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Introduction

The three-dimensional structure of living tissue and solid materials can now be observed directly
by imaging techniques such as confocal microscopy (Wilson, 1990). Existing statistical methods for
analysing ‘spatial’ point patterns (Ripley, 1981, 1988; Diggle. 1983) are mostly 2 dimensional; although
the general theory works in d dimensions, there are problems for d > 2 with the complexity of edge
correction, increased bias and variance due to edge effects, and extra computational load.

At the same time, the increased ability to capture and store data and to navigate through the

three-dimensional material has made it possible to collect replicated samples of a spatial pattern, for
example, 3-dimensional images of several different locations in the material. Replication was not
studied in the earlier statistical theory; indeed its absence caused difficulties.

This paper is a worked example of the analysis of a three-dimensional spatial pattern with replica-
tion. Our data are three-dimensional coordinates giving the positions of osteocyte lacunae in the skull
bones of Macaque monkeys observed using a tandem-scanning reflected light microscope at University
College London (Howard et al, 1985; Baddeley et al, 1987). Osteocyte lacunae are holes in solid
bone, occupied by bone cells in life. Several sampling volumes (called ‘bricks’) were taken within each
animal skull, sufficiently far apart to assume independence, and the positions of the lacunae within
each brick were recorded. The main scientific questions concerned (a) the density of lacunae per unit
volume, and whether this density is uniform; (b) spatial pattern in the arrangement of neighbouring
lacunae; (c) variability in lacunar density and spatial pattern within and between animals.

The three-dimensional version of the standard K statistic was described in Baddeley et al (1987).
Braendgaard and Gundersen (1986) and Bjaalie and Diggle (1990) have analysed 2D projections of
3D patterns, obtained from physical sections. Recently Diggle et al (1991) and Konig et al. (1991)
have described three-dimensional versions of the F, G and K statistics. In the present paper we focus
on statistical properties of these estimators.

Replicated data from a confocal microscope were first collected by Howard et al (1985) and a ratio
regression approach was developed in Baddeley et al (1987). Konig et al (1991) found huge variations
in estimates of point density )\ between replicated 3D samples, and concluded that their data (three
replicates per animal) were insufficient to support quantitative conclusions. Diggle et al (1991) have
developed a bootstrap approach to inference for replicated spatial patterns. Here we shall extend the
simpler ratio regression approach to F' and G as well as K.

A special feature of many three-dimensional spatial data sets is a distinguished direction, the
“z-axis”, representing e.g. height or distance from the viewing device. Point patterns may often be
regarded as uniform in the other two “horizontal” directions but not in the z direction; or they may
have a different error structure in the z direction. In our data, the z coordinate represents depth inside
the skull bone, and has a definite reference origin (the bone surface) as well as direction; the x and y
coordinates are not so strongly distinguished. This makes the analysis of such data halfway between
genuine 3D points and marked 2D points. The standard assumption of stationarity and isotropy may
not be valid here.

The data are described in the next section. Section 2 gives some theoretical background and
numerical methods. Sections 3 and 4 develop an approach to the replication and nested sampling
design. Section 5 records our analysis of the data.
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Figure 1: Stereo-pair of the data in a sampling brick 82 x 100 microns wide and 60 microns deep,
showing each point as a 3 micron cube.



1 Data

The experimental technique and sampling protocol are described by Howard et al (1985) and Baddeley
et al (1987). We examined three intact adult skulls and one calvarium (incomplete skull), all attributed
to the Macaque monkey Macaca fascicularis, from the collection of University College London. The
focal plane of the confocal microscope was initially positioned 10um below the cranial surface, then
racked down through the bone until no further lacunae could be visualised. The depth z of the
centre of each lacuna was determined by adjusting the fine focus racking control to yield maximum
brightness. The (z,y, z) coordinates of the centre of each lacuna were recorded only if (z,y) lay within
a graduated rectangular frame fixed to the screen. The 3-dimensional sampling volume was therefore
a rectangular box, of dimensions 82 x 100 x d microns, called a “brick”. The depth d varied from brick
to brick.

Ten bricks per animal were examined, arranged approximately in a rectangular grid pattern, with
at least one brick width separating each pair of bricks. The initial brick position was determined
randomly by applying a randomly-generated coordinate shift to the moving stage. Subsequent bricks
were reached using the coarse controls of the microscope stage, in accordance with the grid pattern.

Figure 1 shows the pattern from brick 10 of animal 4 displayed as a binocular stereo view, which
each point has been displayed as a cube of side 3 microns.

2 Theory

General theory of point processes can be consulted in Daley and Vere-Jones (1989); for statistical
methods see Ripley (1981, 1988), Diggle (1983), Stoyan et al (1987) and Cox and Isham (1980).
In the standard nonparametric approach (Ripley, 1981), simple summary statistics of the pattern are
interpreted as unbiased estimates of the corresponding quantities for the point process, under minimal
assumptions of stationarity. Popular summary statistics for a two-dimensional point pattern are the
functions K, G and F', which are edge-corrected versions of the empirical distributions of (respectively)
the distances between all pairs of points in the pattern, the distance from each point in the pattern to
its nearest neighbour in the pattern, and the distance from a randomly chosen point in the sampling
window to the nearest point of the pattern. We shall adapt each of these functions to 3 dimensions
(see also Diggle et al., 1991 and Konig et al, 1991).

