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1 Introduction

Interest in the theory and applications of rewriting has been growing rapidly,
as evidenced in part by four conference proccedings [16, 27, 43. 74]: four
workshop proceedings [1, 53, 81, 86]: five special journal issues [6. 28, 44,
75, 97]; more than ten surveys [3, 9, 29, 30, 49. 63, 64, 73, 85, 90, 91]; an
edited collection of papers [2]; four monographs [4, 13, 62, 72]: and seven
books (four of them still in progress) [8, 10, 37, 61. 67. 84, 93].
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To encourage and stimulate continued progress in this area, we have
collected (with the help of colleagues) a number of problems that appear
to us to be of interest and regarding which we do not know the answer.
Questions on rewriting and other equational paradigms have been included;
many have not aged sufficiently to be accorded the appellation “open prob-
lem”. We have limited ourselves to theoretical questions, though there are
certainly many additional interesting questions relating to applications and
implementations.

Previous lists of questions in this area include one distributed by Leo
Marcus and one of us (Dershowitz) at the Sixth International Conference on
Automated Deduction (New York, 1982), the questions posed in a set of lec-
ture notes on “Term Rewriting Systems” by one of us (Klop) for a seminar on
reduction machines (Ustica, 1985; see [63]) another list by one of us (Jouan-
naud) in the Bulletin of the Furopean Association for Theoretical Computer
Science (1987) [45], several in Larry Wos’ problem column for the Journal
of Automated Reasoning (1989) [103, 104], several general and specific is-
sues raised in Pierre Lescanne’s invited talk at the International Symposium
on Trends in Computer Algebra (Bad Neuenahr, 1987) [73], and electronic
postings to the distribution list (rewriting@crin.crin.fr) maintained by
Pierre Lescanne. We use primarily terminology and notation of [29].

2 Problems

2.1 Rewriting

Problem 1. An important theme that is largely unexplored is definability
(or implementability, or interpretability) of rewrite systems in rewrite sys-
tems. Which rewrite systems can be directly defined in lambda calculus?
Here “directly defined” means that one has to find lambda terms represent-
ing the rewrite system operators, such that a rewrite step in the rewrite
system translates to a reduction in lambda calculus. For example, Com-
binatory Logic is directly lambda definable. On the other hand, not every
orthogonal rewrite system can be directly defined in lambda calculus. Are
there universal rewrite systems, with respect to direct definability? (For
alternative notions of definability, see [84].)

Problem 2 (M. Venturini-Zilli [100]). The reduction graph of a term is the
set of its reducts structured by the reduction relation. These may be very
complicated. The following notion of “spectrum” abstracts away from many



inessential details of such graphs: If R is a term-rewriting system and ¢t a
term in R, let Spec(t), the “spectrum” of ¢, be the space of finite and
infinite reduction sequences starting with ¢, modulo the equivalence between
reduction sequences generated by the following quasi-order: ¢t = t; —p
tg o - <t=1t) -pty —pg - if for all 7 there is a j such that t; =% t;-.
What are the properties of this cpo (complete partial order), in particular for
orthogonal (left-linear, non-overlapping) rewrite systems? What influence
does the non-erasing property have on the spectrum? (A rewrite system is
“non-erasing” if both sides of each rule have exactly the same variables.)
The same questions can be asked for the spectrum obtained for orthogonal
systems by dividing out the finer notion of “permutation equivalence” due
to J.-J. Lévy (see [15, 62, 64]).

Problem 3 (D. Kapur). A term t is “ground reducible” with respect to a
rewrite system R if all its ground (variable-free) instances contain a redex.
Ground reducibility is decidable for ordinary rewriting (and finite R) [21, 55,
89], but »™" is the best known upper bound in general, while 2dnlogn and
2cn/1ogn are the best upper and lower bounds, respectively, for left-linear
systems, where n is the size of the system R and c, d are constants [55]. Can
these bounds be improved?

Problem 4. One of the outstanding open problems in typed lambda calculi
is the following: Given a term in ordinary untyped lambda calculus, is it
decidable whether it can be typed in the second-order A2 calculus? See [9,
41].

