1992

F.S. de Boer, J.W. Klop, C. Palamidessi

Asynchronous communication in process algebra
(Extended abstract)

Computer Science/Department of Software Technology Report CS-R9206 January

CWI is het Centrum voor Wiskunde en Informatica van de Stichting Mathematisch Centrum
CWI is the Centre for Mathematics and Computer Science of the Mathematical Centre Foundation

CWi is the research i tichting Mathematisch Centrum,

was founded on Febn 1s a non-profit institution aiming
promotion of mathem science, and their applications.
sponsored by the Du through the Netherlands organi

for scientific research

Copyright © Stichting M itrum, Amsterdam

Asynchronous Communication in Process Algebra
(Extended Abstract)

Frank S. de Boer; Jan Willem Klop!! Catuscia Palamidessit$

Abstract

We study the paradigm of asynchronous process communication, as contrasted with the syn-
chronous communication mechanism which is present in process algebra frameworks such
as CCS, CSP and ACP. We investigate semantics and axiomatizations with respect to var-
ious observability criteria: bisimulation, traces and abstract traces. Qur aim is to develop
a process theory which can be regarded as a kernel for languages based on asynchronous
communication, like data flow, concurrent logic languages and concurrent constraint pro-
gramming.

1985 Mathematics Subject Classification: 68Q05, 68Q10, 68Q55, 68Q45.

1987 CR Categories: F.1.2, F.3.2.

Key Words & Phrases: process algebra, concurrency, asynchronous communication, bisimu-
lation semantics, failure semantics.

1 Introduction

In order to introduce the framework of asynchronous communication that will be adopted and
investigated in this paper, we will first give an informal comparison with synchronous communi-
cation as in ACP [BK86)]. Synchronous communication is modeled in ACP by a binary function
| on actions. In the case of value transmission the typical equation is ctd | cld = c(d, where
the actions c{d and c|d are interpreted as “send datum d along channel ¢” and “receive datum
d at channel c” respectively, and c{Jd represents the completion of the communication action.
As an example, consider the parallel composition

O, qap(a-cld-b || o' -cld-¥').

Here 0 is the encapsulation operator, enforcing the intended communication by acting as a
garbage collector for attempted but failed communications. According to the axioms of ACP
this expression corresponds to the process graph represented in Figure 1(a). In this figure, the
dashed parts express the unintended traces that are pruned by Ofeid iy

Note that there is no difference in directionality between the communication partners c|d, c{d.
In the asynchronous setting, on the other hand, there is an asymmetry between c|d and c{d:

*Department of Computer Science, Eindhoven Technical University P.O. Box 513, 5600 MB Eindhoven, The
Netherlands email: wsinfdb@tuewsd.win.tue.nl

tCWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands email: jwk@cwi.nl, katuscia@cwi.nl

!Department of Computer Science, Free University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

YDepartment of Computer Science, State University of Utrecht, P.O. Box 80089, 3508 TB Utrecht, The
Netherlands

Report CS-R9206

ISSN 0169-118X 1
CWI

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Figure 2: Synchronous versus asynchronous communication with abstraction.

one of them, cfd, is now supposed to precede its partner c|d, for an indeterminate amount of
‘time’ (i.e. number of steps). Due to the temporal split between c1d, c|d, we need now two
actions signifying their completion; let them be c|d and cf}d, respectively. Furthermore, some
memory mechanism, in the form of a state operator, must now be available to convey the effect
of the event c¢fd during the interval from c¢1d to ¢|d. Let us now consider the asynchronous
counterpart of the example above. The evaluation of

pe(a-cld-bl o' -cd- ¥,

where p is the state operator, by using the axioms in aprPA;, (see Table 2) gives now the
process graph in Figure 1(b). Again the dashed parts express the unintended traces, originating
by free interleaving, that are pruned away by pu.

Just as in the synchronous case, one might wish to abstract from these completed actions.
The representation of the processes from the example above ‘shrinks’ by this abstraction to the
process graphs in Figure 2.

