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1. INTRODUCTION.

We provide an extension of real time process algebra of [BB91a] with a state operator. For this
purpose it is plausible to use a version of real time process algebra with located actions. Departing from
a finite set A of action names and a finite set L of location names, a version of the real space process
algebra of [BB91b] is developed. As in [BB91a], timed deadlocks are used instead of the untimed
deadlock of [BB91b]. Further, an operational semantics is given in the style of KLUSENER [K91],
which is a modification of the operational semantics of [BB91a].

The work on extensions of process algebra that encorporate notions of time started with the work
of REED & ROSCOE (e.g. [RR88]), who discuss an extension of CSP (of [H85]). In 1989, we
presented our extension of ACP (see [BB91a]). Extensions of CCS (of [M80, M89]) followed, see
e.g. MOLLER & TOFTS [MT90], JEFFREY [J91a]. The real time process algebra as presented in
[BB91a] uses a dense time domain, affixes timestamps to all atomic actions, and uses an integral
operator to express that an action occurs within a certain time interval.

In [BB91b], we extended our previous work to take space coordinates into account. This leads to a
relativistic calculus where events are not totally ordered by time any longer. This idea is also taken up
in JEFFREY [J91b], MURPHY [MU91]. In the present paper, we limit the use of space to a finite set of
locations.
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2 ’ J.C.M. Baeten & J.A. Bergstra

This extension of real time process algebra is not as straightforward as one might expect because
the effect of actions with components at various locations (multi-actions) on a state has to be evaluated
in some predefined order. This reflects the fact that it is difficult to have a notion of a global state in a
distributed system. In order to solve the problem, we assume an ordering on the locations and require
that multi-actions are evaluated in increasing order (if possible). One might expect it to be more natural
to require that actions can be effectuated in arbitrary order, resulting in the same state, but that will
exclude many useful applications of the state operator.

Nevertheless we consider our combination of a state operator and class1ca1 real space process
algebra to be satisfactory. We notice that adding the state operator to the relativistic real space process
algebra of [BB91b] is difficult if not impossible.

Finally, we remark that we only consider concrete process algebra here: there is no concept of a
silent or empty step.

2. REAL TIME PROCESS ALGEBRA.
We start with a review of real time process algebra as introduced in [BB91a], but instead of the
operational semantics given there, we use the variant of KLUSENER [K91].

2.1 BASIC PROCESS ALGEBRA.

Process algebra (see [BK84, BK86, BW90]) starts from a given action alphabet A (usually finite).
Elements a,b,c of A are called atomic actions, and are constants of the sort P of processes. The theory
Basic Process Algebra (BPA) has two binary operators +,": P x P — P; + stands for altenative
composition and - for sequential composition. BPA has the axioms from table 1.

X+Y=Y+X Al
X+Y)+Z=X+(Y+2) A2
X+X=X A3
X+Y)-Z=X-Z+Y-Z A4
X-Y)-Z=X:(Y:2) A5
Table 1. BPA.

If we add to BPA a special constant d in P (not in A) standing for inaction, comparable to NIL or 0 of

CCS (see MILNER [M80, 89] or HENNESSY [HE88]) or STOP of CSP (see HOARE [H85]), we obtain
the theory BPAS. The two axioms for § are in table 2.

X+6=X A6
d:-X=3 A7
Table 2. BPAJ = BPA + A6, A7.

When we add real time to this setting, our basic actions are not from the set A = AU{d}, but from the
set

AT ={a(t)| ae As, te R0} U {5}.
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Here, R20 = {r € R | r 2 0}. The process a(t) performs action a at time t, and then terminates. The
process d(t) deadlocks at time t. The process 8 cannot do anything, in particular it cannot wait. Again,
these actions can be combined by +,-. We have the identification 3(0) = 3.

The letter A in the names of the following axioms refers to absolute time (versions with relative
time were also considered in [BB91a], but are not treated here).

As in [BB91a], we have the additional operation 3>, the (absolute) time shift. t > X denotes the
process X starting at time t. This means that all actions that have to be performed at or before time t are
turned into deadlocks because their execution has been delayed too long.