Problem 5 (A. Meyer, R. de Vrijer). Do the surjective pairing axioms

Di(Dzy) = =z
Dy(Dzy) = y
D(D;z)(Dsyz)

conservatively extend AfB7n-conversion on pure untyped lambda terms? More
generally, is surjective pairing always conservative, or do there exist lambda
theories, or extensions of Combinatory Logic for that matter, for which
conservative extension by surjective pairing fails? (Surjective pairing is con-
servative over the pure A3-calculus; see [101]). Of course, there are lots of
other A3, indeed AB7, thcories where conservative extension holds, simply
because the theory consists of the valid equations in some A model in which
surjective pairing functions exist, e.g., Doo.)



2.2 Normalization

Problem 6 (A. Middeldorp [79]). If R and S are two term-rewriting sys-
tems with disjoint vocabularies, such that for each of R and S any two
convertible normal forms must be identical, then their union R U S also en-
joys this property [79]. Accordingly, we say that unicity of normal forms
(UN) is a “modular” property of term-rewriting systems. “Unicity of nor-
mal forms with respect to reduction” (UN™) is the weaker property that any
two normal forms of the same term must be identical. For non-left-linear
systems, this property is not modular. The question remains: Is UN™ a
modular property of left-linear term-rewriting systems?

Problem 7 (H. Comon, M. Dauchet). Is it possible to decide whether the
set of ground normal forms with respect to a given (finite) term-rewriting
system is a regular tree language? See [36, 69].

Problem 8 (A. Middeldorp). Is the decidability of strong sequentiality for
orthogonal term rewriting systems NP-complete? See [42, 65].

Problem 9 (A. Middeldorp). Thatte [96] showed that an orthogonal
constructor-based rewrite system is left-sequential if and only if it is strongly
sequential. Does this equivalence extend to the whole class of orthogonal
term-rewriting systems? If not, is left-sequentiality a decidable property of
orthogonal systems? See also [65].

Problem 10 (J. R. Kennaway). Let a term-rewriting system (or more gen-
erally, a system with bound variables [64]) have the following properties: it
is “finitely generated” (has finitely many function symbols and rules), it is
“full” (its terms are all that can be formed from the function symbols), and
it 1s Church-Rosser. Does it follow that it has a recursive, one-step, nor-
malizing reduction strategy? (There are counterexamples if any of the three
conditions is dropped.) Kennaway [56] showed that for “weakly” orthogonal
systems the answer is yes. So, any counterexample must come from the
murky world of non-orthogonal systems.

Problem 11 (A. Middeldorp [80]). A conditional term-rewriting system
has rules of the form p = [ — r, which are only applied to instances of
[ for which the condition p holds. A “standard” (or “join”) conditional sys-
tem is one in which the condition p is a conjunction of conditions u | v,
meaning that v and v have a common reduct (are “joinable”). Is unicity of
normal forms (UN) a modular property of standard conditional systems?



2.3 Confluence

Problem 12. What is the complexity of the decision problem for the con-
fluence of ground (variable-free) term-rewriting systems? Decidability was
shown in [25, 87]; see also [24].

Problem 13 (J.-J. Lévy). By a lemma of G. Huet [39], left-linear term-
rewriting systems are confluent if, for every critical pair ¢t = s (where t =
ulro] « u[lo] = g7 — dr = s, for some rules | — r and g — d), we have
t =l s (¢ reduces in one parallel step to s). (The condition ¢ —l s can
be relaxed to t —ll 7 I s for some r when the critical pair is generated
from two rules overlapping at the roots; see [98].) What if s —ll'¢ for every
critical pair t & s7 What if for every ¢t = s we have s —= t? (Here —~ is the
reflexive closure of —.) What if for every critical pair ¢ = s, either s —= ¢ or
t —= s7 In the last case, especially, a confluence proof would be interesting;
one would then have confluence after critical-pair completion without regard
for termination. If these conditions are insufficient, the counterexamples will
have to be (besides left-linear) non-right-linear, non-terminating, and non-
orthogonal (have critical pairs). See [64].

