > 1, then n; # na.

Definition 3.8 Let E be a specification. We say that E is SSC iff E is SSC w.r.t. Sig(F).

Lemma 3.9 Let Sig be a signature and V be a set of variables over Sig. Lett be a data-term
that is SSC w.r.t. Sig and V. Then sortg;y y(t) #L and 1L ¢ Varg;, y(t).

14 5 ALGEBRAIC SEMAN 11CS

3.4 The communication function

The following definition guarantees that the communication function is commutative and
associative. This implies that the merge is also commutative and associative, which allows
us to write parallel processes without brackets.

Definition 3.10 Let Sig be a signature. The set Sig.Comm?* is defined by:
Sig.Comm* def {n1lng = n3, naln; =n3 | nilng = n3 € Sig.Comm}.

In Sig.Comm* communication is always commutative. We say that a specification E is
communication-associative ff

nilng =n, nlng =n' € Sig(F).Comm* =
In" : nalng =n", niln" =n' € Sig(E).Comm*.

With the condition that F is SSC this exactly implies that communication is associative.

4 Well-formed ruCRL specifications

We define what well-formed specifications are. Only well-formed specifications are provided
with a semantics. Well-formedness is a decidable property.

Definition 4.1 Let E be a specification that is SSC. We say that E has no empty sorts iff
for all S € Sig(E).Sort there is a data-term t that is SSC w.r.t. Sig(E) and § such that

sortgigm)p(t) = S.
Definition 4.2 Let E be a specification. E is called well-formed iff
e F is SSC,
o F is communication-associative,
e E has no empty sorts,
e Bool,Real, Time € Sig(E).Sort,

e T,F :— Bool € Sig(E).Fun,

add, subt : Time X Time — Time € Sig(E).Fun,

mault : Real x Time — Time € Sig(F).Fun,

leq : Time x Time — Bool € Sig(F).Fun.

5 Algebraic semantics

In this section we present the semantics of well-formed ruCRL specifications.

5.1 Algebras 15

5.1 Algebras

First we adapt the standard definitions of algebras etc. to ruCRL (see e.g. [4] for these
definitions).

Definition 5.1 Let F be a well-formed specification. A Sig(FE)-algebra A is a structure
containing

e for each S € Sig(E).Sort a non-empty domain D(A, S),
e for each n:— S € Sig(E).Fun a constant C(A,n) € D(A,S),

e for eachn:S; x..x Sy, — S € Sig(E).Fun a function F(A,n:S; X ... X Sy,) from
D(A,S1) x ... x D(A,Sn) to D(A,S).

For two elements a; € D(A, S1) and ap € D(A, S2), we write a; = ag iff S} = S and a; and

ay represent exactly the same element.

Definition 5.2 Let E be a well-formed specification and let A be a Sig(E)-algebra. We
define the interpretation []4 from data-terms that are SSC w.r.t. Sig(E) and § into the
domains of A as follows:

o ift =n, then [t]a & C(A,n),
o if t = n(t1,..,tm) for some m > 1, then [t]a &f F(A,n : sortgigm)e(t1) X ... X
sortsig(£)0(tm))([t1]a4; ..., [tm]a)-

We say that a Sig(F)-algebra A is minimal iff for each a € D(A,S) and S € Sig(E).Sort,
there is some data-term t that is SSC w.r.t. Sig(E) and O such that [t]4 = a. For data-terms
t1,ta that are SSC w.r.t. Sig(E) and 0 we write A =1t =1t iff [t1]a = [t2]a-

Definition 5.3 Let E be a well-formed specification and let A be a minimal Sig(F)-algebra.
A function r mapping pairs of a sort S and an element from D(A,S) to data-terms that
are SSC w.r.t. to Sig(E) and 0 is called a representation function of F and A iff A=t =
r(sortsiym)0(t), [t]la) for each data-term t that is SSC w.r.t. Sig(E) and 0.

5.2 Substitutions

We define substitutions on data-terms and on process-expressions.