Note that both the operators 9, 1, can be viewed as ‘actualization’ operators, that make the
process actually run. So we refer to c¢ft d,c |} d actions as being completed, or realized, and to
ctd, cld actions as being intended, or possible.

In specifying the send and receive data transmission scheme there is a choice to be made,
concerning the nature of the channels. In this paper we will treat the two main cases of ‘sequential
access’ and ‘random access’. Of the first we have chosen as a typical representant the queue
(but we may also have investigated the case of stack); in the second, the bag is a natural choice.

2

QOur point of departure is the paper [BKT85] where the send/receive mechanism is axioma-
tized, both for queues and bags as channels. We show that this axiomatization is complete for
the ‘minimal’ setting of bisimulation semantics. Here the specific nature of the communication
channels does not yet influence the axiomatization which can be given in a uniform way.

The next notion we investigate is the ‘maximal trace-respecting congruence’’. We give a
characterization of this congruence in terms of a fully abstract model which is a version of the
usual failure semantics for synchronous communication ([BHR84]), and we provide a complete
axiomatization. Remarkably, for this more abstract notion the above uniformity between queues
and bags disappears.

Finally we consider traces with abstraction from the completed communication actions. As
usual, the phenomenon of abstraction introduces some quite intricate problems. At this point
the difference between bags and queues becomes very prominent: the case of bags requires the
introduction of many new axioms, thus identifying more expressions. Therefore we can call the
latter theory (for bags) more abstract than the former (for queues). A priori this was to be
expected since a bag in itself is already an ‘abstraction’ of a queue.

1.1 Comparison with related work

A theory for asynchronous communication has also been developed in [JHJ90]. That theory is
more abstract than ours; the main reasons are that in [JHJ90] there are, first, some restrictions
on processes to be composed in parallel, and, second, communication is modeled in such a way
that when a process receives an item from a buffer, that item remains available for the other
processes. Such a mechanism can be implemented in our language by means of a copying process;
therefore all the contexts which can be specified in [JHJ90] can be specified also in our language.
On the other hand, some of our contexts cannot be defined in [JHJ90] (i.e. our congruence is
strictly less coarse).

The relatively ‘low degree of abstraction’ of our language has the advantage that we can
regard it as a kernel for the axiomatization of other languages based on asynchronous com-
munication. It is possible to show, in fact, that with respect to both observability criteria we
have considered in this paper our axioms are correct for data flow [Kah74], concurrent logic
programming [Sha89], and concurrent constraint programming [Sar89]. In other words, the
communication mechanisms of those languages can be implemented in ours. Completeness can
then be obtained by adding some specific axioms.

The fact that we construct a fully abstract model based on failure sets might lock surpris-
ing, and in contrast with the claim, often made, that asynchronous communication does not
require refusal information. In fact, recent studies have shown that several languages based
on asynchronous communication have linear models: see for instance [Jon85, Jos90] for data
flow, [BP90] for concurrent logic languages, [BP91] for concurrent constraint programming and
[BKPRO1] for a general semantic framework based on reactive sequences. The explanation of
this apparent contradiction is that also these last models encode some hidden refusal informa-
tion. In this paper we have opted for a model in which the refusals are explicitly represented
because it facilitates the proof of the completeness of the axiomatization.

!By ‘traces’ we mean the ‘completed’ ones, i.e. the traces associated to the transition sequences which end in
a point from which no further transitions are possible.

a

intended
oulput

aclions

ch
completed | completed

tnput output
actions actons

proper aclions communication actions

The set of actions. Shaded: dependent actions; unshaded: independent actions.

ulation semantics for asynchronous communication

1, that is the basis of our paper, our starting point is [BKT85]. After fixing the

the syntax of the language to be considered, we provide a set of transition rules
rerational semantics. '

X

ions is structured as follows.
1t of proper actions, notation: a, b, q;,as,

e a set of data: d,dy,d,..., and let C be a set of channel names: c,e,¢1,€z,. ...
€ C and d € D we have communication actions

(intended input action)

(intended output action)
1 (completed input action)

1 (completed output action)

of all intended input actions is C|; likewise C'T,C | ,C 1 contain the intended
ctions, the completed input actions and the completed output actions respectively.