In table 3, we have a € As.

a(0) = d(0) ATAl
S(t) - X =3(t) ATA2
t<r = &(t) + &(r) = d(r) ATA3
a(t) + 8(t) = a(t) ATA4
a(t)- X=a(t) - (t> X) ATAS
t<r = t>»a(r)=a(r) ATB1
t2r = t>a(r)=398(t) ATB2
t>X+Y)=(t>X)+(t>Y) ATB3
t>X-Y)=(t>X)-Y ATB4

Table 3. BPApS.

A closed process expression (CPE) over the signature of BPApd with atoms A is an expression that
does not contain variables for atoms, processes or real numbers. We allow every real number as a
constant, which means there are uncountably many such closed process expressions. For finite closed
process expressions an initial algebra can be defined. This is the initial algebra model of BPApd. This
structure identifies two closed expressions whenever these can be shown identical by means of
application of the axioms. This definition of closed process expressions and an initial model can be
extended to all extensions of BPA that are described below.

We will look at an operational model next. We denote the set of actions over A without variables by
IA (the set of instantiated actions), and write |Ad when we use the set As.

2.2 OPERATIONAL SEMANTICS.
We describe an operational semantics for BPApd following KLUSENER [K91]. His operational
semantics is a simplification of the one in [BB91a]. In fact the operational semantics of [K91] is more
abstract than the one given in [BB91a]. We have two relations

step ¢ CPE x IA x CPE

terminate ¢ CPE x |AS.
The extension of the relations for atomic actions (so excluding d-termination) is found as the least fixed
point g&i sirflultaneous inductive definition. We writt.a

X a) X for step(x, a(r), x'), and

x for terminate(x, a(r)).
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Notice that in the first case a € A and in the second case a € Ag.

The inductive rules for the operational semantics are similar to those used in structural operational
semantics. We list the rules for atomic actions. In table 4, we have a € |A, r,s > 0 (we never allow
timestamp 0!), x,x',y € CPE.

r>0 = ar) b

x 3,
X+y alm, X', Yy+X alr), x'

x 2Ly
x+y 2y, yax 3Ly
x 3, i x 3L,
Xy all, X'y Xy aln, >y
x 3 x', r>s x 3 V, r>s
sox 2 so>x 2

Table 4. Action rules for atomic actions for BPApJ.

2.3 ULTIMATE DELAY.
In order to state the rule for deadlock actions, we need an auxiliary notion: U(x) is the ultimate delay of
x. This notion is defined as follows (table 5, a € A).

The ultimate delay operator U takes a process expression X in CPE, and returns an element of
R20. The intended meaning is that X can idle before U(X), but X can never reach time U(X) or a later
time by just idling.

Ua(t)) =t ATU1
U(s(t) =t ATU2
U(X + Y) = max{U(X), U(Y)} ATU3
U(X - Y) = U(X) ATU4
U(t>> X) = max{t, U(X)} ATUS

Table 5. Ultimate delay operator.

Now we construct a transition system for a term as follows: first generate all transitions involving
atomic actions using the inductive rules of table 4. Then, for every node (term) p in this transition
system we do the following: first determine its ultimate delay U(p) = u by means of table 5. Then, if
the ultimate delay is larger than the supremum of the time stamps of all outgoing transitions, we add a

transition
p%h .
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Otherwise, we do nothing (add no transitions).

2.4 BISIMULATIONS.

Again we consider the class CPE of closed process expressions over BPApd. A bisimulation on CPE
is a binary relation R such that

i. for each p and q with R(p, q): if there is a step a(s) possible from p to p', then there is a CPE q'
such that R(p', ') and there is a step a(s) possible from q to q'.

ii. for each p and q with R(p, q): if there is a step a(s) possible from q to @', then there is a CPE p'
such that R(p', 9') and there is a step a(s) possible from p to p'.

iii. for each p and q with R(p, q): a termination step a(s) or &(s) is possible from p iff it is possible
from q.

We say expressions p and q are bisimilar, denoted p « q, if there exists a bisimulation on CPE
with R(p,q). In [K91] it is shown that bisimulation is a congruence relation on CPE, and that CPE/<>
is a model for BPApd. Indeed, this model is isomorphic to the initial algebra. The advantage of this
operational semantics is, that it allows extensions to models containing recursively defined processes.