Estimation is plagued by edge effects resulting from the inability to search outside the sampling
window; Miles (1974), Ripley (1988, chap. 3) and Stoyan et al. (1987, §4.6) give illuminating general
discussions. Edge effects are worse in higher dimensions: for example, in a three-dimensional unit cube,
the points that are closer than 0.1 units away from the boundary occupy about half the volume. If an
unbiased estimate of a parameter is required (e.g. for comparative purposes) there is no alternative
but to seek bias corrections, which sometimes involve throwing away data. Corrections for edge effects
in K,G and F for two dimensions were given by Ripley (1981, 1988) and Hanisch (1984); some of
these corrections have been adapted to 3D by Baddeley et al (1987), Diggle et al (1991) and Konig et
al (1991). In the present approach, we are further able to exploit the replication to develop efficient
unbiased estimators and associated variance estimates. :

Edge effects can largely be ignored in hypothesis testing. In the standard Monte Carlo test of a
simple null hypothesis, one uses an uncorrected (hence biased) version of a summary statistic, simulates
99 realizations of the null hypothesis and ranks the 100 results according to some one-dimensional
criterion. See Ripley (1981), Diggle & Gratton (1984), Hall (1988), Ripley (1988), Diggle et al (1991)
and Konig et al (1991).



2.1 Assumptions

The point pattern observed inside a sampling region B is taken to be a realization of a spatial point
process N (-). For estimation purposes one may want to assume the process is ‘stationary’ (invariant
under translations of IR®) and ‘isotropic’ (invariant under rotations) as regards moments of order
up to k (“k-th order stationarity”) or all probability distributions associated with the process (“a.s.
stationarity”). These are the minimum assumptions in order that the position and orientation of
sampling regions need not be recorded, and that replicated data may be pooled. Usually we will only
assume ‘horizontal stationarity’, i.e. invariance under rotations and translations of the (z,y) plane,
and will test for full invariance.

The usual null hypothesis (and benchmark for estimation purposes) is that N (-) is a uniform
Poisson process with unspecified rate A > 0 (e.g. Ripley, 1981). The Poisson process serves as the
model of complete spatial randomness; departures from Poisson (within the class of a.s. stationary
and isotropic processes) are interpreted as indications of ‘pattern’. These are traditionally lumped
into (a) ‘clustered’ and (b) ‘repulsive’ or ‘ordered’ alternatives (Diggle, 1983).

For departures from stationarity and isotropy, the natural asymmetry with respect to z suggests
a class of alternative hypotheses such as the nonuniform Poisson process with rate A\(z) depending on
z, and Gibbs processes with anisotropic interaction potentials (Stoyan et al, 1987).

2.2 Intensity

First consider the average density of random points per unit volume. Let N (B) be the number of
random points falling in a region B ¢ IR3. If N (.) is first order stationary then

IEN (B) = A vol (B)

for a constant A independent of B called the intensity. Thus an unbiased estimator of A is simply the
observed density
N (B)

A:m (1)

for any window B. If N (-) is an arbitrary process then
A(B) =IEN (B)

defines its intensity measure A. Under mild conditions A can be represented as the integral of a
rate function A(z,y,z). A particularly interesting alternative to stationarity A(z,y,z) = A > 0 is
“horizontal stationarity” A(z,y,z) = A;1(z) > 0. To test the null hypothesis of a stationary Poisson
process of unspecified intensity A against the alternative of a horizontally stationary Poisson process
with unspecified intensity A1(z), we note that the z coordinates of the points in a rectangular box
or prism B form a one-dimensional inhomogeneous Poisson process. Conditional on the number of
points, the z coordinates are i.i.d. with probability density proportional to A;(-), and we can apply
standard nonparametric tests for the uniform distribution.

2.3 Empty space function F

Now consider summary statistics for the spatial pattern assuming stationarity and isotropy. The
‘empty-space function’ F of a point process (a.s. stationary and isotropic) is the probability distribu-
tion of the distance from an arbitrary point (say 0) to the nearest random point:

F(r) = IPr {N (8(0,)) > 0}



where S(z,7) is the sphere of radius r around point  in IR? (Ripley, 1981, 1988; Diggle,1983). Note
p(r) = 1 — F(r) equals the expected fraction of volume in IR? occupied by points = which are at least
r units distant from the nearest random point of the process N (). For a uniform Poisson process of
intensity A, :
F(r) =1 —exp{—*/3\nr3}. (2)

Values of F(r) greater than the Poisson value suggest there is repulsion or ordering in the point
pattern; lower values suggest attraction or clustering.

Typically F is estimated by taking a fine grid in the sampling region B and computing the distance
from each grid point to the nearest observed point of the process. However edge effects arise because
we are unable to search for points outside B. The only unbiased estimator of F' currently in use is
the minus-sampling estimator

vol (B(_T) N (U] S(Xj,r)))

F_
") vol (B(_r))
_ vol{z € B(_,) : ming ||z — Xi|| <7} 3)
- vol (B(-r))
where X}, : k=1,...,N (B) are the observed points, and
B(_;y={z € B:S(z,r) C B} (4)

is the set of points of B more than r units distant from the boundary of B. That is, in estimating
F(r) one ignores points = that are closer than r units from the boundary of B; the points z ‘counted’
in the numerator of (3) are those for which it is known that the closest point is within a distance 7.
This estimator is clearly unbiased pointwise for F'. Minus sampling was first discussed by Miles (1974)
for planar problems.

The two-dimensional analogue of (3) is typically computed by evaluating for each point z in a fine
rectangular grid, the distance to the nearest point:

d(z) = min| |z — X4

and counting the grid points z in B(_,) for which d(z) < 7. Diggle and Matérn (1981) discuss optimal
choice of the grid, and Lotwick (1981) describes an algorithm (based on the Dirichlet tessellation)
for computing the areas exactly. However, a good approximation to d(z) can be computed very
rapidly for all z on a fine rectangular grid using the distance transform algorithm developed in image
processing (Rosenfeld and Pfalz, 1968). This also works in higher dimensions (Borgefors, 1984, 1986).
For accurate comparisons the expression (4/3)7r? in (2) should then be replaced by the digital volume
of the sphere of radius r in this discrete approximation.