Problem 14. Parallel rewriting with orthogonal term-rewriting systems is
“subcommutative” (a “strong” form of confluence). Under which interesting
syntactic restrictions do conditional rewrite systems enjoy the same prop-
erty? It is known that orthogonal “normal” conditional rewriting systems
(with conditions w —' v, where v is a ground normal form) are confluent,
while “standard” (join) ones are not [14].

Problem 15 (Y. Toyama). Consider the following extension of Combina-
tory Logic (CL) with constants 7' (true), F (false), C' (conditional):

Iz — «z
Ky — =z
Szyz — (z2)(yz)
CTzy — =z
CFzy — y
ze"y=> Czzy — =«

Is this (non-terminating) “semi-equational” (or “natural”, as such are called
in [33]) conditional rewrite system confluent? Note that if we take the above
system plus the rule z «* y = Czzy — y, the resulting conditional rewrite
system is confluent (cf. [64, 102]).



Problem 16 (Y. Toyama). For a “normal” conditional term-rewriting sys-
tem R={s ='t=1— 7}, where ¢ must be a ground normal from of s, we
can consider the corresponding semi-equational conditional rewrite system
R'={s &=~ t=1— r}. Under what conditions does confluence of R’ imply
confluence of R? In general, this is not the case, as can be seen from the
following non-confluent system R (due to A. Middeldorp):

a—b
a—c

b—'c= boec

Problem 17 (R. de Vrijer). Is the following semi-equational conditional
term rewriting system (a linearization of Combinatory Logic extended with
surjective pairing) confluent:

Iz

Kzy

Szyz

D1 (Dzy)

Dy(Dzy)

T oy = D(Dz)(Day)
<"y = D(Dz)(Day)

HQH’H‘HH
&
~—
—
<
N
~

A

<

If yes, does an effective normal form strategy exist for it? See [66, 101].

Problem 18 (J. R. Kennaway, J. W. Klop, M. R. Sleep, F.-J. de Vries [58]).
If one wants to consider reductions of transfinite length in the theory of or-
thogonal term-rewriting systems, one has to be careful. In [57, 58] it is
shown that the confluence property “almost” holds for infinite rewriting
with orthogonal term-rewriting systems. The only situation in which “in-
finitary confluence” may fail is when collapsing rules are present. (A rule
t — s is “collapsing” if s is a variable.) Without collapsing rules, or even
when only one collapsing rule of the form f(z) — z is present, infinitary
confluence does hold. Now the notion of infinite reduction in [58] is based
upon “strong convergence” of infinite sequences of terms in order to define
(possibly infinite) limit terms. In related work, Dershowitz, et al. [31] use a
more “liberal” notion of convergent sequences (which is referred to in [58] as
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“Cauchy convergence”). What is unknown (among other questions in this
new area) is if this “almost-confluent” result is also valid for the more liberal
convergent infinite reduction sequences?

2.4 Termination

Problem 19 (J.-J. Lévy). Can strong normalization (termination) of the
typed lambda calculus be proved by a reasonably straightforward mapping
from typed terms to a well-founded ordering? Note that the type struc-
ture can remain unchanged by B-reduction. The same question arises with
polymorphic (second-order) lambda calculus.

Problem 20 (Y. Metivier [78]). What is the best bound on the length of
a derivation for a one-rule length-preserving string-rewriting (semi-Thue)
system? Is it O(n?) (n is the size of the initial term) as conjectured in [78],
or O(n*) (k is the size of the rule) as proved there.

Problem 21 (M. Dauchet). Is termination of one linear (left and right)
rule decidable? Left linearity alone is not enough for decidability [23].

Problem 22. Devise practical methods for proving termination of (stan-
dard) conditional rewriting systems. Part of the difficulty stems from the
interdependence of normalization and termination.