Definition 5.4 Let E be a well-formed specification and V a set of variables over Sig(E).
Let Term be the set of data-terms that are SSC w.r.t. Sig(E) and V. A substitution o over
Sig(F) and V is a mapping

o:VY — Term

" such that
e for each (x : S) €V it holds that sortgiyg)y(o({z : §))) =S,

o for each (y : Time) € V it holds that o({y : Time)) is a time-term.

16 5 ALGEBRAIC SEMANTICS

A substitution o is extended to data-terms by:

o(z) & o((x : S)) if (z: S) € V for some name S,
o(n) n ifn:>Se Sig(FE).Fun,
o (nt1y e tm)) = n(o(t1), ..., 0 (tm))-

Let 0.5y be defined by

1ognydef] (@2 8) ifd=zand §'=85,
0'(:::5)((10 : S)) - { a((:nl . Sl)) if (:c' . Sl) € V\(:c . S).

We extend o to process-expressions that are SSC w.r.t. Sig(FE) and V as follows:

U(P1DP2) déf O'(Pl)Da(PZ) for O e {+’ ”’ U_» I)}
o(s > p) L o(s) > op)

o(p1 4t>py) ' o(p1) ao(t)bo(pa)

o(Z(z €dso,1b,p)) = I(z €40(s0), o(s1)b, 0(orTime (7))
o(S(z : S,p)) L B(z: 8,00.5())

o(0(gl, p)) 0l o(p)) for O € {8, 7, p}

o(n) def n

o(n(t1y s tm)) ' n(o(ts) e, otm))

o(n(t1, o tm)(5)) L n(o(tr), s o(tm))(o(s))

a(8(s)) = 5(o(s))

o(r(s)) E 1(o(s))

o((p)) Z (o(p))-

Let t be a data-term that is SSC w.r.t. Sig(E) and 0 with sortgiumyp(t) = S, o the
substitution over Sig(E) and {(z : S)} with o({z : S)) =t and p a process-ezpression resp.
t' a data-term that is SSC w.r.t. Sig(E) and {(z : S)}. Then o(p) resp. o(t') is denoted by

plt/z] resp. t'[t/z].

Lemma 5.5 Let E be a well-formed specification and V a set of variables over Sig(E). Let
o be a substitution over Sig(E) and V.

e For any data-term t that is SSC w.r.t. Sig(E) and V, o(t) is also a data-term that is
SSC w.r.t. Sig(E) and V. Moreover, sortg;y) y(t) = sortgig k) v(o(t)).

o For any time-term s that is SSC w.r.t. Sig(E) and V, o(s) is also a time-term that is
SS5C w.r.t. Sig(E) and V.

e For any process-expression p that is SSC w.r.t. Sig(F) and V, o(p) is also a process-
expression that is SSC w.r.t. Sig(E) and V.

. and time preserving models 17

:an and time preserving models

rewrifes extracts the rewrite clauses together with declared variables from a

.6 We define the function rewrites on a specification E inductively as follows:
sort-spec with sort-spec a sort-specification, then rewrites(E) .

func-spec with func-spec a function-specification,

writes(E) =)

V' R with V a variable-declaration-section and R a rewrite-rules-section with
~ rdy ... rd, for some m > 1, then

rewrites(F) o {{{rd; | 1 < i < m}, Vars(V))}.

1ct-spec with act-spec an action-specification, then rewrites(E) Efy,

lomm-spec with comm-spec a communication-specification, then rewrites(E) def

roc-spec with proc-spec a process-specification, then rewrites(E) def

%1 Ey where Ey and Ey are specifications, then rewrites(E) def rewrites(Ey) U
s(Es).

T Let E be a well-formed specification. A Sig(F)-algebra A is a model of
i =p E, iff whenever t = t' € R with (R,V) € rewrites(E), then for any
over Sig(E) and V such that o(t) and o(t') are closed it holds that A |= o(t) =

:p F with a subscript D because the model only concerns the data in E.