Next, we extend the system BPApd with an operator for parallel composition.

2.5 OPERATIONAL SEMANTICS FOR PARALLEL COMPOSITION.

Now we extend the system BPAp3 with the parallel composition operator || (merge). We assume we
have given a communication function | : Agx As — As. | is commutative, associative and 0 is a zero
element for it. The operational semantics for atomic actions is given in table 6.

x 20, x', r< U(y)
xlly an, x'll(r>y), ylix alrl, (r>y) lIx’

x 3Ly, r< U(y)
xlly an, r>y, ylx alr., r>y

x 3, y b(r), y', alb=c#d
xllyc(')+ x'ly’

x A, e y (1), y alb=ced
xlly ¢y xr yiix 6L

x 3y, y Py 4 b=ces
xllyc(rb \l

Table 6. Action rules for parallel composition.
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With the additional rules of table 6, a transition system is generated. We then add 3-rules as before.
We see that the action rules for parallel composition make use of the ultimate delay operator. This

operator was introduced in 2.3. We add rules so that the ultimate delay can be syntactically determined
for every term.

UX TY) = min{U(X), U(Y)} ATUG
U(X L Y) = min{U(X), U(Y)} ATU7
U(X | Y) = min{U(X), U(Y)} ATUS
U(X>> t) = mint, U(X)} ATU9
U@H(X)) = U(X) ATU10

Table 7. Ultimate delay with parallel composition.

In table 7, we also find a number of auxiliary operators that are needed to give a axiomatic
characterization of parallel composition (cf. [BB91a]).

2.6 BOUNDED INITIALIZATION.

The bounded initialization operator is also denoted by >, and is the counterpart of the operator with the
same name that we saw in the axiomatization of BPApd. With X > t we denote the process X with its
behaviour restricted to the extent that its first action must be performed at a time before t € R20,
Axioms defining >> are in table 8, where we have a € Asg.

rzt = a(r)>»t=3(t) ATBS5
r<t = a(r>t=a(r) ATB6
X+Y)>t=(X>t)+(Y>1) ATB7
(X-Y)>t=(X>1-Y ATBS

Table 7. Bounded initialization operator.

2.7 ALGEBRA OF COMMUNICATING PROCESSES.
Apart from the ultimate delay and bounded initialization operators, an axiomatization of parallel

composition also uses the left merge operator IL and communication merge operator | of [BK84]. Let
H be some subset of A, and let a,b,c be elements of Ag.
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alb=bla C1
al(lc)=(alb)lc C2
dla=3 C3

t£r = a(t) 1b(r) = d(min(t,r)) ATC1
a(t) I b(t) = (al b)(t) ATC2
XIY=XLY+YLX+XI1Y cM1
a(t) L X =(a(t)> U(X)) - X ATCM2
(@) X)L Y=(at)> uy)) - (XIy) ATCM3
X+)WLzZ=XILZ+YILZ CM4
(a(t) - X) Ib(r) = (a(t) I b(r)) - X CM5'
a(t) 1 (b(r) - X) = (a(t) I b(r)) - X CMé6'
(a(t) - X)L (b(r) - Y) = (a(t) I b(r)) - (X 11'Y) CMT'
X+Y)1Z=XI1Z+YIZ CM8
XI(Y+2)=XIY+XIZ CM9
JH(a) =a ifag H D1
oH(a) =3 ifae H D2
oH(a(t)) = (an(@)(®) ATD
IH(X +Y) = dH(X) + IH(Y) D3
IH(X - Y) = dH(X) - on(Y) D4

Table 8. ACPp = BPApd + ATU1-4 + ATB5-8 + C1-3 +
+ ATC1,2 + CM1,4,8,9 + CM5',6',7' + ATCM2,3 + D1-4 + ATD.

2.8 OPERATIONAL SEMANTICS.
We can also give action rules for the auxiliary operators. The rules are straightforward.
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x 3L oy r <t x23L <t
x>t xot2h

x 2w r < U(y) x 3, r < U(y)
xLy a0, I(r>y) xLy am, >y

x 21, X',y b(1), y', alb=c#d
xly %L xly

x 30y x, y Py a|b=cxs
xlyc('i' x', ylx oL,

x 3 )y Py aib=cxs

xly %L
x®L x', ag H x%L y, ae H
a9 2D ay(x') o) 2

Table 9. Action relations for auxiliary operators of ACPp.