Problem 23 (E. A. Cochin [20]). The following system [29], based on the
“Battle of Hydra and Hercules” in [59], is terminating, but not provably so
in Peano Arithmetic:

h(z,e(z)) — h(c(z),d(z,z))
d(z,9(0,0)) — €(0)
d(z,9(z,y)) — gle(z),d(z,9))
d(c(2),9(9(x,9),0)) — g(d(c(2), 9(z,¥)), (2, 9(z,y)))
gle(z),e(y)) — elg(z,y))

Transfinite (€g-) induction is required for a proof of termination. Must
any termination ordering have the Howard ordinal as its order type, as
conjectured in [20]?

Problem 24. The existential fragment of the first-order theory of the “re-
cursive path ordering” (with multiset and lexicographic “status”) is decid-
able when the precedence on function symbols is total [22, 52], but is un-
decidable for arbitrary formulas. Is the existential fragment decidable for
partial precedences?



2.5 Validity

Problem 25 (R. Treinen [99]). Is the theory of multisets (AC) completely
axiomatizable? In other words, is it decidable whether a first-order for-
mula containing only equality as predicate symbol is valid in the algebra
T(F)/AC(F)? It is known that the T3 fragment is undecidable when there
are at least one unary function symbol (besides the AC one) and one con-
stant; the X1 fragment is decidable; the full theory is decidable even when
there are no other symbols (besides constants) [99].

Problem 26. Let R be a term-rewriting or combinatory reduction system.
Let “decreasing redexes” (DR) be the property that there is a map # from
the set of redexes of R, to some well-founded linear order (or ordinal), sat-
isfying:

e if in rewrite step ¢ —p ¢’ redex 7 in ¢t and redex 7 in ¢ are such that
7’ is a descendant (or “residual”) of r, then #r > #r';

e if in rewrite step ¢ — ¢’ the redex 7 in t is reduced and 7' in ¢ is
“created” (t' is not the descendant of any redex in t), then #r > #r'.

Calling #r the “degree” of redex r, created redexes have a degree strictly less
than the degree of the creator redex, while the degree of descendant redexes
is not increased. The typical example is reduction in simply typed lambda
calculus. In [62] it is proved that for orthogonal term- rewriting systems
and combinatory reduction systems, decreasing redexes implies termination
(strong normalization). Does this implication also hold for non-orthogonal
systems? If not, can some decent subclasses be delineated for which the
implication does hold?

Problem 27 (P. Lescanne). In [76] an extension of term embedding, called
“well-rewrite orderings”, was introduced, leading to an extension of the con-
cept of simplification ordering. How can those ideas best be extended to form
the basis for some new kind of “recursive path ordering”?

Problem 28 (P. Lescanne). Polynomial and exponential interpretations
have been used to prove termination. For the former there are some reason-
able methods [12, 70] that can help determine if a particular interpretation
decreases with each application of a rule. Are there other implementable
methods suitable for exponential interpretations?

Problem 29. Any rewrite relation commutes with the strict-subterm rela-
tion; hence, the union of the latter with an arbitrary terminating rewrite



relation is terminating, and also “fully invariant” (closed under instantia-
tion). Which is the finest (maximal) relation with these properties? (It
is not subterm.) Is “encompassment” (“containment”, the combination of
subterm and subsumption) the finest relation which preserves termination
(without full invariance)?

Problem 30 (W. Snyder). What are the complexities of the various term
ordering decision problems in the literature (see [26])? Determining if a
precedence exists that makes two ground terms comparable in the recur-
sive path ordering is NP-complete [68], but an inequality can be decided
in O(n?), using a dynamic programming algorithm. Snyder [94] has shown
that the lexicographic path ordering can be done in O(nlogn) in the ground
case with a total precedence, but the technique doesn’t extend to non-total
precedences or to terms with variables.

Problem 31. Is there a decidable uniform word problem for which there
is no variant on the rewriting theme (for example, rewriting modulo a con-
gruence with a decidable matching problem, or ordered rewriting) that can
decide it—without adding new symbols to the vocabulary? There are de-
cidable theories that cannot be decided with ordinary rewriting (see, for
example, [95]); on the other hand, any theory with decidable word problem
can be solved by ordered-rewriting with some ordered system for some con-
servative extension of the theory (that is, with new symbols) [32], or with
a two-phased version of rewriting, wherein normal forms of the first system
are inputs to the second [11].

