1991

D.J.N. van Eijck

Quantification and partiality

Computer Science/Department of Software Technology Report CS-R9152 December

CWI vationaal institout voor onderzaek op het gebied van wiskunde en informatica

CWI is the research institute of the Stichting Mathematisch Centrum, which
was founded on February 11, 1946, as a non-profit institution aiming at the
promotion of mathematics, computer science, and their applications. It is
sponsored by the Dutch Government through the Netherlands organization
for scientific research (NWO).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Quantification and Partiality

Jan van Eijjck

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
&
OTS, Trans 10, 3512 JK Utrecht, The Netherlands

Abstract

Quantification can involve partiality in several ways. Quantifiers loaded with presuppositions give
rise to partiality by introducing truth value gaps. The study of quantifiers in contexts of incomplete
information involves a quite different kind of partiality. This paper investigates the behaviour of
binary quantifiers in settings of incomplete information, i.e., in partial models.

The framework to handle informational partiality that is presented in this paper is relevant for the
behaviour of quantifiers in the natural language semantics of propositional attitudes and perception
reports, for theories of vagueness in natural language and for semantic accounts of natural language
fragments containing a truth predicate.

First, the constraints on binary relations on a universe that make these relations qualify for the
honorific title guantificational are generalized to the partial case. Special consideration is given to
quantifiers defined via supervaluation from quantifiers on total models. Next, properties of partial
quantifiers are studied, with particular emphasis on behaviour under growth of information and
growth of domain.

1985 Mathematics Subject Classification: 03B65, 03C80.

CR Categories: F.4.1,1.2.4, 1.2.7.

Keywords and Phrases: semantics of natural language, partial interpretation, knowledge representa-
tion languages.

1 Introduction

Quantifier interpretations for natural language determiners like all, some, most, ezactly two, at least three
and at most five, pick out binary relations on sets of individuals, on arbitrary universes E. Notation:
QrAB. We call A the restriction of the quantifier and B its body. Quantifier relations satisfy the following
conditions [van Benthem 1986a]:

EXT-T Forall A,BC EC E': QsAB < Qg AB.
CONS-T Forall 4, BC E: QsAB < QgpA(AN B).
ISOM-T If f is a bijection from F to E’', then Qg AB < Qg f[A]f[B].

The T suffix indicates that these are intuitions for total quantifiers; below, in Section 3, new versions
will be proposed that also cover the cases where only partial information concerning the extensions of
the body and the restriction of a quantifier is available.

A relation observing EXT (eztension) is stable under growth of the universe: given sets A and B,
only the objects in the minimal universe A U B matter. CONS (conservativity) expresses that the first
argument of a quantifier relation sets the stage. CONS plus EXT permit one to suppress the parameter
E; taken together the two conditions ensure that the truth of QAB depends only on A and A N B.
ISOM (isomorphy) expresses that only the cardinalities of the sets A and B matter. If Q satisfies EXT,

Report CS-R9152

ISSN 0169-118X

Cwi

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

CONS and ISOM, then the truth of QAB depends only on the cardinal numbers #A4 and #(4 N B),
or equivalently, provided that FE is finite, on #(A — B) and #(4A N B).

A relation @ between A and B satisfying EXT, CONS, and ISOM can be characterized as a subset
of the following tree of numbers:

#A=0 0,0

#A4=1 1,0 0,1

#A=2 2,0 1,1 0,2

#A=3 3,0 2,1 1,2 0,3
#A=4 4,0 3,1 2,2 1,3 0,4

#A=5 50 4,1 3,2 2,3 1,4 0,5

The first number in each number pair is #(A — B), the second one #(A N B). The numerical trees can
be extended to cover infinite cases (#4 = Ro, #4 = Ry,...).

An important subclass of generalized quantifiers is the class that exhibits monotonicity of some sort
in one or both of its arguments. Here is the definition of right upward monotonicity:

MONT-T If QAB and B C B, then QAB'.
Examples are all, some, at least five. There is a corresponding tree pattern property:
e If a node has a +, then all nodes to the right on the same row have +.
A quantifier is right monotone in the downward direction if the following holds:
MON|-T If QAB and B’ C B then QAB'.
Examples: not all, no. Corresponding tree pattern property:
e If a node has a +, then all nodes to the left on the same row have +.
As to monotonicity in the first argument, the definitions of {MON and |MON are similar to the above:

TMON-T If QAB and A C A’ then QA’'B.
Corresponding tree property: If a node has a +, then all nodes in the downward triangle with this
node as its apex have +.