alphabet Act is now defined to be
A=A U ClUCTUCy UCTH.

u, v, ... for general actions from Act. Intended input actions from C| are also
nt actions (Dep); all the other actions are independent (Ind) (see Figure 3). Tn
give motivation for this terminology.

p of (process) expressions is generated by the following grammar:
zue=| 6| u-z | aitas | eilles | 21 lles | (z) | psla)

' represents the inaction or deadlock. For any u € Act, u- is an action prefizing.
+, || and || are the sum (or alternative choice), the merge (or parallel com-

the left-merge respectively. For any ¢ € C and state o, pZ is an encapsulation

4

operator (o represents the ‘initial state’ of ¢). Finally for f : Act — Act respecting the partition
of Act, py is a renaming operator.

Bracket conventions are employed as usual. Instead of -z we also will write v z. Often we
will omit the ‘end marker’ § in an expression, and render e.g. a§ as just a.

2.2 Operational semantics

In order to define the operational semantics of our processes in a uniform way, i.e. not depending
upon the specific kind of channels that are intended, we treat channels as given by some abstract
data type. To describe the meaning of the actions ¢|d and c{d we introduce two operations
get: State X D — StateU{ L1} and put: State x D — State, where State is the set of states (of the
channel), and 1 stands for undefined. The understanding is that get(o,d) checks if the datum
d is available in ¢ and in that case it retrieves it. It is undefined otherwise. This is the reason
why we call the actions in C| ‘dependent’: their being enabled or not depends upon the content
of the buffers, hence upon the actions performed by the environment. The operation put(s, d)
in general modifies o by adding the datum d. We assume that it is always defined, and this
is the reason why we call the actions in C'T ‘independent’. One could wonder what happens,
in the case of bounded channels, when the channel is full. We assume that in such a case the
datum is simply lost. The reason is that in general a test on the state of the channel, before
perfoming a send action, is very expensive to implement. However, our theory can be modified
so as to include such a test by adding the possibility that put(s, d) is undefined and by treating
the actions in C'1 as dependent.

The operational semantics of an expression z € Fzp is defined by the transition system 7' in
Table 1, where z,y, z are meta-variables ranging over Ezp.

To each process expression z € Ezp the transition system T assigns a fransition graph (also
called process graph), as illustrated in the examples shown in Figure 4. The symbol ¢ denotes
the state of an empty channel. We denote by = the well known bisimulation equivalence, which
identifies expressions with the same transition graph (disregarding the labels in the nodes).
Examples of bisimilar processes are the pairs (i), (ii) and (v) in Figure 4.

2.3 Axioms

The bisimulation equivalence & is a congruence and it is completely axiomatized by the system
aprPA; , in Table 2, which is the one from [BKT85] restricted to action prefixing. In our paper
we don’t consider sequential composition, just for reasons of technical convenience. We expect
that all results in the present paper can be obtained also in that more general case, but at the
cost of sometimes having to include ‘degenerate’ versions of some axioms. The name aprPA;,
means ‘action prefixing process algebra with constant § and operator u’; it is based on the
nomenclature proposal in [BB91).

Theorem 2.1 Let z,y € Ezp. Then

¢ oy iff aprtPA;, Fz =y

3 Trace semantics

In this section we study the observability criterion which consists of observing all the possible
traces generated by a process in a sequence of transition steps. It is convenient to introduce the

u
U — T

ety ety

z+z-"Sy z+z Sy
Ty z Sy

zllz->yllz zlle>z]y
T —

e|lz->y| =

cd
- ;::_E ya,() if o' = put(o,d)
B (2) =5 pl (y

dd
o W L 7 = geln) £
c C

e if u# cld,cld
He (‘B) o (y)

k3
Ty

pi(2) 2 pi(y)

Table 1: The transition system 7T'.

ab +08) (ad +53)

(i) b al |b

(cld-cld-6+ecld-cld-§)

(i) C

aed8)) CE(ed F[eld-8))

cfrd "c‘ffd
-c[d-9)) (uE(E] cld-8))
(1ii) | (iv) chd
1d-§)) (6

" abs (@b8 T (68 £ 53)