2.9 INTEGRATION.

An extension of ACPp (called ACPpI) that is very useful in applications is the extension with the
integral operator, denoting a choice over a continuum of alternatives. Le., if V is a subset of R0, and
Vis a variable over R20, then vé[vp denotes the alternative composition of alternatives P[t/v] fort € V

(expression P with nonnegative real t substituted for variable v). For more information, we refer the
reader to [BB91a] and [K91]. The operational semantics is straightforward (table 10).

xt) 2L x' te V x) 2L V te v
{/x(v) al, Lx(v) ar,
VE

Ve

Table 10. Action relations for integration.

We will not provide axioms for the integral operator here (and refer the reader to [BB91a] and [K91]),
except for the axiom for the ultimate delay operator:
U(v j\f’) = sup{U(P[tv]) : te V} ATU11.
€

2. 10 GRAPH MODEL.

It is possible to construct a graph model for ACPpl. However, we obtain a number of simplifications if
we only consider the domain of process trees. Therefore, we will limit our domain to trees.
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Process trees are directed rooted trees with edges labeled by timed atomic or delta actions,
satisfying the condition that for each pair of consecutive transitions S1 a0, S2 b, s3 it is required
that r < t (however, in case b = §, we also allow r = t). Moreover, we require that the endnode of a &-
transition has no outgoing edges, and that the timestamp of a 3-transition is larger than the supremum
of the timestamps of its brother edges (edges starting from the same node).

Now +,- I, 1L, | ,0H,>,U, > and [ can be defined on these trees in a straightforward manner:

« For +, take the disjoint union of the trees and identify the roots. If one of the roots has an outgoing
3-edge, remove this edge if its timestamp is less than or equal than the supremum of the timestamps of
the outgoing edges of the other root (but keep one of the two 3-edges, if both roots have a d-edge with
the same timestamp).
« t> gis obtained by removing every edge from the root with label a(r) with r < t. If this removes
all edges starting from the root, add a &(t)-edge to an endpoint.
« gh is constructed as follows: identify each non-8 endpoint s of g (endpoint with no incoming 8-
edge) with the root of a copy of t 3> h, where t is the time of the edge leading to s.
« U(g) = sup{r € R20 | root(g) a0, s for a € Ajand certain s € g}. If g is the trivial one-node
graph, put U(g) = co.
« Letforse g, (g)s denote the subgraph of g with root s. Then gl h is defined as follows:
- the set of states is the cartesian product of the state sets of g and h, the root the pair of roots.
- transitions: if s a(r), s', a#d and r < U((h)t) then (s,t) a(n, (s".b);

ift20 ¢, 225 and r < U((g)s) then (s,t) 2D (s.t;

its *3 &' and t " t and al b=c#5 then s, c(0, (s"t).

Lastly, if a node {s,t) with s and t not both endnodes in g resp. h does not have an outgoing edge

with timestamp equal to t = min{U((Q)s, (h)t}, we add a transition (s,t) 3(), to an endpoint.
It is an exercise to show that this construction always yields a tree again.

« the construction of glLh, g | h and dH(g) is now straightforward.

+  Finally, the graph of | P is constructed by first identifying the roots of the graphs P[tV] for t €
veV

V. Next, remove all 5-edges that do not satisfy the condition above (i.e. its timestamp is not larger than
the supremum of the timestamps of its brother edges). Add again a 8-edge with timestamp t, if the

ultimate delay t of the first graph is larger than the supremum of the timestamps of the remaining edges.
As an example, notice that the graph of ({,81Sv) only has one edge, with label 5(1).
ve (0,

Bisimulation on these graphs is defined as e.g. in BERGSTRA & KLOP [BK84]. One may prove in a
standard fashion that bisimulation is a congruence for all operators of ACPpl.

3. LOCATIONS.
We get a straightforward extension of the theory in section 2, if we add a location coordinate to all
atomic actions except 8. We use a finite set of locations L (the use of an infinite set of locations was

discussed in [BB91b]; here, we do not need that). The set of timed located atomic actions, ALT is now
generated by
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{a(d;t)] ae A, e L, te R20} U {5(t)|t=0}.