Minus sampling throws away part of the data; Diggle (1983) and others prefer to ignore edge effects
and use the empirical distribution Fg of the observed distances d(z). Clearly Fg is biased for F, but
can be used in a Monte Carlo significance test of any simple hypothesis. This approach is appealing
because it makes ‘full use’ of the data, but with replicated data we cannot pool Fg from different
bricks B since the bias and variance of F(r) depend on the geometry of B. For the Poisson process

~ . 1 __-avol(BnS(z,r))
IEFB(T)_—VOI(B)/B{I e }dm, (5)

while if we condition on the number of points n then 1 — exp(—u) should be replaced by 1 — (1 —u)™.
An analytic expression for the integrand is given in the Appendix.



2.4 Estimation of G

The function G is the distribution of the distance from a typical point of the process to the nearest
other point: loosely .
G(r) =1IPr {N (S(z,r)) > 1| point at z}

where z is arbitrary. This can be defined for an a.s. stationary process by

C0) = 5aith Svor By 2 HN(S(Xem) > 1) (6)

where B is arbitrary. For a Poisson process G(r) = 1 — exp{—(4/3)Anrr3}; again, this is taken as a
benchmark for interpretation of empirical G-functions. Edge effects arise because we can only observe
nearest neighbour distances within B,

= Xr — X4||, Xk € B.
k= XeBZ;ék” k ell, Xi €

Ripley (1981, see Ripley, 1988, chap. 3) introduced the minus sampling estimator

~ Zj 1{s; < 7‘}1{33]' € B(_r)}.
G == e By

the denominator is the number of all points lying more than r units from the boundary of B, and the
numerator is the number of these that have s; < r.

Hanisch (1984; see Stoyan et al, 1987, p. 128, Ripley, 1988, chap. 3) observed that in general G1
will not be an increasing function, and may have values greater than 1. Hanisch developed two further
edge-corrected estimators of G, of which we shall use

. Y UYs; < e, € By,
Gs(r) = >,z € B,y

This consists in restricting both numerator and denominator of (7) to points X}, for which s, is known
to be the ‘true’ nearest neighbour distance, i.e. for which the nearest other point is closer than the
boundary. Clearly G3 is a distribution function; Hanisch (1984) showed it is pointwise consistent in
the limit as the sampling region expands to cover IR3.

Edge effects can be severe for G, so it becomes appealing to employ the uncorrected empirical
distribution G B of the _observed si. This can be treated in the same way as FB For the Poisson
process IEG(r) = IEF5(r) as given by (5); but if we condition on the number n of points, then
exp(—z) in (5) is replaced by (1 — z)*~ .

(7)

(8)

2.5 Estimation of K

Finally K (r) is the mean number of other points of the process that lie within a radius r of a typical
point of the process, divided by the intensity A:
IE {N (S(z,7)) — 1| point at z}

3 .

K(r)=

This can be defined whenever the process is merely second order stationary, as

AK(r) = Avol lE > HIIXk - Xl <7} 9)

Xr€B X # X



(where X, is not restricted to lie inside B). If the process is also second order isotropic, then K ()
completely determines the second order moments of the process. For a Poisson process

4
K(r)= §7r7"3

and again this serves as a benchmark for the interpretation of empirical K-functions.

Ripley (1988, pp. 31-35; see Stoyan et al, 1987, pp. 122-126) describes several edge effect correc-
tions for estimating K in two dimensions. Here we consider 3 dimensional versions of the ‘border’,
‘translation’ and ‘isctropic’ corrections. The ‘border’ correction cstimate is

~ _ vol (B(_r))

Ky(r) = S > Ho< |IXk - Xl < 1) (10)

2
N (B(—r)) Xw€B(—r) X¢€B

this is a straight application of minus sampling to (9), and is valid for any second-order stationary
process. The sum is an unbiased consistent estimator of A\?vol (B(_T)) K (r) so (10) is consistent and
approximately unbiased.

The (Miles-Lantuéjoul) ‘translation corrected’ estimate is

Kt(r Vol(B2 Z Z {]| Xk — Xo|| < r} (11)

N(B)? s xZx, 1BXk—X)
where yp is the ‘set covariance’
vp(v) =vol{zx € B:z +v € B}.

Again this is valid for any second-order stationary process. If additionally the process is known to be
isotropic, then the ‘isotropic correction’ estimate

R _ vol(B Z Z H{I Xk = Xell < 7} (12)

XkEBXg;éX wp(Xe, Xo)sp(|| Xk — Xel])

is valid, where wp(Xk, X;) is an edge correction equal to the proportion of the surface area of the
sphere with centre at X} and radius || X} — X|| which lies within the sampling window B:
area(9S(z, ||z — y||) N B)

area(95(z, ||z — yll))

wp(z,y) =

where 05(z,r) is the surface of the sphere S(z,7). Meanwhile sp(r) is a global geometry correction

_vo{z e B:l|lz—y||=r, someye B} vol{z € B:R(z,r)N B # 0}
s5(r) = vol (B) a vol(B);

it was first noted by Hanisch (1984) that the term sp(r) is needed for larger r. We give analytic
expressions for wg, sp in the Appendix for the case of a rectangular box.
The sum in (12) is a consistent unbiased estimator of

Y (r) = A2vol (B) K(r)

(in the limit as the sampling region expands to cover IR?®); hence (12) is consistent and approximately
unbiased.