) @B

Figure 4: Examples of transitions.

ty = yte
+y9)+z=z+(y+2)
te =z

bé = 2

ly = z|ly+y|=
lz = §

Hly = u(=]ly)

+y) |z = a:”_z-}—yu_z

(5 = &
(uz) = u-p2(z) if u # ¢ld, cld
(ctd-2) = cﬂd-p‘:'(m) if o' = put(a,d)
(cld-z) = cld-pl'(x) ifo' = get(o,d) £1
(cld-z) = if get(o,d) =L
@+y) = pl(z)+pl(y)

5y =146
uz) = f(u) ps(z)
z+y) = ps(2) + ps(y)

Table 2: aprPAs;,,.

z

y
al a a
;:;Ld/ \ cld b

Figure 5: Example of trace-equivalent processes ¢ and y which can be distinguished by a p-
context.

following notation. For z,y € Ezp,s € Act*, ¢ —» y represents a sequence of transition steps
from z to y and it is defined as follows:

Lz2sz (where A is the empty sequence),

2. if 2 = y then 2 —» v,

3. if:c—’»ya.ndy——i%zthenm-it»z.
Now we can define the traces of a process and the corresponding equivalence relation.

Definition 3.1 For ¢ € Fzp, the traces of ¢ are given by:
T(e) = {s| Y.z >y -}
The notation y —/- indicates that for no u, z we have y — z.
The relation ~;, is the equivalence induced by the traces:
z ~p y iff T(z) = T(y)-

This relation is not a congruence, essentially due to the presence of the encapsulation operator
i which enforces a dependency upon the state of the channels, as determined by the initial state
and by the actions performed by the environment.

Example 3.2

1. The processes ¢ and y represented by the transition graphs in Figure b have the same traces,
but their encapsulation with respect to the channel ¢ yields different results: T(ué(z)) =

{ab}, whereas T(ps(y)) = {a,ab}.

2. The processes # and y represented in Figure 6, have the same traces, but if we now
consider them in parallel with the process z then encapsulation with respect to c, e yields
a difference: efrd-cftd-cld € T(puips(y || 2)) \ T(pipe(z || 2))-

In the following, C[] indicates an arbitrary (unary) context, i.e. an expression containing
one occurrence of a ‘hole’. We define the congruence relation = as the mazimal trace-respecting
congruence, i.e.

z =,y iff VC[].Clz]~, Cly].

In the rest of this section we will investigate a concrete model corresponding to this congru-
ence, and its axiomatization.

z y ' z
ctd /
cld eld cld eld cld cid
a a a a a
Figure 6: Example of processes # and y which can be distinguished by a parallel process z.

3.1 Failure semantics

It has been shown in [BKO88] that in the synchronous case of ACP with one-to-one communi-
cation failure semantics ([BHR84]) is fully abstract with respect to trace equivalence. We will
show how to modify it so that this property is maintained. We first construct the failure model
for bags and then we show how to adapt it to the case of queues.

Let us first show why the standard failure model is not fully abstract.

Example 3.3 Figure 7 shows three examples of pairs of processes , y which are not identified
by the standard failure model; yet their traces are the same in every context.

The main reason why the expressions ¢ and y in Figure 7 are trace-congruent is that the
independent actions are always enabled regardless of the state. This is not true for the input

actions.

Example 3.4 Figure 8 shows that the input counterparts z’ and 3’ of the processes z and yin
Figure 7 can be distinguished by a parallel process z. In all cases there is a trace generated by
pe(y' 1| 2), which is not generated by ué(=' || 2).

The relevant information is associated with the resting points, those points from where the
process can only proceed by input actions, and consists of the trace which leads to such a point
and the state which make such a point stable, i.e., none of the initial input actions are enabled.
As such, we can represent a state by a subset of the complement of the ready set, i.e., the set
of initial actions, associated with a resting point. We call such a representation a refusal set.
However, the intuition is that when an input action c|d occurs in the refusal set this indicates
that the value d is available on channel c.