IMON-T If QAB and A’ C A then QA’B.
Corresponding tree property: If a node has a +, then all nodes in the upward triangle with this
node as its apex have +.

Examples of TMON quantifiers are some and not all. All and no are |MON. Applications of these
notions in natural language semantics can be found in [Zwarts 1986].

We will put generalized quantifiers in a three valued setting. In such a setting, quantifiers themselves
can introduce truth value gaps, but they can also have ‘three valued sets’ as arguments. Our framework
deals with both these kinds of partiality.

2 Varieties of Partiality

One way in which quantifiers can be partial is by introducing truth value gaps. The definite description
the n A are B can be viewed as a partial quantifier that is undefined if the number of As is not equal to
n, and that behaves like the universal quantifier otherwise (see [Barwise & Cooper 1981]). Consider the
partial quantifier in (1).

(1) The four A are B.

In the numerical tree for this quantifier, * abbreviates the value ‘undefined’.

#A=0 *

#A=1 * *

#A=2 * * *
#A=3 * * * *
#A=4 - - - = 4

#A=5 * * % * * *

In the example case, the presupposition has the form of a unary quantifier, ‘there are exactly four A’.
Splitting out between truth and falsity conditions, the quantifier ‘the n’ is defined as follows:

e the n A are B = 1 iff there are exactly n A and all A are B;
e the n A are B = 0 iff there are exactly n A and not all A are B.

Similarly, we can express the ‘existential import’ of quantifiers. For instance, we can define allt as
follows:

e allt A are B = 1 iff there are A and all A are B;
e allt A are B = 0 iff there are A and not all A are B.

This gives the following numerical tree for all*:

#A=0 *

#A4=1 0+

HA =2 0 0 +
H44=3 0 0 0 +
#A=4 0 0 0 0 +

#A=5 0 0 0 0 0 +

If we use allt to paraphrase the sentence (2) then the paraphrase entails that John does have grandchil-
dren.

(2) All John’s grandchildren are boys.

The general pattern for describing the truth conditions of a quantifier @QpAB ‘loaded’ with a presuppo-
sition P is:

e QpAB is true iff P and QAB.

e QpAB is false iff P and not QAB.

Interestingly, in the case of quantifiers with presupposition, the presupposition itself generally seems to
have the form of a quantitative statement. The following partitive noun phrases provide some more
examples.

(3) At most two of John’s ten grandchildren are boys.
(4) At least five of John’s many grandchildren are boys.
(5) Less than half of the boys in Mary’s class came to the party.

We can succinctly express the meaning of quantifiers with presupposition with a three valued connective
for interjunction, as defined in [Blamey 1986]:

®
1
*
0

It is easy to check that the presuppositional quantifier QpAB is defined by the following schema:
(6) (PAQAB)® ~(P A-QAB).

Three valued truth tables for A and — will be given below, but if one assumes that P and QAB are
two valued, these are not needed to grasp the meaning of (6). It is obvious from the truth table for ®
that quantifiers defined by schema (6) do introduce truth value gaps. We will call such quantifiers open.
Quantifiers that do not introduce truth value gaps wil be called closed. Formally:

CL-T For all A, B C E, either QgAB =10r QgAB = 0.

Partiality can also arise in connection with closed quantifiers. Consider cases where the extensions of
certain predicates are only partially known. Assume we know how big the universe E is but have only
partial information about the predicates A, B C E. Certain objects are known to be As, certain other
objects are known to be non-As, but there can also be objects that are in neither class, and even objects
that are in both classes (in this case our information is incoherent). Similarly with B. We call this kind of
partiality informational partiality. Although informational and presuppositional partiality may co-occur,
we have for simplicity assumed that the presuppositions themselves are two valued.

The importance of studying quantifiers in a three valued setting stems from the fact that the semantics
of propositional attitudes—example (7) —and the semantics of perception reports—example (8) —need
be stated in terms of partial models ([Barwise & Perry 1983], [Muskens 1989]).

(M John believes that all grandparents are happy.
(8) John saw three children enter.

If the propositional attitude or perception complement does contain quantifiers—as is the case in examples
(7) and (8) —these quantifiers are to be evaluated in partial models. Note for instance that sentence (8)
does not imply (9).