It will be useful to consider also the set of untimed located actions, i.e. the set AL generated by
{a(R)] ae A, e L}u{3}.

We can draw the following picture of the algebraic signature (fig. 1).

FIGURE 1.

We use a(2)(t) as an altemative notation for a(2;t).

3.1 MULTI-ACTIONS.

Multi-actions are process terms generated by located actions and the synchronisation function &. Multi-
actions contain actions that occur synchronously at different locations. For o,f,y elements of AL, we
have the following conditions on the synchronisation function (table 11). Further, € L, a,b € A.

c&pB=p&a LO1
a&B&Y)=(a&P) &Y LO2
0&a=90 LO3
a(l) &b(R) =3 LO4
8(R) =9 LO5

Table 11. Synchronisation function for located actions.

Using the axioms of table 11, each multi-action can be reduced to one of the following two forms:



The state operator in real time process algebra 11

s B,

e ai(Ry) &... & an(Ln), with all locations R; different, all aj € A.

Next, we have the communication function | . As usual, and as required by axioms C1-3 in table 8, we
assume that a communication function is given on atomic actions, that is commutative, associative, and
has 8 as a neutral element. We have the following axioms. In table 12, a,b,c € A, o,B,y € AL. In order
to state axiom CL7, we need an auxiliary function locs, that determines the set of locations of a multi-
action.

alb=bl C1
al(blc)=(alb)lc C2
3 I a=3 C3
ol B=[3 CL1
al( Y) (alﬁ)lv CL2
3l a= CL3
a() | (Jl) (alb)(R) CL4
al) | (b()&B)=(alb)(R) &P CL5
@ &o) | (b()&P)=(alb)(R)&(alP) CLE
locs(o) nlocs(B)=D = a | =0 &P CL7
locs(8) =9 LOC1
locs(a(R)) = {2} LOC2
Q¢ locs(w), locs(a) #D =

locs(a(R) & o) =locs(a) U {f}  LOC3

Table 12. Communication function for located actions.

3.2 TIMED MULTI-ACTIONS.

It is now straightforward to extend the definition of the synchronisation and communication functions
to timed multi-actions. In table 13, o, € AL.

t#s = oft) | B(s)=38(min(t,s)) CL8
aft) | BH=(c| B)(H) CL9

Table 13. Communication function on timed niulu'-actions.

3.3 REAL TIME PROCESS ALGEBRA WITH LOCATIONS.
Real time process algebra with locations now has exactly the same axioms as real time process algebra,
only the letters a,b now do not range over A respectively Ag, but over multi-actions from AL as above.
The axioms for ultimate delay are again ATU1-11 (with in ATU1 a ranging over the larger set).
Parallel composition is dealt with likewise, obtaining the axiom system ACPpl by adding axioms
CM1,4-9, ATCM2,3, D1-4, ATD.
The operational semantics is just like in the temporal case, in section 2. Transitions are labeled with
multi-actions, and these play exactly the same role as the timed actions in the case of ACPp. Similarly
we may define a graph model for ACPpl. In both cases bisimulation can be defined in the same way.
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4. STATE OPERATOR.

The state operator was introduced in BAETEN & BERGSTRA [BB88]. It keeps track of the global state
of a system, and is used to describe actions that have a side effect on a state space. The state operator
has showed itself useful in a range of applications, e.g. in the translation of programming or
specification languages into process algebra (see VAANDRAGER [V90] or SPECS [S90]).

The state operator comes equiped with two functions: given a certain state and an action to be
executed from that state, the function action gives the resulting action and the function effect the
resulting state. Now, when we apply these functions to a located action, we have the obvious axioms

action(a(R), s) = action(a, s)(1) effect(a(L), s) = effect(a, s).
Things become more difficult if we go to multi-actions: in order to calculate the resulting global state,
we need to apply the effect function to the component actions in a certain order. How is this order
determined? We will assume that there is a partial order < on locations, and that we can apply the effect
function only on multi-actions that determine a totally ordered set of locations. We make this precise in
the following definition.