Deﬁnition. 3.5 The failure set of z is
Flz] = {(s,R)| 3y.z —» y, Init(y) C Dep, R C Dep \ Init(y)}
where Init(z) = {v| Jy. =z - y}. '
The relation =, is the equivalence induced by the failure sets, i.e.

2 =y iff Fle] = Fls]

10

GI a a
1
:T/ Wq ctd etd

2

A A

Figure 7: Examples of trace-congruent processes z, y with different standard failure semantics.

11

z y z distinguishin,

trace

GI a & CTdI a-cfid
1
;V w«i cld eld

] SN
2
:’T/wfi ;Vyield

aI a & § a
3
ﬁy K cld b

Figure 8: Examples of processes z’, y’ which can be distinguished by a process z.

12

This relation = is actually a congruence. To show this, it is sufficient to prove that the definition
of I is compositional with respect to all the operators of the language, i.e. every operator of
the language has a semantical counterpart. We give only the definition for action prefixing and
encapsulation, the other operators are as in the standard case.

Definition 3.6 Let P, Q range over the domain of F.

{(us, R) | (s, R) € P} if u € Dep
Prefixing u- P =
{(us,R)| (s,R) € P} U {(X\,R)| R C Dep\ {u}} otherwise,

Encapsulation. We first define the operator g7 : Act* — Act* U Act*§ as the operator on
traces which transforms communication actions on ¢ into completed ones, and the auxiliary
operator S5t : Act* — State which computes the current state (on c) at every point of

the trace:

BZ(N) = A Stz (A) = o

B (us) = u-jZ(s) St (us) = Sti(s) ifus#ecldcld
p(cld-s) = cftd-pZ(s) StZ(cld-s) = StI(s) if o' = put(o,d)
fgleld-s) = cld-jg'(s) StZ(cld-s) = StZ'(s) if o' = get(o,d) #£1

a2 (cld - 8) § Sti(cld-s) = 1 if get(o,d) =1

Next we extend {12 on pairs as follows:

g (P) = {{u(s),R)| (s, R') € P.
RCR'U{c|d| de D},
St7(s) #£1,
(cld ¢ R' = StZ(s-cld) =1)}

The failure semantics is correct with respect to the traces, in fact T(z) = {s| (s, Dep) € F[z]}.
Since =g is a trace-respecting congruence, it is at least as fine as =5 (which, by definition, is
the maximal trace-respecting congruence).

© 3.2 Axioms

We now present the axioms to add to aprPA;,, in order to obtain a complete axiomatization of
the failure semantics introduced above.

In the synchronous case a complete axiomatization for failure semantics has been obtained by
adding to the theory of ACP the ready axioms and the failure axiom ([BK088]) which, restricted
to the case of aprPAj, are respectively the axioms R and § in Table 3. Qur failure semantics is at
least as abstract as that semantics in [BKO88], in fact it can be retrieved by considering (only)
those pairs in which the refusal set contains all independent actions. Therefore the axioms R
and S are valid in our semantics. On the other hand, our semantics is strictly more abstract
because it cancels branching points from which an independent action exits. Axiomatically this
is modeled by factorizing the plus operator with respect to the independent actions: see axiom
I in Table 3, where i stands for any independent action, i.e. i € Act\ C|.

Note that if we generalize 7 in the axiom I to be any action we obtain a system equivalent to
the one presented in [vGla90] as the axiomatization of (completed) trace semantics for aprPA;.

13

R u(vzy+yp)tu(ves+ys) = u(ves vz +y) tu(ves vz +2)
S uztu(y+z) =uvetu(zt+y)+ul(y+2)

I u(izt+y) = u(izt+y)tuiz

Table 3: The failure axioms for asynchronous communication.

Theorem 3.7 (Completeness) For all 2,y € Ezp we have

z =y ff aprPA; ,U{R,$,I}Fe=y

3.3 Full abstraction of failure semantics

In this section we show how to specialize the failure semantics given above to the cases of random
access (bags) and sequential access (queues).

Bags. In the case of bags the fully abstract semantics is just the failure semantics F.
Proposition 3.8 (Full abstraction) If channels are bags then =, C =.