Problem 32. Is there a finite term-rewriting system of some kind for free
lattices?

Problem 33. Completion modulo associativity and commutativity (AC)
[88] is probably the most important case of “extended completion”; the
general case of finite congruence classes is treated in [47]. Adding an axiom
(Z) for an identity element, however, gives rise to infinite classes. This case
was viewed as conditional completion in [7], and solved completely in [50].
The techniques, however, do not carry over to completion with idempotence
(I) added; how to handle ACZI-completion effectively is open.

Problem 34. Ordered rewriting computes a given convergent set of rewrite
rules for an equational theory F and an ordering > whenever such a set R
exists for >, provided > can be made total on ground terms. Unfortunately,
this is not always possible, even if > is derivability (——)E) in R. Is there a
set of inference rules that will always succeed in computing R whenever R
exists for >?



2.6 Theorem Proving

Problem 35. Huet’s proof [40] of the “completeness” of completion is pred-
icated on the assumption that the ordering supplied to completion does not
change during the process. Assume that at step ¢ of completion, the ordering
used is able to order the current rewriting relation —g,, but not necessarily
— g, for £ < ¢ (since old rules may have been deleted by completion). Is
there an example showing that completion is then incomplete (the persisting
rules are not confluent)?

Problem 36 (H. Zhang). Since the work of Hsiang [38], several Boolean-
ring based methods have been proposed for resolution-like first-order theo-
rem proving. In [54], superposition rules were defined using multiple overlaps
(requiring unifications of products of atoms). It is unknown whether single
overlaps (requiring only unifications of atoms) are sufficient in these infer-
ence rules. Also, it is not known if unifications of maximal atoms (under a
given term ordering) suffice. (The same problem for Hsiang’s method was
solved positively in [82, 105].) In other respects, too, the set of inference
rules in [5, 54] may be larger than necessary and the simplification weaker
than possible.

Problem 37 (U. Reddy, F. Bronsard). In [19] a rewriting-like mechanism
for clausal reasoning called “contextual deduction” was proposed. It special-
izes “ordered resolution” by using pattern matching in place of unification,
only instantiating clauses to match existing clauses. Does contextual de-
duction always terminate? (In [19] it was taken to be obvious, but that
is not clear; see also [83].) It was shown in [19] that the mechanism is
complete for refuting ground clauses using a theory that contains all its
“strong-ordered” resolvents. Is there a notion of “complete theory” (like
containing all strong-ordered resolvents not provable by contextual refuta-
tion) for which contextual deduction is complete for refutation of ground
clauses?

2.7 Satisfiability

Problem 38 (J. Siekmann [92]). Is satisfiability of equations in the theory
of distributivity (unification modulo a distributivity axiom) decidable?

Problem 39. Rules are given in [46] for computing dag-solved forms of
unification problems in equational theories. The Merge rule z = s,z ~ t =
z = s,s =t given there assumes that s is not a variable and its size is less
than or equal to that of ¢. Can this condition be improved by replacing it
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with the condition that the rule Check* does not apply? (In other words, is
Check* complete for finding cycles when Merge is modified as above?)

Problem 40. Fages [35] proved that associative-commutative unification
terminates when “variable replacement” is made after each step. Boudet,
et al. [17] have proven that it terminates when variable replacement is post-
poned to the end. Does the same (or similar) set of transformation rules
terminate with more flexible control?

Problem 41. The complexity of the theory of finite trees when there are
finitely many symbols is known to be PSPACE-hard [77]. Is it in PSPACE?

The same question applies to infinite trees.

Problem 42 (H. Comon). Given a first-order formula with equality as the
only predicate symbol, can negation be effectively eliminated from an arbi-
trary formula ¢ when ¢ is equivalent to a positive formula? Equivalently, if
¢ has a finite complete set of unifiers, can they be computed? Special cases
were solved in [21, 71].

Problem 43. Design a framework for combining constraint solving algo-
rithms.