In two dimensions, Ripley (1981) and Diggle (1983, p. 71) generally recommend that estimates of
K (r) should only be employed for 7 less than half the minimum side length of the sampling rectangle.
However, we will be able to go to larger values of r by pooling information from replicates.



2.6 Comments

The functions F, G and K should not be read as characterisations of the point process. For example,
two quite different processes may have the same K function (Baddeley & Silverman, 1984). This
insensitivity is a feature of most current techniques in spatial statistics. Analysis of a point pattern
should normally include several measures of interaction.

Alternatives to F, G, K may be proposed if there is a suggestion of anisotropy or directional
asymmetry in the pattern. The sphere S(z,7) used in the definitions of F,G, K may be replaced
by a cylinder or ellipsoid, so that the statistic becomes a function of 2 or 9 parameters respectively.
This is equivalent to replacing ordinary Euclidean distance ||a — b|| by some other metric. The edge
corrections discussed here continue to hold, except for the isotropic correction for K. The simplest
way to induce an ‘isotropic’ correction for the ellipsoidal K-function is to subject the point pattern
data to a linear transformation which maps the ellipse to a sphere, then apply the isotropic estimator.
Note that a linear transformation maps a Poisson process to a Poisson process, but e.g. a hard core
process (Stoyan et al, 1987) is mapped to a process with genuinely isotropic pattern.



3 Ratio estimation

It does not seem to have been pointed out in the spatial statistics literature that the usual statistics
K,G,F are ratio estimators. Equations (1), (3), (7), (8), (10), (11), (12) define statistics T' of the

form T = U/V where

IEU

EV

is the parameter of interest. In all but (1) and (3) the denominator V is not fixed and T is typically

biased for ¢, though approximately unbiased and consistent (asymptotically in the size of the sampling

region). When replicated bivariate data (Uj,V;) are available, it is then appropriate to use a ratio

regression model as we discuss below.

t=

3.1 Ratio regression
Consider the model (Cochran, 1977; Cruz Orive, 1980)

Uj:th-l—ej,j:L...,m (13)
where the errors e; are conditionally independent given the V;, with
Var (e;|V) o< V;* (14)

for some a > 0. The naive estimator of ¢ is the sample mean of individual ratios T} = U;/Vj,
I

t= —
n 2,

but this is biased and not consistent as the number of replications increases. If the,V; were fixed design
points, the best linear unbiased estimator of the ratio parameter ¢ would be

=S

l-a
Zj V] Uj
22—«
25V

i.e. the weighted average of the T; with weights inversely proportional to variance. In case o = 2 this
is the sample average of the T}, while if o = 1 it is a ratio of averages

> U;
>V

The same approach can be used when the V; are random variables (so that t is unbiased but is BLUE
only conditionally upon the Vj’s).

The bias and variance of (15) are then (to first order using the delta method, see Cochran, 1977,
pp. 161, 154)

t=

t=

(15)

E{f-t} ~ —{Cu—Cu)} (16)
Var (%) ~ g{cuu + Cyo — 2Cuv} (17)

where Cyy, Cuv, Cyo are the entries in the covariance matrix of (ﬁ, EVV) Note that the bias and
variance both decrease as m~! whereas the sample mean of the T}’s has constant nonzero bias.
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Substituting the sample values ?, Cuus Cuy, Cyy in (17) yields an empirical estimate of the variance
of (15). The goodness of fit to the ratio regression model (13-14) can be adjudged from a scatter plot,
residual plot or from a formal significance test assuming the e;’s are independent normal errors.

Improved estimators of ¢ are available when IEV is known (e.g. the Hartley-Ross estimator,
Cochran, 1977, p. 174) or in sufficiently large samples using the jackknife (Durbin, 1959) but we
doubt their applicability to the present data.

3.2 Application to F,G,K

We will now argue that the model (13)—(14) may be applied to the estimation of A, K(r), G(r) and
F(r), with & = 1. This will imply that e.g. the best estimate of F(r) is the ratio of total numerator
to total denominator in (3),

Brolr) = S FO(r)vol (B; )
> iy vol (Bj(-—r))

(18)

where F9)(r) is the estimate from data in B;; and an estimate of the variance of this estimator may
be obtained from (17).

The estimator (1) of A is of the form A = U/V where U = N (B) = number of random points
in B, V = vol(B). In a Poisson point process Var (N (B)) = IEN (B) = Avol(B) so (13)—(14)
would apply with @ = 1. For more general processes, if one can assume that the effective range of
spatial dependence is small compared to the size of the sampling region, then central limit theorems
are available (e.g. Baddeley, 1980; Jolivet, 1980) which yield (13)-(14).

For the estimation of F(r) (for fixed r) via (3), central limit theorems for Poisson superpositions
of random sets (see e.g. Hall, 1989) suggest that the variance of the numerator of (3) may be taken
as approximately proportional to the denominator.

For K(r), take U to be the double sum in each of (10), (11), (12). Then Ripley (1981, 1988) and
Hanisch (see Stoyan et al, 1987) have shown that IEU/IEV = K(r) for any second order stationary
and isotropic process. Ripley (1979) pointed out that U; is a U-statistic

Ui =Y (X, Xje)
k#E

where the summation is over all ordered pairs of distinct points in pattern P;, and function u; depends
on the geometry of B;. Symmetrise u; if necessary. For a uniform Poisson process, since V; is a 1-1
function of N = N (B;),

Var (U;]V;) = Var (U;|N(B;))
ON(N — 1)Var (u;(X1, X2)) + 2N(N — 1)(N — 2)Var (IE {u; (X1, X2)|X1})

where X, X, are independent uniformly distributed points in B;. If edge effects could be ignored and
if the B; were all identical, the conditional expectation in the second term would be constant and (14)
would hold with @ = 1. Ripley (1979) showed that in two dimensions the first term indeed dominates,
at least for r no greater than one quarter of the smallest edge length of the sampling rectangle. In
our case one can assume (14) holds when r is “sufficiently small” and when the dependence of u; on
Bj can be neglected.