8 Let E be a well-formed specification. A Sig(F)-algebra A is called boolean
arving w.r.t. E iff

ol) = {T', F},

the case that Al=T =F,

:al) is the collection of real-numbers,

al-numbers a,a’ with a # o’ it is not the case that Af=a =a’,

me) is the collection of time-numbers,

me-numbers c,c’ with c # c' it is not the case that A|=c=c'.

18 5 ALGEBRAIC SEMANTICS

5.4 The ultimate delay operator

Let E be a well-formed specification and A a minimal model for E. For each process-expression
p that is S5SC w.r.t. Sig(E) and § we define its ultimate delay U(p), which is the smallest
time-stamp that is not reachable by p without performing an action. The ultimate delay
originates from [2] and is used to formulate the action rules for the parallel operators and the

deadlock.

If sg and sy are time-terms that are SSC w.r.t. Sig(F) and 0, then sg = ¢p and s; = ¢;
hold for unique time-numbers ¢y and c;. In the sequel we assume that a statement like ‘sq is
greater than s’ is well defined and holds iff ¢; < c.

Definition 5.9 Let the process-expressions below all be SSC w.r.t. Sig(E) and 9.
e U(Z(z €V, P)) & maz(V),

o Ulns (s) & s resp. Un(ty, .., tm)(s)) & s
if ng, denotes 8,7 or ng, € Sig.Act resp. n: 81 X ... x 8, € Sig.Act,

o Ulp+9) = maz{U(p), U(a)},

o Ulp-q) € Up),

e U(s > p) ¥ maz{U(p), s},

* Ulpllg) =Ulp|Lg) = Ulplg) ¥ min{U(p), U()},

pach U()ZfAl=t=T,
e U(patdg) ‘Lf{ U(Z) FALi—F

o U(n) Z U(p) resp. U(nlty, ..., tm)) & U(o(p))
if n =p € Sig(E).Proc resp. n(zy : S1,...,Zm : Sm) = p € Sig(E).Proc, where o is the
substitution over Sig(E) and {(z; : S;) | 1 < j < m} with a((z; : S;)) =1t;,
o U@, mehp)) = Ulr({ns, s mihi8)) = Ulpl{n = n,.ymy — n},p)
U(p),

e U(X(z:S,p)) = maz{U(p[t/z]) | t is a data-term that is SSC w.r.t. Sig(E) and 0
with sortg;, g ¢(t) = S}.

5.5 The process part

In this section we define for each process-ezpression p that is SSC w.r.t. Sig(E) and # and
each minimal model A of E that preserves the booleans and time, where E is some well-
formed specification, a meaning in terms of a referential transition system (cf. the operational
semantics in [3, 14, 15]). The action rules for the parallel operators and the deadlock were

taken from [12].

-Definition 5.10 A transition system A is a quadruple (S, L, —,py) where

5.5 The process part 19

- 8 s a set of states,
— L 1is a set of labels,
- —C 8§ x L x S is a transition relation,

— po € S is the initial state.
!
Elements (p',1,p") €— are generally written as p' — p".

Definition 5.11 Let F be a well-formed specification, A a minimal model of E that is boolean
and time preserving and r o representation function of E and A. Letp be a process-expression
that is SSC w.r.t. Sig(E) and 0. The meaning of p from E in A with representation function
r i3 the referential transition system A(A,r,p from E) defined by

(S) L1 _"')7170)
where

— S is the collection containing / and all process-ezpressions that are SSC w.r.t. Sig(E)
and 0,

— L contains all elements of the form §(c), 7(c) and n(ty,...,tm)(c) (m > 0), where

— n € Sig(E).Act if m =0, or
n: sorigig(m)a(t1) X ... X sortgig(p) p(tm) € Stg(E).Act if m > 1,
~ ¢ is a time-number, ¢ £ 0,

— ti = 1(8;,a) for some a € D(A, S;) where S; = sortgiyg)g(t:),

def
- Pe =P,
~ — 18 the transition relation that contains exactly all transitions provable using the
rules below (see for provability e.g. [6]).