Corollary 3.9 If channels are bags then for z,y € Fxp the following are equivalent.

1L z=y,

2. 2=y,

3. aprPA; ,U{R,S,I} Fz =y.

Queues. The distinguishing feature of sequential access is that only one of the items stored in
a channel can be read and consumed. As a consequence, the failure semantics as defined above
is not fully abstract. For instance, it distinguishes the processes ¢ = a-¢ldy + a-cldy + a-cld;
and y = a(cldy + clds) +.a(cldy + clds) + a(clds + c|di) which in case of sequential access
are observationally identical. Since for each channel only one item is relevant for the observable
behaviour of a process, we must consider only those refusal sets in which no more than one input
on the same channel is present.

Definition 3.10 The queue failure set of z € Fzp is
Flz] = {(s,R) € F[z] | cld,cld € R = d =d'}

Let = _, be the associated equivalence relation. It is possible to show that = _ is a congruence
and that it is as coarse as =;,. We will specify now a subset of the language for which the
completeness holds. Consider the subset Ezp’ of expressions in which an input action on a
channel ¢ can occur only in contexts of the form Ygepec|d-z4. So, the typical feature of
this sublangunage is that it cannot perform anymore a blocking test on the presence of a specific

14

datum. Expressions of this forms are used in Process Algebra to implement ‘input on a variable’,
i.e. C5P-like actions of the form c|V - z[V], where V is a variable of type D. For expressions in
Ezp’ the semantics F and F? are the same, i.e. RR[z] = F[y] iff Flz] = F[y]. Therefore we
obtain:

Corollary 3.11 If channels are queues then for z,y € Ezp’ the following are equivalent
1 z= ' Ur

TS Y,

=Y,

aprPA; ,U{R,S,I} Fz =y.

ot e

4 Abstraction from communication

In this section we investigate an axiomatic characterization of the proper behaviour of a process,
i.e., we want to encapsulate all communications and treat them as invisible (silent) steps. To
this end we extend the set Act to contain a special internal action 7, which corresponds to
the standard notion of silent step in languages like CCS and ACP. In the following, we will
use the notation u(z) as an abbreviation for the encapsulation of the process z with respect
to all channels, with initial content empty, i.e., if C = {c1,...,¢,}, then p(z) = pg, ...pc ().
Furthermore, we use the notation p(z) to denote the process = where all the completed actions
are renamed into 7. To define the proper traces we need an operator a which removes from a
trace s € Act® all the 7 actions. The proper traces of a process are then defined as follows:

T(z) = aoT(p(n(<)))

The relation ~, is the equivalence induced by the proper traces:

y, y iff T(z) = T(y)

T ~
The congruence relation =, is the maximal proper-trace-respecting congruence:

z=p y iff YC[]. Clz] ~, Cly]

We now investigate an axiomatization for =p . The axioms for 7-abstraction which have
been studied for the failure semantics (and therefore for the maximal proper-trace-respecting
congruence) in the presence of synchronous communication ([BKO88)) are, of course, still valid in
our asynchronous case. Restricted to the case of action prefixing only (i.e. no general sequential
composition) these axioms are the ones shown in Table 4.

Note that the presence of T1 and T2 makes the axiom S of Table 3 superfluous (cf. [BKO088]).

However, these axioms for 7-abstraction are not complete in the presence of independent -
actions. When 7 is prefixed to an independent action i, it can be deleted. Formally, this is
captured by the axiom in Table 5. In the presence of the axiom T3, the axiom I of Table 3 can
be shown to be derivable.

Furthermore we observe that processes like ¢c{d-a and c¢ld-a + a-cld are now observably
equivalent. This identification is captured axiomatically by the law in Table 6.

Note that the reverse of this law is not correct (an output cannot be anticipated). For
instance, a-c¢fd and @-¢Td+ cTd-a are not observably equivalent. A distinguishing context

15

Tl urte = uz

T2 re2+y =7124+7(z+y)

Table 4: T-abstraction laws for the failure semantics in the synchronous case.