Finally for G, the numerator U and denominator V' of (7) clearly satisfy IEU/IEV = G(r), and
Hanisch (1984) showed that the same holds for (8). An argument similar to that for K above justifies
(14), again if we ignore edge effects.
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4 Analysis of variance

The full experiment analysed here is a one-way, nested design yielding point patterns P;; from bricks
j=1,...,m in animals i = 1,...,n. In place of (13) we now have

Uij = t,-Vij + €ij5 (19)

where the t; are independent random effects with mean ¢ and variance 72, and the e;; are conditionally
independent given ¢;, with
Var (e;|Vij, ti) = w; Vij. (20)

Here t is the parameter to be estimated, 72 is the between-animal variance (of the random effects ¢;),
and w; are nuisance parameters controlling the within-animal variability. The simpler model where
w; = w did not seem justified for our data.

Our approach is to first estimate ¢; and o? = Var (%;|t;) by the ratio regression method above,
giving values %;,52. Then we compute a sequence of estimates ¢t(*), 'r('-’k) of t,72 for k =0,1,2,... by

setting (¥, 'r(zo) to be the sample mean and variance of the t:, and iterating

x4/ () +5?)

(k1) (21)
21/ (T(zk) + 83)
-~ ~ —~ —1
2 = [ - 10~ 27] (7, +57) -
T(k+1) Z 1/ 72 N 52
(k) i

+

where (z)4 = max{z,0}. Here (21) takes the BLUE of ¢ given observatlons t; with known variances;
and (22) forms an unbiased estimate of 72 given t; when t and o? are known. Together (21), (22)
are respectively the E-step and M-step of the EM-algorithm for t, 72 in the model where the o? are
known and #; are normal, i.e. regarding s; = t; — t as missing observations.

This method will be adopted when there is adequate data from each animal (specifically, when
one expects 57 to be close to o). When data is scarce we will resort to poohug all data (X;j,Y3;)
and performmg a simple ratio regression; this is equivalent to fixing ¢; = t, 2 =0,w; = w.

Steps (21-22) are iterated until convergence to produce estimates t and 72. The variance of ¢ can
be estimated by the sample version of

Var (t) ~ 1/‘2@- (23)
i=1

where b; = 1/(72+02). The contributions to (23) associated with between-animal and within-animal,
between-brick variation can be estimated respectively by

b2
Ubetween 7?2 (Xz::b )2 s (24)
b2o2
Uwithin | = . (25)

(X b:)®
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5 Analysis of our data

5.1 Intensity

Figure 2 is a scatter plot of point count n;; against brick depth d;; (proportional to volume) labelled
by animal index 7. Since brick depth was determined by our ability to see through the material, it
might have some association with the spatial pattern, and would usually not be ancillary. However
this association was thought neither relevant nor severe, so we condition on the d;; and regard Pi;j
for j =1,...,10 as independent realizations of the same point process N(*)(-) in IR®, observed inside
predetermined windows B;;. The four animals furnish distinct point processes N(?)(.).

The ratio regression model (13-14) with @ = 1 looks plausible across bricks within each animal,
but the data for animal 1 appear to have a different slope from the rest.

Table 5.1 shows the individual estimates n;;/v;; of cell density from each brick, the pooled ratio

estimate ); for each animal i using (15), and the estimated standard deviation &; of \; using (17).

Table 1: Estimates of A (number per 106 cubic microns)
Animal A estimates Ai 0i
1 35.7 22,6 247 247 203 165 208 285 222 19.8 | 226 | 14
2 30.2 412 370 384 37.0 272 494 370 304 350|356 1.9
3 61.7 471 329 395 329 535 346 329 441 23.6 | 37.8] 3.9
4 37.0 323 292 282 382 358 401 329 334 41.1 ]| 34.8] 1.3

Applying (21-22) to the tabulated data gives X = 32.3 with estimated variance 9.1 (standard error
3.0). The within-animal and between-animal variance contributions were 1.1 and 8.0 respectively. The
estimate of population between-animal variance 72 was 31.4 (standard deviation 5.6) and a notional
within-animal variance per sampling brick is 10 x 1.1 = 11 = 3.32.

The data for animal 1 appeared to be self-consistent but in conflict with the (mutually consistent)
data for animals 2 to 4. Given the small number of animals it was difficult to decide whether to regard
animal 1 as an outlier. When we repeated the analysis without animal 1, the EM procedure led to a
zero estimate for 72, and weighted mean A = 35.1 with estimated variance 1.5 (standard error 1.2).

In the light of this, the bone material was re-examined. Animal 1 was only represented by a
calvarium (skull cap); from animals 2, 3 and 4 we had complete, intact skulls. Anatomical differences
were found on closer examination. The three intact skulls recurved strongly behind the parietal-
occipital suture, whereas in animal 1 the skull continued backwards. It was concluded that animal 1
came from a different species, though anatomically not very different. In the subsequent analysis we
handle animal 1 separately and pool only across animals 2, 3 and 4.