Let all the process-ezpressions below be SSC w.r.t. Sig(E) and 0. Let ! and I(c) range over
L\{6(c) | ¢ is a time-number}, where l(c) has the time-number ¢ as time-stamp. Letty,...,tm
be data-terms that are SSC w.r.t. Sig(E) and 0, and s a time-term that is SSC w.r.t. Sig(E)
and 0.
1 ' l
p—p p—V
!
n— gl n—

— n=p € Sig(E).Proc.

o(p) — P o(p) — \l/
n(ty, N —l'>p' n(t1, oy tm) — \/

— n(z1 : sortsig(k)p(t1), --) Tm : SOTEgiy(E) 9(tm)) = p € Sig(E).Proc (m>1),

20

5 ALGEBRAIC SEMANTIC

— 0 a substitution over Sig(E) and {(z; : 50Tt 5i0(E),0(11)), ooy (T : sortsig(E),0(tm),
with a((:c,- : SO’r'tS,-g(E),g(t;))) =t forl <i<m.

l
p—p

l I
pt+qg—1p, q+p—p
l
p—p
l /
p-gq—p g
i(ec)
p—p s<ec

e
§s>p—p

1
p—p

l
pateg —pf
~AEt=T,

1
qg—4q

4
pdtpg— ¢
- A'=t=F.

- 1{e) ,
p—p' c<U(g)

I(c)
plla— 7' || (c>q)

n3(t1y00tm)c) , n2(t1,tm)(c) ,
— P q — q
n(t1,.stm)(c)

plg —

plld
nl(tl,...,tm)(c)l ng(tl,...,tm)(c)
p — pg —

n(t1,.tm)c) , nt1,..,tm)e) ;
plg — ¢, qlp —

— nylng = n € Sig(E).Comm* and m > 0.

{
pllg — 7

®
l {
plle—7, qllp—p

l]
plg —p

l
pllg—p

{
p—
l {
p+g—+/, g+p—

Ic)
p—
i(c)
p-g—c>q

l(e)
p—+ s<ec
O]
s>p—+/

l
p—+/

I
patpqg — /

1
g—+/
i
p<1t>q——-)\/

c)
p— ec<U(g)

I(c)
pllg—ec>q

nl(tl,...,tm)(c) ng(tl,...,tm)(c)
P — g —
‘n.(tl,...,fm)(c)

plg — '/

pU_q—l—M/
pllq—l*\/, 9”1’_1’\/
pqu—*\/
plla—

5.5 'The process part

4 l
'y p—p p—
[I
T({nl) seey nk})p) I T({nb "‘1nk}1pl) T({nh ceey nlc}yp) i \/
—l=n(t,...tn)(c) (m>0) and n £ n; forall1 <i <k, orl =1(c),
nl{t1,..,tm){c n{t1,..,km)(c
- (tl—-——t-))()p' p(l—))()\/
() 7(c)
T({’I"L]_, wrey nk}vp) - T({nlv ---,nk},Pl) T({nh ---,nk};P) — ‘/
- n=mn; for somel <i1<k.
i
. p—p
l
p({r1 = ny, .y — 03}, p) — p({n1 — nl,...,np — 0}, ')
{
p—
1
p({n1 = ny,.yne s ni}p) —
—l=n(t,...,tn)(c) andn #n; for all1 <i <k, orl = 7(c),
n(tl;'")tm)(c) !
e g p
N , , R (E1y00ertm)(€) , Ny
p({nl (5 PRRPR 1) _)nk})p) B p({nl Ny Tk '_)nk})p)
n{t1,eetm)c)
—_— \/
n'(t1,...,tm)c)
p{my =, mie = mi}p)
—n=mn; and n' =n! for some 1 <i<k.
1 , {
. p—p p—
{ 1
a({nl’ eevy ’nk},P) — a({nh veny nk},P') a({nh "':nk})p) —— \/
~l=n(t1,...tm)(c) andn #n; for all1 < i <k, or | = 7(c).
7(c) 7{e)
* Iy € Vyr(y) - p) 5 ¢ > ple/] HyeVrly) — v
n()(c)
Q) I(y € Vinly)) — v