4.1 DEFINITION,
Let A be a set of atomic actions, let S be a set of states. Assume we have functions

action:Agx S — A effect:As xS — S
such that action(d, s) = d and effect(d, s) =s forall s € S (we say: d is inert).
Let L be a set of locations, and let < be a partial order on L. If Mis a set of locations, write TO(M) if M
is totally ordered by <, and write £ < Mif < m for all m € M. Then we define the extension of the
functions action and effect to multi-actions as follows (o € AL).

action(a(L), s) = action(a, s)(2)
effect(a(R), s) = effect(a, s)
-~ TO(locs(a)) = action(a, s) =8
—TO(locs(ar)) = effect(a, s)=s
TO(locs(a)) & R <locs(a) =
action(a(l) & a, s) = action(a, effect(a,s))(L) & action(c,s)
TO(locs(ar)) & A < locs(a) =
effect(a(R) & a, s) = effect(a, effect(a, s))
Table 14. Action and effect on multi-actions.

»4.2 DEFINITION.

The defining equations for the state operator are now straightforward (cf. [BB88]). If S is a set of
states, then for each s € S we have an operator As: P — P. Intable 15,s € S, aa € AL, t20, x,y
processes.

As(a(t)) = action(a, s)(t) SO1
As(o(t)x) = action(a, s)(t)-Aeffect(a, s)(X) S02
As(X +Y) = As(X) +As(y) SO3

Table 15. State operator.
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In case we deal with integrals, the last equation SO3 has to be extended to the following:
As( [ P) = [As(P) SO4.
veV veV

It is equally straightforward to give action rules for the operational semantics (o € AL, 0d).

x D ' action(a,s)=p=5  x “ +, action(a,s)=p=5
As(x) P Aettect(as)(x) Asx) P
Table 16. Action relations for the state operator.

In order to deal with 8-transitions, we add the axiom
U(As(x)) = U(x) ATU12.
Then, we determine the existence of d-transitions as before (in 2.3).

4.3 EXAMPLES.

1. A clock. Suppose we have a fixed location £. Define, foreach s € N,
effect(tick, s) = s+1
action(tick, s) = tick.

Then a clock is given by the process Ag(P(0)), where P(t) = tick(2; t+1)-P(t+1).

2. Listing when action a occurs at location m (measured in discrete time). The state space is N X L,
where L denotes the set of lists over N. Look at the process Ao, z(Q || P(0)), where P(t) is as in
example 1 and Q is given by Q = t>[0 a(m; t)-Q.

We have the following definitions:
effect(tick, (n, o)) = {(n+1, o)
action(tick, (n, o)) = tick
effect(a, (n, o)) = (n, o*n)
action(a, {(n, o)) = a.
Moreover we have m < 2. As a consequence, we have e.g.
effect(a(m) & tick(L), (n, o)) = {(n+1, ox(n+1)).

3. Serial switch. We can draw the following picture of a serial switch (fig. 2).
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The switches A and B are given by the equations
A= t>joa-‘,witch(left; t)-A

B= tZ{)swutch(rlght; t)B

(here, we have locations left, right corresponding to the positions of the switches). We have state
space S = {on, off}. E.g. in figure 2, the lamp is in state off. We define the action and effect functions
as follows.
action(switch, off) = turnon
action(switch, on) = turnoff
effect(switch, on) = off
effect(switch, off) = on
Starting in state off (as in the figure) we have the process
P =Xott(All B).
(We assume no communication occurs.)
An interesting situation occurs if both switches are tumed at the same time. Suppose we have the
ordering right < left. Let tp be a fixed time. Then we have
Aoti(switch(left; to)-A Il switch(right; to)-B) = (turnon(left) & turnoff(right))(to)-Aott(A 1| B),
Aon(switch(left; to)-A Il switch(right; to)-B) = (turnoff(left) & turnon(right))(to)-Aon(A Il B).

4.4 EXAMPLE.

As a larger example, we present a version of the Concurrent Alternating Bit Protocol. We base our
description on the specification in VAN GLABBEEK & VAANDRAGER [GV89]. Other descriptions can
be found in KOYMANS & MULDER [KM90], LARSEN & MILNER [LM87].

FIGURE 3.