5.2 Uniformity in z coordinate

The empirical distribution functions of the depths of the points in each brick were compared with the
uniform distribution using a standard two-sided Kolmogorov-Smirnov test. Of the 40 bricks in the
four animals the null hypothesis was rejected at the 5% level only in the case of two bricks belonging
to animals 2 and 4. Inspection of the plots showed no strong suggestion of nonuniformity.

5.3 K function

Initially the K function was estimated separately from each brick. Figure 3 shows a comparison of K
estimates for one brick using the translation and isotropic corrections. There was generally very close
agreement between the two methods on this data set.
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Figure 3: Comparison of estimates of K using Ripley-Hanisch isotropic correction (solid lines) and
Miles-Lantuéjoul translation correction (dotted lines) for data from brick 1 of animal 4. Theoretical
Poisson K function (broken lines) plotted for comparison.
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Figure 4 shows for each animal the superimposed K estimates from all bricks. The theoretical K
function for the Poisson process is plotted for comparison. There is a clear dip in the K function over
the range 15 to 35 microns for all cases.

Ripley (1981) recommends plotting v/ K (r) against r, because in two dimensions this transforma-
tion stabilises variance as well as linearising the plot. Diggle (1983) and others plot the ‘residuals’
K(r) — wr2. In three dimensions (K)!/3 is linear but (contrary to Kénig et al, 1991, p. 416) this
does not stabilise variance. For three dimensional patterns we shall usually plot K (r) against the
theoretical Poisson curve (4/3)7r3 in Q-Q style, Figure 5. -

Figure 6 shows diagnostic scatter plots of the numerator and denominator of (11) for several choices
of distance r, from all bricks and animals, with numerals identifying animals. The regression model
looks broadly acceptable, although for small 7 many observations have U = 0, which might call for
revision of the model. Note that, despite the differences previously encountered between animal 1 and
the others, there seems to be general agreement in the K functions.

Figure 7 shows pooled K function estimates for each animal, using the ratio regression method
to combine replicated bricks. The associated confidence bands are pointwise 95% confidence intervals
computed from the estimated variances under the ratio regression method and the two-tailed 95%
points of the ¢ distribution with 9 degrees of freedom. These figures strengthen the interpretation of
a strong dip in the range 15-35 microns. There is also good agreement between the K functions for
the different animals.

Finally Figure 8 shows an overall K estimate formed by pooling all bricks in animals 2-4 using
the E-M approach of section 4, with pointwise confidence intervals based on the ¢y7 distribution.

Our conclusion is that K shows an unambiguous dip (suggesting repulsion or ordered pattern) in
the range 15-35 microns and a ‘recovery’ beyond 35 microns. This combination suggests an ordered
pattern; however, it is not clear how much of the dip can be attributed solely to the absence of overlap
between osteocyte lacunae (lacunae were roughly ellipsoidal and typically 10 x 5 x 5 microns across,
mostly aligned with the main axis in the horizontal plane).

5.4 G function

Estimators G1, @3 were computed for each brick. Figure 9 shows a comparison of these for a chosen
brick, showing the typical non-monotonicity of G;.

However in most cases the individual estimates were absurd (see Figure 10), since both numerator
and denominator consisted of only a few points. Recall that a point contributes to the denominator of
G3 only when it is closer to its nearest neighbour than to the boundary of the box. In three dimensions
this condition becomes very stringent. In our data 23 of the 40 bricks had no point X}, satisfying the
condition. No brick had more than three such points. For the same reason the diagnostic scatterplot
for ratio regression was nearly meaningless. The behaviour of G is slightly better (Figure 11).

Figures 12 and 13 show pooled @1 estimates with pointwise confidence intervals, computed by
ratio regression. There is moderate evidence supporting an ordered pattern (short nearest neighbour
distances are relatively few).

The alternative un-corrected G estimates G g were computed and compared with the corresponding
Poisson G'g functions for the same bricks, computed numerically by (5). A Monte Carlo test of the
Poisson null hypothesis was conducted on each brick independently. Nineteen simulations of a binomial
process (i.e. fixed number of independent uniform points) were generated in each brick and ranked by
mean nearest neighbour distance. The number of rejections at the 5% level (one-sided in the direction
of larger distances) was 7, 8, 9 and 10 bricks for animals 1 to 4 respectively.
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animals.
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5.5 F function

F was estimated by minus sampling (3). We used the discrete distance transform algorithm of Borge-
fors (1984, 1986) with step distances of 48, 58 and 71, which form a good rational approximation to
the proportions 1,v/2,v/3. The grid unit or ‘voxel’ size was 1 micron. The distance 7(z) from each
z to the boundary of B was also computed and the estimate of F' was obtained as the cumulative
distribution of the distance transform values d(z) for those voxels satisfying d(z) < r(x).

To compute the theoretical Poisson F' we determined the volume of the sphere of radius r in the
discrete distance function, by running the Borgefors algorithm on a larger grid (large enough to include
the entire sphere of radius R equal to the maximum diameter of any brick) and taking a cumulative
histogram of the result restricted to the range 0 to K.

Figure 14 shows superimposed F estimates for all bricks in each animal; Figure 15 shows the
pooled estimates for each animal, and Figure 16 the population estimate pooled from animals 2, 3 and
4. The Poisson curve lies everywhere outside or on the boundary of the pointwise confidence intervals
for these estimates. The plots thus identify a relative shortage of larger empty spaces, again indicative
of an ordered pattern.
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6 Conclusions

In this paper we adapted standard estimators for two-dimensional F, G, K to three dimensions. The
techniques were successful for K and F, but estimation of G is severely hindered by edge effects and
should be studied further. It seems to us that the use of kernel smoothing techniques for G (e.g.
Konig et al, 1991) only serves to mask this problem.