(9) John saw three children enter and smile or not smile.

A situation where John looks at the children from behind is most plausibly described as one where the
predicate ‘enter’ does have a truth value for every individual in the scene, but ‘enter and smile or not
smile’ does not. Still, by merely turning around the three children can change this situation into one
where ‘enter and smile or not smile’ does have a truth value (see [Barwise 1981] and [van der Does 1991]
for further details).

Another area where the theory of partial quantification is relevant is the account of vagueness in
natural language. Here we have a kind of partiality that cannot directly be resolved by growth of
information, because the vagueness is inherent in the truth and falsity conditions.

(10) There are many rich people in California.

When I assert (10), the truth value of this assertion may be impossible to specify because it is unclear
what counts as ‘being rich’ (or what counts as ‘many’, for that matter). However, assuming that the truth
of (10) becomes a topic of discussion, I may be asked to further specify my criteria for the satisfaction of
the predicate ‘rich’ in this context. The further I specify these criteria, the more elements of the domain
of discussion can be classified. One can view the situation as one in which a vague predicate (P+,P~)
is first replaced by (P't, P'~) with P* C P'*, P~ C P'~, then upon further questioning by (P"+, P"-)
with P't C P"*+, P'~ C P"~, and so on. It is clear that this gradual replacement of partial predicates by
more precise versions can be studied within a framework that accounts for growth of information about
partial predicates.

Finally, partial quantifiers are relevant for the definition of natural language fragments containing their
own truth predicate. In the wake of [Kripke 1975] various proposals have been worked out for avoiding the
semantic paradoxes that scared Tarski away from natural language, by starting out with truth value gaps
for statements involving truth, and then gradually closing these gaps for the non paradoxical statements.
In this context, ‘quantified liars’ and ‘quantified samesayers’ merit attention.

An example of a quantified samesayer is given in Figure 1. Note that the example still works if the
statement is replaced by All statements in this bozx are true, Not all statements in this boz are false, or
No statements in this boz are false.

Figure 1: Quantified Samesayer.

1. At least one statement in this box is true.

Figure 2: Quantified Liar.

1. At least one statement in this box is true.

2. At least one statement in this box is false.

A very simple example of a quantified liar is given in Figure 2. To see that this example is indeed
paradoxical, assume that statement 1 is true. Then the additional assumption that 2 is alsc true leads to
a contradiction with what 2 says. From the assumption that 2 is false, on the other hand, it follows that
all statements are true, i.e. both 1 and 2 are true, and contradiction with the assumption of 2’s falsity.
Now assume that statement 1 is false. Then none of the statements in the box is true, so it follows that
2 is false. But then both 1 and 2 are true, and contradiction. Note that replacement of both quantifiers
by all, by no, or by not all, preserves the paradox.

Figure 3: Liar with Non Standard Quantifier.

1. Two plus two equals four.
2. Two plus two equals five.

3. More than half of the statements in this box are false.

An example of a quantified liar involving a non standard quantifier is given in Figure 3. Essentially
the same example was given in [Kripke 1975).

A final example of a liar situation involving infinitely many different quantified statemenis is given in
Figure 4. In this case the reasoning to establish the paradoxical nature of the example is slightly more
involved. First assume that statement 1 in the box is false. Then, because of what 1 says, all statements
in the box are true. This contradicts the falsity of statement 1. Now assume that statement 1 is true.
Then at least one statement in the box is true. It follows that statement 2 is true as well, for this is
what 2 states. From the truth of 1 and 2 it follows that at least two statements in the box aie true. This
is what statement 3 says, so 3 is true as well. In general, from the truth of statements 1 through n it
follows that statement n + 1 is true. Thus all statements in the box are true. But this situation is what
statement 1 denied, so the assumption that 1 is true also leads to a contradiction.

We will leave the detailed study of these ‘paradoxes of quantification’ for another occasion. The
examples cited above merely serve to illustrate one more case where the positive and negative exten-
sion of a predicate—‘is true’ and ‘is false’, respectively—do not, indeed cannot, exhaust the domain of
quantification.