In figure 3, elements of a finite data set D are sent from location 1 to location 2. From A to B, frames
consisting of a data element and an alternating bit are sent, from C to D, independently,
acknowledgements. K and L are unbounded faulty queues, that can lose data. It was shown in [GV89]
that we can assume that loss of data only occurs at the top of the queue. We will model the queues by
means of a state operator. We present the specification first, and then define the state operator.

In the specification, there are two parameters: Wg is the amount of time that a sender allows to pass
before a message is sent into the queue again, and w1 is the amount of time after which a receiver

checks the queue again after an unsuccessful attempt. Put another way, w1—0 is the retransmission
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frequency, and wl{ is the polling frequency. These parameters can be filled in arbitrarily, and do not

affect the correctness of the protocol. Moreover, in the specification, we use a system delay constant 1.
The specification of the senders and receivers now looks as follows:
A =A(0)

A(b) = J Z1()(1;eng(db)(5; t+1)-A(d, b, t+2) foreach b e {0, 1}
>

A(d, b, 1) = enq(db)(5; t+wo)-A(d, b, trwo) + [ r(next)(3; v)-A(1-b)
Ve (t1+w,)

for each be {0,1},de D, t=0.

B =B(0, 0)
B(b, t) = (deq(J_)(6; t+wq) + dE’ I51eq(d(1-b))(6; t+w1))'B(b, t+wq) +

+ d2‘,[<)ieq(db)(€:‘»; t+w1)-B(d, b, t+w1) foreachb € {0,1},t20.
B(d, b, t) = s(d)(2; t+1)-s(next)(4; t+2)-B(1-b, t+2) for each be {0,1},de D, t=0.
C=C(1,0)

C(b, t) = enq(b)(7; t+wo)-C(b, t+wo) + { r(next)(4; v)-enq(7; v+1)-C(1-b, v+2)
ve (t,1+wo)

foreachb e {0,1},t>0.

D = D(0, 0)
D(b, 1) = (deq(L)(8, t+w1) + deq(1-b)(8; t+w1))-D(b, t+w1) +
+ deq(b)(8; t+w1)-s(next)(3; t+wy+1)-D(1-b, t+wq+1) foreachb e {0, 1},t=0.

E= t2joerror(e; t)E F= tZ{)error(B; t)-F

Now the Concurrent Alternating Bit Protocol is defined by:

CABP =dn(Agz(AIEIIB) I Az(ClIF I D)).
Here, the encapsulation set is

H = {r(next)(k), s(next)(k) : ke {2, 3}}.
In the process CABP, we are actually dealing with two state operators: the state operator for processes
A, E, B has a state space consisting of lists of frames, the state operator for C, F, D has a state space
consisting of lists of booleans. We have the following ordering on locations: 6 > 5 and 8 > 7. This
makes it impossible to add an element to an empty queue and read it out at the same instant of time: an
element needs a positive amount of time to propagate through the queue.

In order to save space, we define the action and effect function for both state operators at the same
time (so in the following, either x e D x Borx € B, and either 6 € (D xB)* orc € B*):

action(enq(x), o) = ¢(x)

effect(enq(x), o) = 6™x

action(deq(L), o) =i ifo=0
action(deq(L), o) =8 ifoxQ
action(deq(x), 6) = d if o = & or top(c) # X
action(deq(x), ) = ¢(x) if top(c) = x

effect(deq(x), o) = o if 6 = @ or top(c) #x
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effect(deq(x), o) = tail(c) if top(c) = x
action(error, &) = 8

action(error, ¢) =i ifo2@
effect(error, &) =0

effect(error, o) = tail(c) ifo# Q.

Now we believe that this specification constitutes a correct protocol, if the queues behave fairly (i.e.
data do not get lost infinitely many times in a row). At this point, we will not state explicitly what this
statement means (leaving this for further research), so we will not give a specification that process
CABRP satisfies after abstraction of internal actions (the internal actions are the ¢(x) actions and i).

Note that multi-actions can occur in this protocol also: we can add to a non-empty queue and read
from it at the same time.

5. CONCLUSION.

We conclude that it is possible to add a state operator to real time process algebra, and that we can
specify interesting examples by means of it. We claim that the state operator will be useful to describe
communication between a sender and a moving receiver.
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