T3 +iz=1iz

Table 5: Additional T-abstraction law for independent actions.

is C[] = ¢]d-b || []. The process C[a-c]d] will produce ab only, whereas Cla-cld + ¢ld - a] will
produce additionally ba.

In the full paper we show that the above axiom system completely characterizes T, in the
case of queues.

Theorem 4.1 (Completeness for queues) For all 2,y € Ezp' we have

¢=p y iff aprPA;,U{R,T1-3,0P}Fz=y

However, when we consider abstraction from communication in the case of bags, many
additional identifications have to be made. First we observe that we have to abstract from the
order between (intended) output actions, i.e., the processes c]d-eld’ and eld’ - c]d are observably
equivalent. A simple axiomatization of this phenomenon can be given in terms of multisets of
output actions, so-called combined actions, which we denote by . The intended meaning of a
combined action is that of a concurrent execution of its components. In Table 7 the multiset
union is denoted by U. _

Another class of identifications stems from the fact that in the case of bags we are not in
general able to detect whether a process intends to read an item.

Example 4.2 The process a - c|d is observably equivalent to the process a - ¢/d+a. Note that in
the case of queues these processes can be distinguished by the process c{d-cld’ - cld’ - b (d#d),
which will always produce b when put in parallel with the first process, while the input action
cld’ can be blocked in case the second process chooses the branch a.

OP cld(az+y)=cld(az+y)+a-cld-z

Table 6: Delay axiom for output actions.

16

O cez = (cUue)e

Table 7: Abstraction axiom for output actions.

I1 clez+y) = clez+y)+(cUe)z
2 clezt+y)+ey = (cUe)z+cy

I3 u(cd+e) = u(cbd+z)+tuz

4 ulczty)=ulcz+y)+tulcoz+y)

5 Xu- Ejgij zi; = 25U - ng_,-j z;; +u- Yrey, 2

(Vf el—J agk - Ui_c..if(;))

Table 8: Abstraction axioms for input actions.

Example 4.3 Another characteristic example is that of the process c|d-e|d’ + e|d’ which is
observably equivalent to e|d’-c|d + c|d. Note that c|d-e|d’ and e|d’-c|d are not observably
equivalent: c|d-eld’ in parallel with ¢fd-c|/d-a can produce the empty sequence while putting
cld-cld - a in parallel with e|d’ - c|d will always produce a.

These and other related identifications we describe in terms of combined input actions, which
we denote by c. Below we give an informal explanation of the axioms of Table 8.

Axiom I1 introduces combined input actions, and states that, when both ¢ and e are enabled,
the process ¢ (e z+y) can always select the branch e z. It should be noted that the equality
cleg®o+ &1 21) = (cU eg) oo + (cU eg) z1 does mot hold: the first process, when put in
parallel with €-c-a can generate the empty sequence by “stealing” the data.

Axiom I2 allows to determine an order in the input actions of ¢ U e, say, executing ¢ before e,
in the presence of an alternative starting with c.

Axiom I3 can be informally justified as follows: suppose the process uz deadlocks after . In
that case the process u(cd + z) either deadlocks immediately after u or it can select the
branch ¢ § and so will deadlock eventually.

Axiom I4 The auxiliary operator o in this axiom reveals the “hidden eager nature” of a process.
It is axiomatized in Table 9.

Axiom I5 Here i is to be understood to range over I, j over J, and k over K C {i; | i €
I,7 € J}. This axiom can be justified as follows: suppose the process Yrep, z deadlocks

17

co(z+y)=coztcoy

Table 9: Axioms for the operator o.

OI c(ezty) = clez+y)+tece
OP ¢(az+y) = claz+y)+ace

PI a(czty) = alcz+y)+caz

Table 10: Abstraction from the order of events.

after u, so all the ¢, are disabled. This deadlock possibility then should be covered by a
process u- Xjc;. 7y, that is, all the ¢;. are disabled, for some i. Otherwise we would have
that there exists foreveryic Iaje J such that ¢;. is enabled, which, in its turn, would
imply the existence of an enabled c.

The axioms of Table 10 allow abstraction from the order of certain events.