3 General Framework

What is known about quantifier relations in situations of partial information can be expressed by de-
scribing bosh the states of affairs that verify the quantifier relation and the states of affairs that falsify it.
For instance, a state of affairs in which At N B~ # 0 falsifies ‘all A are B’ (in its most natural reading),
for finding a thing which is A and not B refutes the universal statement. Similarly, a state of affairs in
which E — A~ C B* (where E is the domain of quantification) verifies ‘all A are B’ (again, under the
most natural reading of ‘all’ in partial situations, which will be made more precise below). Note that
these conditions are precise in that they describe the complete set of situations that verify or falsify a

Figure 4: Liar Involving Infinitely Many Different Quantifiers.

1. Not all statements in this box are true.
2. At least one statement in this box is true.

3. At least two statements in this box are true.

n. At least n — 1 statements in this box are true.

quantifier Q). As an example of an imprecise condition, A~ = E verifies the quantifier all all right, but
it describes a proper subset of the set of all situations that verify the quantifier. Verifying and falsifying
conditions that are precise are formulated as biconditionals. '

We will now introduce a language Lg for partial logic with binary quantifiers. See [Langholm 1988]
for more information about the partial logic of predicate logical languages without binary quantifiers.
Lo will consist of predicate logic, plus a set of binary quantifiers @. The non-logical vocabulary of the
language Lo consists of the following: a set

C = {co,c1,¢2,-- -}
of individual constants, for each n > 0 a set
p* = {P}, P}, P},...}
of n-place predicate constants, and for each n > 0 a set

f":{fg,f?,f;,...}

of n-place function constants.

The logical vocabulary of Lo consists of parentheses, the connectives -, A and V, the quantifiers 3
and V, the identity relation symbol =, an infinitely enumerable set V of individual variables, and a set of
binary quantifiers Q.

Definition 1 (Terms) The set of terms of Lg s the smallest set such that the following hold:
e IftcV orteC, thent is an Lo term.
e If f€f™ and tq,...,t, are Lo terms, then f(t1---t,) is an Lg term.

Terms are the ingredients of the formulae of Lg.

Definition 2 (Formulae) The set Lo of formulae of Lg is the smallest set such that the following hold:
e Ifty,ty are Lo terms, thent; =t; € Lg.
e If P c P” and ty,...,t, are Lg terms, then Pty---t, € Lg.
e Ifpec Lo, then ~p € Lg.

Ifo, €Ly, then (pAY) € Lo, (pVY) € Lyg.

IfpeLg andv €V, then Vop € Lg and Jvp € Lg.

Ifp, v € Lg,veEV and Q € Q, then Qu(p,¢) € Lg.

Note that every collection of individual constants, predicate constants and function constants determines
a different language Lg. For convenience, we will assume the sets of individual constants C, predicate
constants | J,,,, P" and function constants Unsof™ fixed. Also, we will often omit outer parentheses and
parentheses between conjuncts or disjuncts in cases where there is no danger of ambiguity.

We will also consider several extensions of Lo that result from adding extra sentential operators.
Lg ~ is the result of adding the unary sentential operator ~ to the logical vocabulary of Lg, Lg,g is the
result of adding the binary sentential operator ® to Lg, and Lg ~ g is the result of adding both these
operators to Lg.

For the semantics of Lg, we define partial models or situations for Lg.

Definition 8 (Situations) A situation s for Lg 13 a triple (E,I*,I”) where E is a non-empty set, and
IT, I~ are functions satisfying the following:

e It maps every ¢c € C to a member of E.

e For everyn > 0, IT, I~ map each member of P™ to n-place relations Rt and R~ on E, such that
RtNR™ =0.

e For everyn > 0, I maps each member of f* to an n-place operation g on E,

E is called the domain of s. We also say: s is a situation on E. It,I~ are the positive and negative
interpretation functions of s.

Our main concern in what follows will be the investigation of suitable constraints on the interpretation
of the binary quantifiers in @. These quantifier interpretations are not part of situations prcper, for they
do not depend on the interpretation functions of the situations, but only on their domains.

For now, we only wish to stipulate that, given a domain E, every binary quantifier @} is interpreted

as a partial binary relation on partial subsets of E. We use P[E] for the set of partial subsets of domain

E, i.e., P[E] def {{X,Y) | X,Y C E and X NY = 0}. The most convenient view on partial quantifiers

will turn out to be to picture them as functions of pairs of partial sets given by their positive and gap
parts, rather than their positive and negative parts. Note that if (X,Y’) is a partial subset of E, then
(X,E — (X UY)) is also a partial subset of E. Thus, binary quantifiers defined in terms of the positive
and gap parts of their arguments are functions that take two partial sets and deliver a value in {0, 1}.
Partial binary quantifiers can be pictured as pairs QE, Q% of such functions.