I(y € Vin(y) -p) — c> plefy]

n(ug,..um)(e)

Iy € Vinlty, . tm)(®) - p) — ¢ plc/y]

n(uy,..um)(c)

I(y e Vinlty, - tm)®) —

— n € Sig(E).Act or
n: 3ortSig(E),{(y:Time)}(tl) X...X sortSig(E),{(y:Time)}(tm) € .S'ig(E).Act (m 2 1

22 5 ALGEBRAIC SEMANTICS

— ¢ 15 in the interval V, ¢ # oo,
— ui =r(sortsyy(p)o(ti), [tile/v]]la) (1 Li<m).

n(1e1,e.0tm){(€)

* n(s) n—(—)—(:) Vv n(t1, ey tm)(5) E— v

n € Sig(E).Act or
n 1 50Ttgig(g) p(f1) X ... X sortgigg)e(tm) € Sig(E).Act (m > 1),

~ 8§ =c ¥ 0o,
= ui =r(sortgigm)p(ti); [t:]la) (A <i<m).

. plt/z] = o' plt/z] =y
X(z: S,p) —£—>p' X(z: S,p) . v
— t is a data-term that is SSC w.r.t. Sig(E) and § with sortg;, gy g(t) = S.
. p— 7 p—y
(p) — () — v/

We want to add one extra transition rule to our term rewriting system, concerning §. For
that purpose we define for every process-expression p a set action(p) of time-numbers.

Definition 5.12 A time-number c is in action(p) iff there is a label l(c) in L such that
Ic) le)

p —> p' for some process-expression p' or p — /.
Now the extra action rule is:
maz(action(p)) < U(p)
6(c)
p—
—~Ulp)=c

Lemma 5.13 Let F be a well-formed specification, A be a minimal model of E that is
boolean and time preserving and r a representation function of E and A. Consider a

process-ezpression p that is SSC w.r.t. Sig(F) and O and let (S,L,—,po) def A(A,r,p).

4 |
If for some sequence of labels Iy, ..., 1, it holds that p i p', then either p' =/ or p’
is SSC w.r.t. Sig(E) and 0.

Note that ‘Achilles and the tortoise’ situations, like described in [2], do not appear in 7uCRL,
since our time domain is discrete. Furthermore our time domain contains only a finite number
of elements, so the solution of a recursive specification consists of finite processes.

We generally consider transition systems modulo strong bisimulation equivalence.

23

Definition 5.14 Let E be a well-formed specification, A a minimal, boolean and time pre-
* serving model of E, a representation function of E and A and p and g two process-exzpressions
that are SSC w.r.t. Sig(E) and). We say that A(A,r,p from E) and A(A,r,q from E),
defined by (S, L, —,po) and (S, L,—,qo) respectively, are bisimilar, notation

p from E o4, q from E
tff there is a relation R C S x S such that

® (PO,PI) € R:

e for each pair (t1,13) € R:

i l
-t —t; = 3ty tg — 1) and (t],1)) € R,

l l
- tg—ty = 3t 4 — 1] and (¢],t,) € R,

~ 11 and ty have the same ultimate delay.

The following lemma allows us to write « 4 instead of & A Note that according to our own
convention we do not explicitly say where p and ¢ stem from, as they can only come from E.

Lemma 5.15 Let E be o well-formed specification, A a minimal, boolean and time preserving
model of E' and p,q process-expressions that are SSC w.r.t. Sig(E) and 0. If p ©4, q for
some representation function r of E and A, then p ©24 . q for each representation function

v of E and A.