The new aspect of replication has been attacked by recognising that the standard estimators are
actually ratios of unbiased consistent estimators. Variance arguments suggest the best pooled estimate
is the ratio of mean numerator to mean denominator; this seems to be a workable approximation,
but for edge effects (for large r) and discrete data effects (for small r). The ratio regression idea
also provides standard errors for the pooled estimates. This is new in spatial statistics, since most
previous applications have produced confidence bands around the Poisson theoretical curve rather
than confidence intervals around the empirical curve.

A rudimentary analysis of variance has also been developed. Its validity is harder to assess from the
data studied here, although we did manage to detect an unexpected outlier in the animal population.

Monte Carlo tests of the Poisson null hypothesis were generally rejected, more emphatically when
based on F than on G. This accords with the paucity of data in the numerator and denominator of
(7),(8). In two dimensions Diggle (1983) found to the contrary that nearest neighbour distances are
more powerful than point to nearest event distances against regular alternatives.

There was widespread agreement between animals 2-4 in the K and F functions. All three statistics
F,G, K suggested an ordered or regular spatial pattern at a scale of 15-35 microns.

The biological interpretation is uncertain, because this regularity is partly attributable to the
physical size of the lacunae (say 5-10 microns across). A similar situation was encountered with
the two-dimensional biological cell data discussed by Ripley (1977) and Diggle (1983, p.2). For a
biologically conclusive analysis one would need to collect three-dimensional images of entire sampling
volumes, and fit a random set model.

Note that it is not always clear how to interpret the population mean of a spatial statistic. The
population mean of K (r), F(r), G(r) is well-defined, but since the values of F, G for a Poisson process
depend on A, there is no natural benchmark for the population means of F(r) and G(r) unless X is
constant across the population. On the other hand, interpretation of the population mean K(r) is
straightforward.

The next step in analysis of the present data could be to model the process by an inhibitive or
regular model such as a Markov point process in the standard way (e.g. Ripley, 1988).
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Appendix. Sphere volume and surface area

The purpose of this Appendix is to derive expressions for the volume and surface area of the intersection
between a three-dimensional rectangular box

B={xeR*:0<z;<b;, i=1,2,3}
with sides b; > 0, and a sphere
Sx,r)={y e R*:|ly —x[| < r}

with centre x € B and radius » > 0. The results are (26), (27), (32) and (33) for volume, and
(34), (36) for area.
Thus the aim is to compute

V(x,r) = L3BnS(x,7))
Ax,r) = H*(BNaS(x,r))

where £3 is Lebesgue volume measure and H? is 2-dimensional Hausdorff (surface area) measure in
R3. Representing B as an intersection of halfspaces

B = H1(0) N Hy(b1)¢ N Hz(0) N Hy(b2)° N Hs(0) N Ha(bs)®

where H;(t) = {z € R®: z; > t}, and applying the inclusion/exclusion formula, we get

3
4
§7r7‘3 - V(x7r) = Z[Vl(l'l’ )+Vl(b TiyT )]

—zz [V2 zi,zj,7) + Va(xi, by — x4,7)

+V5 (bl zi, zj,r) + Va(by — x4, b5 — zj,7)]

+V3(.T1,$2,$3,T) + V3($1,(L'2,b3 - 1‘3,’1")

+Va(z1,b2 — 2, x3,7) + Va(x1,b2 — 22,b3 — 23,7)

+V3(by — z1,22,x3,7) + V3(by — z1,22,b3 — 23,7)

+V3(by — x1,b2 — T2, 23,7) + V3 (by — 21,bo — T2,b3 — x3,7) (26)

where Vi, Vs, V3 represent the volumes delimited by 1, 2 or 3 halfspaces:

Vi(ty,r) = L3(S(0,7)N Hi(t))
‘/z(tl,tg,’l‘) = £3(S(O,r)ﬂH1(t1)ﬂH2(t2))
Va(ty,ta,t3,m) = L3(S(0,7) N Hi(t1) N Ha(t2) N Hs(ts))

)
for ¢; > 0. If we define U(a, b, c) = V3(a, b, ¢, 1) then by symmetry and scaling properties of volume,
Vi(ty,r) = r*Wa(ta/r,1) = 4r°U(ta/r,0,0)

Va(t1,t2,T) r3Vy(ty/r,ta)r,1) = 2r3U (1 /7, t2/7,0)
Vs(ti,ta,t3,7) = r3U(t1/r,t2/r,t3/T) (27)

It suffices to find an expression for U(a, b, c) when a,b,c > 0 and a® + b2 + ¢*> < 1. Now
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(1=a® 6?12 (1-22—a®)/2  (1-2%—y
U(a,b,c) = / / /
c b c

2y1/2

dxdydz

(1..02_172)1/2 (1,_22__(12)1/2
= / /b {(1 =22 —y®)Y2 — c}dydz
c

Using
1 1 T
a2 o212y 1 o2 oo\1/2 ) Lo 2y .1
/(1 a® — %) %dzx 2ac(l a® —z°) + 2(1 a®) sin Ao
this becomes
1 1 1
Ula,b,c) = §ab(1 —a? - )2 4 Za.c(l —a? - A2 4 Zbc(l — b2 - )2
1 n (T .4 b .1 c
_Za(l——a )<§—sm W—SID m
1 o [T a .1 C
_Zb(l_b ) (5 — sin 7(1_1)2)1/2 — sin —(1—b2)1/2)
+§(1 —a? -2 T,
T T
ERLINCTS- RS-0 V- BRI
12( a® —b*)** + 3¢
1 (1—a2—b?)1/2 o a
—5/ (1—22)8111 1(1—:—;5)—1/—2dz
1 (1—a2—b2)1/2 o b
—5/ (1 — 22) Sin 1 mdz