The first axiom of Table 11 allows the abstraction from an output action immediately followed
by its corresponding input. The second axiom is a slightly stronger version of the first one. The
last axiom states that putting a read datum immediately back, is essentially, unobservable.

In the full paper we prove the completeness of the above axiom system for normal processes,
i.e., processes in which there occur no combined input or output actions.

T4 c(cz+y) = clczty)te
T5 eiz+y)+rz= ciz+y+cz)

T6 z==z+cTz

Table 11: Abstraction from cancelled output and input actions.

18

Theorem 4.4 (Completeness for bags) For all normal processes ¢ and y we have

z=p y off aprPA;,U{R,T1-6,0,I1-5,0L,0P,PI}Fz=y

The main idea of this proof is the semantic modelling of the additional identifications intro-
duced by each axiom by means of a corresponding closure condition. We then show that for the
resulting compositional model F2 the following holds: for every process z there exists a process
y such that F2[z] = F[y] and z = y is derivable from the axioms.

References

[BB91]

[BHRS4]

[BKS6]

[BKOSS]

[BKPRO1]

[BKTS5]

[BP90]

[BP91]

[vGla90]

[Jon85]

[Jos90]

J.C.M. Baeten and J.A. Bergstra. A survey of axiom systems for process algebras.
Tech. rep., (UVA), Amsterdam, 1991.

5.D. Brookes, C.A.R. Hoare, and W. Roscoe. A theory of communicating sequential
processes. Journal of ACM, 31:499-560, 1984.

J.A. Bergstra and J.W. Klop. Process algebra: specification and verification in
bisimulation semantics. In Mathematics and Computer Science IT, CWI Monographs,
pp. 61 — 94. North-Holland, 1986.

J.A. Bergstra, J.W. Klop, and E.-R. Olderog. Readies and failures in the algebra of
communicating processes. SIAM J. on Computing, 17(6):1134 - 1177, 1988.

F.S. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.M. Rutten. The failure of failures:
Towards a paradigm for asynchronous communication. In J.C.M. Baeten and J.F.
Groote, editors, Proc. of CONCUR 91, LNCS 527, pp. 111 — 126. Springer-Verlag,
1991.

J.A. Bergstra, J.W. Klop, and J.V. Tucker. Process algebra with asynchronous
communication mechanisms. In §.D. Brookes, A.W. Roscoe, and G. Winskel, editors,
Proc. Seminar on Concurrency, LNCS 197, pp. 76 — 95. Springer-Verlag, 1985.

F.5. de Boer and C. Palamidessi. Concurrent logic languages: Asynchronism and
language comparison. In Proc. of the North American Conference on Logic Program-
ming, pp. 1756-194. The MIT Press, 1990.

F.S. de Boer and C. Palamidessi. A fully abstract model for Concurrent Con-
straint Programming. In S. Abramsky and T.S.E. Maibaum, editors, Proc. of TAP-
SOFT/CAAP,LNCS 493, pp. 296-319. Springer- Verlag, 1991.

R.J. van Glabbeek. The linear time - branching time spectrum. In J.C.M. Baeten and
J.W. Klop, editors, Proc. of CONCUR 90, LNCS 458, pp. 278 — 297. Springer-Verlag,
1990.

B. Jonsson. A model and a proof system for asynchronous processes. In Proc. of the
4th ACM Symp. on Principles of Distributed Computing, pp. 49-58, 1985.

M.B. Josephs. Receptive process theory. Tech. rep. CS 90/8, Eindhoven University
of Technology, 1990. To appear in Acta Informatica.

19

VL.B. Josephs, C.A.R. Hoare, and He Jifeng. A theory of a
Fech. rep., Oxford University Computing Laboratories, 1990.

7. Kahn. The semantics of a simple language for parallel

ormation Processing 74: Proc. of IFIP Congress, pages 471-
Vorth-Holland.

/.A. Saraswat. Concurrent Constraint Programming lan
sarnegie-Mellon University, January 1989. To be published b

5.Y. Shapiro. The family of Concurrent Logic Programming]
nuting Surveys, 21(3):412-510, 1989.

20

ocesses.

In In-
¢, 1974,

thesis,
388,

d Com-