6 An SDF-syntax for real-time yCRL

We present an SDF-syntax for ruCRL [7]. According to the convention in SDF we write
syntactic categories with a capital and keywords with small letters. The first LAYOUT rule
says that spaces (‘ ’), tabs (\t) and newlines (\n) are not part of the ruCRL specification
itself. The second LAYOUT rule says that lines starting with a Y%-sign followed by zero or
more non-newline characters ({~\n}*) followed by a newline must be taken as comments and
are therefore also not a part of the ruCRL syntax.
Names are arbitrary strings over a-z, A~Z and 0-9, except that keywords are not names.
' The symbol + stands for one or more and * for zero or more occurrences. For instance, a list
of one or more names separated by commas is denoted by { Name "ot
Obracket denotes the collection {[,(} and Cbracket the collection {],)}. We denote €
by in and co by infinity. The phrase right means that an operator is right-associative
and assoc means that an operator is associative. The phrase bracket says that the defined
construct is not an operator, but just a way to disambiguate the construction of a syntax
tree. Instead of Z, 6,0, 7, p and ¥ we write integral, delta, encap, tau, hide, rename and

sum.
The priorities say that ‘.’ has highest and + has lowest priority on process-ezpressions.

exports
sorts Name

24

Name-nelist

X-name-nelist
Space-name-nelist

Name-list

X-name-list

Space-name-list
Sort~specification
Function-specification
Function-declaration
Rewrite-specification
Variable-declaration-section
Variable-declaration
Data-term

Time-term
Rewrite-rules-section
Rewrite-rule
Process-expression
Renaming-declaration
Single-variable-declaration
Process-specification
Process-declaration
Action—specification
Action-declaration
Communication-specification
Communication-declaration
Specification

lexical symtax

context~free syntax

6 AN SDF-SYNTAX FOR REAL-TIME uCRL

{ll n’ n\tn, "\Il"} ->
ll'/.ll .{~\n}* u\nn -5
{a-zA-Z0-9}* ->
{“[ll’ "<ll} _>
{n]n, nyn} -
{ Name "’!I}.'_ -3
{ Name "#"}+ ->
{ Name * n}+ -5
{ Name n,n}* ' ->
{ Name "#"}* ->
{ Name " "}* ->
sort Space-name-list ->
func Function-declaration# ->
Name-nelist ":" X-name-list "->" Name ->
Variable-declaration~section
Rewrite-rules-section ->
var Variable-declaration* ->
Name-nelist ":" Name ->
Name ->
Name ll(ll { Data_term II,II }+ II)" _>
Name ->

LAYOUT
LAYOUT
Name
Obracket
Cbracket

Name-nelist
X-name-nelist
Space-name-nelist
Name-list

X-name-list
Space-name-list
Sort-specification
Function-specification
Function-declaration

Rewrite-specification
Variable-declaration-section
Variable-declaration
Data-term

Data-term

Time-term

W(" Time-term "," Time-term ")"

: "(" Time-term "," Time-term ")"

. "(ll Name ll,ll Time_tem ll)ll

Rewrite-rule+

) n(n { Data~-term u,u }+ n)u il
Data-term

y "= Data-term

"+ Process—expression

*[|" Process-expression

:ess~expression "||_" Process—expression

:ess~expression "|" Process-expression

—term ">>" Process-expression

:esg—expression "<|" Data-term |>"

Process-expression

;ess-expression "." Process-expression

gral "(" Interval-declaration "," delta
H(ll Name ll)ﬂ ll)ll

gral "(" Interval-declaration "," taun
I|(ll Name ll)“ ll)ll

gral "(" Interval-declaration "," Name
n(n Name u)u n)n

gral "(" Interval-declaration "," Name

{ Data-term n’u }+ u)u u(n Name n)n n)n

:ess—expression
:ess-expression

gral "(" Interval-declaration "," delta
" Name ")" "_." Process-expression ")"
gral "(" Interval-declaration "," tau