Here sin™* maps (0,1) to (0,7/2). The remaining terms are integrated by parts with the help of

the following identities:

t
/ (1— A% —2%)"124y
0
t
/ (1—22)711 - A% - 2?)" Y24
0

t
/ 21— A% — %)~ V24g
0

t
/ (1—2%)71(1 - A% — 2%)V2%g
0

.1 t
sin” (28)
At
-1 -1

A7 tan ———(I—A2—t2)1/2 (29)

1 2 =1 t

5(1 —_ A )sm m

- %t(l — A% _2)1/2 (30)
t

2\—1/2 -1
(1_A ) / tan (1_A2_t2)1/2
— A(1 — A%)"V2tan™? At (31)

(1- Az —¢2)1/2

holding for 0 < A < 1,0 < t < (1 — A%)1/2, The last three results were suggested by applying the
complex identity log(a +ib) = log(a2 +b2)2 +i tan~!(b/a) to Gradshteyn & Ryzhik’s (1980) formulae
§2.584 (69), §2.584 (8) and §2.583 (33). They can be checked directly.

Collecting terms and applying trigonometric identities between sin™! and tan—! we finally have
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U(a,b,c) = % {2-3(a+b+c)+ (a®+b*+ %)}
+W(a,b) + W(b,c) + W(a,c) — abc (32)

where

S
(1 — 2 - y2)1/2

1 1, 1 T
+(§y - —6_y )ta‘n (1 — y2 — $2)1/2

1 1
W(z,y) = (Em—é—x?’)tan"l

_ Ty
_Ztant—— 2
3 -2 —g2)12

1 a1 /e
+§wy(1 —z? - yz)l/z (33)

. As a check we can verify the boundary conditions

~

The values of tan~! computed here lie in [0, 7/2

U(0,0,0) =

e

U(a,0,0) = 152-{2 —3a+ d’}

Thus formulae (26), (27), (32) and (33) specify an algorithm for computing V'(x, 7).
Turning to the surface area problem, we have a decomposition analogous to (26) with A(x,T)
replacing V(x,7), A1, A2, A3 replacing V1, V2, V3 and 4772 replacing %m“:‘. Analogous to (27) we have

Al(tl,T‘) = 47‘20(t1/7‘,0,0)
A2(tly t?a T) = 2T2C(t1 /Tv t2/7‘, O)
As(ty, ta, ts,r) = 12C(t1/r,t2/r,t3/T) (34)

To compute C(a, b, ¢) for a,b,c > 0, a2 +b%+¢? < 1, parametrise the unit sphere S(0, 1) by angular
coordinates # and ¢ defined by

u:[0,2m) x (—g, g) — 5(0,1)

u(8, ¢) = (cos 0 cos ¢, sin @ cos ¢, sin @),
i.e. 0 represents “longitude” and ¢ is “latitude”. The representation of area measure is now
uydS = cos ¢ df A do.
Let T = S(0,1) N Hy(a) N Hy(b) N Hs(c) where a,b,c > 0. Thus C(a,b,¢) = H*(T) and

v I(T) = {(8,9):cosfcosp > a, sinfcos¢p > b, sin¢ > c}
b a
=1 -1
= {(6,¢):sin mgegcos —

a

—))}

b
cosf’ sin

sin™!¢ < ¢ < cos™! (max(



36

where henceforth 0 < 6, ¢ < 5. We have

C(a,b,c)

H(T)

-1 -1 p a b
cos Ve cos™ " (max( 2555 ) ’
= cos ¢ dodf
sin—! b sin~1¢

Vi-c2

15

- =l b
tan™ " 2 cos” (g07)
= cos ¢ dodf
sin—1 b = Jsin~1¢

l1—c=

a

-1 ~1/_a
cos cos”  (25)
T oo
+-/ ‘ cos ¢ dodf
tan—1 Z sin~l¢

tan~1 2 cos™! &
2 b2 s - 2
- / 1= =2 d0+/ ARV
sin=1 ___1”_ = sin“ @ tan—1 & cos? f
b a '
+c(sin™! —cos!
( V1-—c? 1-— c2)
b
= I(cos™! —2— q) - I(tan™! =, q)
a

where the range of tan™! is (=%, Z) and
g 20 2

sint 1— A2 _ $2

I(t,A) =
(t, 4) | .2

for 0 < A<1,0<t<sin"!(1— A2)2. Substituting (31) we finally obtain

C'(a,b,c) = ta,n_l [M} +tan”1 [M]

ac be
_ 42 _ p2)3 2 2\1
+tan~! [————(1 aab b )2J —atan™! [—————(1 ac ¢ )2}
_p2 _ 2)%
+atan™! [—————(1 2b b2)l} —btan™! [———(1 bc <) J
— a“ — 2
.2 2\
+btan™? [(1—7(17)1—] —ctan™! l:(l_a_c*)z}
— a4 — 2 a
+ctan™! [——i—l] -7
(1—b2—c2)3

when a® + 0% 4+ ¢* < 1, and C(a,b,c) = 0 otherwise. Here the values of tan~! lie in (0

check, one can verify the boundary conditions

(36)

). As a
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C(u,0,0) = C(0,u,0) = C(0,0,u) = gu — ),

1 1 1
¢z ) =0
(\/5 V3 \/§>
Thus (34) and (36) specify an algorithm for computing the surface area A(x,7) and the edge-effect

correction factor
A(x,T)

drr?

w(x,r) =
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