Problem 44 (H. Comon). “Syntactic” theories enjoy the property that a
(semi-) unification algorithm can be derived from the axioms [46, 60]. This
algorithm terminates for some particular cases (for instance, if all variable
occurrences in the axioms are at depth at most one, and cycles have no
solution) but does not in general. For the case of associativity and com-
mutativity (AC), with a seven-axiom syntactic presentation, the derivation
tree obtained by the non-deterministic application of the syntactic unifica-
tion rules (Decompose, Mutate, Merge, Coalesce, Check*, Delete) in [46] can
be pruned so as to become finite in most cases. The basic idea is that one
unification problem (up to renaming) must appear infinitely times on every
infinite branch of the tree (since there are finitely many axioms in the syn-
tactic presentation). Hence, it should be possible to prune or freeze every
infinite branch from some point on. The problem is to design such pruning
rules so as to compute a finite derivation tree (hence, a finite complete set
of unifiers) for every finitary unification problem of a syntactic equational
theory.

2.8 Additional Problems

Problem 45 (M. Venturini-Zilli). In [100] properties of reduction graphs
in lambda calculus are studied. Some reduction graphs are isomorphic to
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ordinals. For example, the reduction graph of (Az.y)((Az.zzz)(\z.222)) is
1somorphic to w+1. Which ordinals appear in this way as reduction graphs?

Problem 46 (D. Kapur). Ground reducibility of extended rewrite systems,
modulo congruences like associativity and commutativity (AC), is undecid-
able [55]. For left-linear AC systems, on the other hand, it is decidable [48].
What can be said more generally about restrictions on extended rewriting
that give decidability?

Problem 47. For reductions of transfinite length, a version of the Paral-
lel Moves Lemma can be proved if one consider only “strongly converging”
infinite reductions in the sense of [57, 58]. However, if one wants to con-
sider converging reductions, as in [31], then it is not difficult to construct a
counterexample, not to the infinite Parallel Moves Lemma itself, but to the
method of proof (cf. [57]). An infinite Parallel Moves Lemma might involve
a different notion of descendant.

Problem 48 (H.-C. Kong). Consider the following relation on strings over
an infinite set A of variables: ziz9- - T, — Y y2-- -y, if there exists a
renaming p : & — & such that z;p = y;, for 1 < j} < jo < - < jp < 1.
Is this “embedding” relation < a well-quasi-ordering (that is, must every
infinite sequence of strings contain two strings, such that the first embeds
in the second)?

Problem 49 (M. Hermann). Suppose ordinary completion (as in [29], for
example) is non-terminating for some initial set of equations E, completion
strategy, and reduction ordering. Must there be a finite depth N for E such
that for any n > N restricting the generation of critical pairs to overlaps
at positions that are no deeper than n in the overlapped left-hand side
(but otherwise not changing the strategy) also produces a non-terminating
completion sequence?

Problem 50. Combinations of typed lambda-calculi with term-rewriting
systems have been studied extensively in the past few years [18, 33, 34].
The strongest termination result allows first-order rules as well as higher-
order rules defined by a generalization of primitive recursion. Suppose all
rules for functional constant F follow the schema:

F([X],Y) = o[F(7[X],Y), ..., F(1m[X],Y),Y)]

where the (not necessarily disjoint) variables in X and Y are of arbitrary
order, each of I,71,...,7m is in T(F,{X}), v[z,Y] is in T(F,{Y,z}), for
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new variables z of appropriate types, and 7i,...,7, are each less than [
in the multiset extension of the strict subterm ordering. If T(F, &) is the
term-algebra which includes only previously defined functional constants—
forbidding the use of mutually recursive functional constants—termination is
ensured [51]. Does termination also hold when there are mutually recursive
definitions? Does this also hold when the subterm assumption is unfulfilled?
(In [51] an alternative schema is proposed, with the subterm assumption
weakened at the price of having only first-order variables in X.) Questions of
confluence of combinations of typed lambda calculi and higher-order systems
also merit investigation.

3 Afterword

This list is by no means exhaustive. Please send any contributions by elec-
tronic or ordinary mail to the first author. We will periodically publicize
new problems and solutions to old ones.
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