" Name ")" "." Process-expression '")"
gral "(" Interval-declaration "," Name
" Name ")" "." Process-expression ")"
gral "(" Interval-declaration "," Name

{ Data_term ll’“ }+ !l)ll "(" Name ll)ll
Process-expression ")"
a "(" Time-term ")*
n(" Time-term ")"
u(u { Data-term u’u }+ n)u
w(" Time-term ")"
"(Il { Data_tem ll’" }+ ")Il

P "(ll ll{ll Name_nelist ll}ll ll’ll
Process-expression ")"

II(II II{II Name_nelist II}" ll,!l
Process~expression)"

re "(" "{" { Renaming-declaration "," }+

nje n_n process-expression ")"
"(" Single-variable~declaration ","
Process-expression ")"
Process-expression ")"

\in Obracket Time-term "," Time-term
Cbracket

Time-term
Time~term
Time—term
Rewrite-rules-section

Rewrite-rule
Rewrite-rule
Process—expression right
Process—-expression right
Process-expression
Process-expression right
Process—expression

Process-expression
Process-expression right

Process-expression
Process—-expression
Process—-expression
Process—-expression
Process—-expression
Process-expression
Process—expression
Process-expression
Process-expression
Process-expression
Process~expression
Process-expression
Process-expression
Process—expression
Process-expression

Process-expression

Process-expression

Process—-expression bracket

Interval—-declaration

25

26
Name "->" Name =>
Name ":" Name ->
proc Process-declaration* ->
Name "(" { Single-variable-declaratiom "," }+
")" "=t Process-expression ->
Name "=" Process-expression ->
act Action-declaration* =>
Name-nelist ":" X-name-nelist ->
Name-nelist ->
comm Communication-declaration* ->
Name "|" Name "=" Name ->
Sort-specification ->
Function-specification ->
Rewrite-specification ->
Action-specification ->
Communication-specification ->
Process~specification ->
Specification Specification ->
priorities
ngn ¢ { n“n, uln, u” u, n>>n} < u<|u u|>n < n,

6 AN SDF-SYNTAX FOR REAL-TIME uCi

Renaming-declaration
Single-variable-declaratio
Process-specification

Process—-declaration
Process-declaration

Action-specification
Action—-declaration
Action-declaration

Communication-specificatio
Communication-declaration

Specification
Specification
Specification
Specification
Specification
Specification

Specification assoc

As an example we give a ruCRL specification of a timed alternating bit protocol.

sort
func

sort
func

sort
func

sort
func

rew

act

Bool,Real,Time

T,F: -> Bool

add,subt: Time#Time ~> Time
mult: Real#Time -> Time
leq: Time#Time -> Time

D
d1,d2,d3 -> D

acknowledge
ack: -> acknowledge

bit
b1,b2: -> bit
invert: bit -> bit

invert(b1)=b2
invert(b2)=b1

rl,s4: D

s2,r2,c2: Di#tbit
83,r3,c3: Di#tbit
85,rb,chb: acknowledge
86,r6,c6: acknowledge

REFERENCES
i,j

comm s2[r2 = c2
83|r3 = c3
s5lx5 = c5
s6lr6 = c6

proc S = S(bl)
S(b:bit) = sum(d:D,integral(x in <0,infinity>,r1(d)(x).
8(d,b,mult(1.001,x)))
S$(d:D,b:bit,y:Time) = s2(d,b)(y).(integral(x in <y,mult(1.004,y)>,
r6(ack) (x).S(invert(b))) + S(d,b,mult(1.004,y)))
R = R(b1)
R(b:bit) = sum(d:D,integral(x in <0,infinity>,r3(d,b)}(x).
s5(ack) (mult(1.001,x)) .s4(d) (mult(1.0015,x)) .R(invert(b)))+
integral(x in <0,infinity>,r3(d,invert(b))(x).
sb(ack) (mult(1.001,x)).R(»)))

K = sum(d:D,sum(b:bit,integral(x in <0,infinity>,r2(d,b)(x).
(s3(d,b) (mult(1.001,x))+i(mult(1.001,x))).X)))

= jintegral(x in <0,infinity>,r5(ack)(x).
(s6(ack) (mult(1.001,x))+j(mult(1.001,x))).L)

TABP = hide({c2,c3,c5,c6},encap({s2,r2,s3,r3,s5,r5,s6,r6},8] |{RI |K|IL))

Since this specification is quite hard to read, we also give it in the style of [2].
S(b) = Zdep foe(0,00) T1(d)(2) - S(d, b,z + 1))
S(d,b,t) = s2(d,b)(t) - [og(esray T6(ack)(z)- S(1—b) + S(d,b,t+4)

R(5) = Zaen{[,c(0,00) 73(d: b)(2) - 5(ack)(z +1) - s4(d)(z + 1.5) - R(1 —b) +
Joe(0,00y73(d, 1 — B)(2) - s5(ack)(x + 1) - R(b)}

K = E(d,b)EDXB sz(O,DO) TZ(d, b)(.’ll) . (S3(d, b)((E + 1) + 2($ + 1)) N K
L = [og(0,00) "5(ack)(z) - (s6(ack)(z + 1) + jz+1))-L

TABP = T{c2,¢3,¢5,c6} © 6{32,1-2,33,1-3,35,1'5,36,1-6}(S (0) ” R(O) " K " L)

References

27

[1] J.C.M. Baeten and J.A. Bergstra. Process algebra with signals and conditions. To appear
in M. Broy, editor, Proceedings NATO Summer School, Marktoberdorf. Springer-Verlag,

1990.

28 REFERENCES

[2] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Journal of Formal Aspects
of Computing, 3:142-188, 1990.

[3] J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press, 1990.

[4] H. Ehrig and B. Mahr. Fundamentals of algebraic specifications I, volume 6 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1985.

[5] J.F. Groote and A. Ponse. The syntax and semantics of uCRL. Report CS-R9076,
Centre for Mathematics and Computer Science, 1991.

[6] J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisimula-
tion as a congruence. Extended abstract in G. Ausiello, M. Dezani-Ciancaglini, and
S. Ronchi Della Rocca, editors, Proceedings 16t** ICALP, Stresa, volume 372 of Lecture
Notes in Computer Science, pages 423-438. Springer-Verlag, 1989. Full version to appear
in Information and Computation.

- [7] J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax definition formalism
SDF - reference manual —. ACM SIGPLAN Notices, 24(11):43-75, 1989.

[8] C.A.R. Hoare, 1.J. Hayes, He Jifeng, C.C. Morgan, A.W. Roscoe, J.W. Sanders, LH.
Sorensen, J.M. Spivey, and B.A. Sufrin. Laws of programming. Commaunications of the
ACM, 30(8):672-686, August 1987.

[9] IEEE. IEEE standard for binary floating-point arithmetic. SIGPLAN-notices, 22(2):9-
25, 1987,

[10] ISO. Information processing systems — open systems interconnection — LOTOS - a
formal description technique based on the temporal ordering of observational behaviour
ISO/TC97/SC21/N DIS8807, 1987.

[11] J.W. Klop. Term rewriting systems. To appear in Handbook of Logic in Computer
Science, volume 1. Oxford University Press, 1990.

[12] S. Klusener. Completeness in real time process algebra. To appear in J. Baeten and J.F.
Groote, editors, Proceedings CONCUR '91, Amsterdam. Springer-Verlag, 1991.

[13] S. Mauw and G.J. Veltink. A process specification formalism. Fundamenta Informaticae,
XII1:85-139, 1990.

[14] G.D. Plotkin. An operational semantics for CSP. In D. Bjgrner, editor, Proceedings
IFIP TC2 Working Conference on Formal Description of Programming Concepts — II,
Garmisch, pages 199-225, Amsterdam. North-Holland, 1983.

[15] SPECS-semantics. Definition of MR and CRL Version 2.1, 1990.