Definition 4 A coherent quantifier interpretation on E i3 a pair QE, Q% such that
* Qf € (PIE])" - {0,1},
» Qg € (P[E])” — {0,1},
e QL(X,X*,Y,Y*) = 1 implies Q3(X,X*,Y,Y*) = 1.

If QE, Q% form a coherent quantifier interpretation on E, then QT is its positive part or interior; Q°
its non-negative part or exterior. Proper constraints will be imposed on these quantifier interpretations

later on.
To ensure that quantifiers are uniform over situations with the same domains, it is convenient to
introduce the notion of an information system.

Definition 5 (Information Systems) An information system S is a tuple (S, E,I*,17,J%,1°), where
S is a set of situations with domains C E, and IT, I, J*, J° are given by:

o For everys € S, It(s) = I} (the positive interpretation function of), and I~ (s) = I, (the negative
interpretation function of s).

e For every Q € Q and every E CE, JT(Q, E) and J°(Q, E) form a coherent quantifier interpretation
on E.

From now on, we consider a fixed information system S, and we will use Q:'E'., Q% for the positive and
non-negative parts of the quantifier interpretation that get assigned to @ in S. Later on, our discussion
of constraints on quantifiers will give rise to further conditions on J* and J°.

As usual, sentences involving quantification generally do not have sentences as parts but (open)
formulae. As it is impossible to define truth for open formulae without making a decision about the
interpretations of the free variables occurring in them, we employ infinite assignments of values to the
variables of Lg, that is to say functions with domain V and range C E. As in the case of ordinary
predicate logic, only the finite parts of the assignments that provide values for the free variables in a
given formula are relevant.

The assignment function g enables us to define a function that assigns values in E to all terms of the
language. Let s = (E,I*,17) be a model for Lo and g an assignment for L£g in E. The function LT
from the set of Lo terms to E is given by the following clauses:

o Ift € C, then w, 4(t) = I'*(t).
e Ift € V, then w, 4(t) = g(2).
o If ¢ has the form f(¢;---t,), for some f € f*, then w, ¢(t) = I (f)(ws,g(t1),- -, W 4(tn))-

We explain what it means for an arbitrary formula ¢ of L4 to be true, false or undefined in s relative to
an assignment g, by recursively defining functions [-]}; and [-]¢ , from L to {0, 1}. [14, and []3 ,, the
positive and non-negative interpretation function respectively, are two valued, but they will later on be
combined in the definition of a three valued function [-],,4. First we handle the basic case where ¢ is an
atomic formula.

1. If ¢ has the form #; = t,, then
|[‘P]]j:g =1iff [[‘P]]:,g = 1iff w, g(t1) = wy,g(22).

2. If ¢ has the form Pt;---t,, then
[o15y = 138 (w, g(t2), .., e g(ta)) € I*(P), and [p]2,g = 1iff (w,g(t1), -, wsrg(tn)) & I (P).

Note that the clause for ¢; = t; reflects the choice to treat identity as a total relation, for we have:
ﬂ:tl = tz]]j:g = 1 lﬁ' I[t]_ = tg]]i’g - 1

A more radical perspective would partialize identity as well; this would involve a shift from individuals
to proto-individuals. Proto-individuals are things that we have a handle on by means of a name (‘Mr.
Jones’) or a functional relation (‘Bobby’s father’), but that may still fuse together with other proto-
individuals as we learn more (‘I had not realized that Mr. Jones is Bobby’s father!’). Although this more
radical approach to partiality seems necessary for getting to grips with famous identity puzzles of the
Hesperus Phosphorus kind, we prefer a step by step approach and abstain from this further move in the
present investigation.

The rules for the logical connectives run as follows:
3. If ¢ has the form —9), then [p]f = 1iff [¢]5 , =0, and [p]? , = 0 iff [y]}, = 1.

4. If ¢ has the form ¢ A x, then
[elf, = 1iff [y]F, = T and [x]}, = 1, and [¢]2, = 1iff [4]3, = 1 and [x]2, = 1.

5. If o has the form ¥ V x, then
[o)f, = 1 [¥]f, = 1 or [l = 1, and [p]s,, = 1iff [¥]2,, = 1 or [x]S,, = 1.

To treat the Fregean quantifiers V, 3 and the binary quantifier Q we need the notion of an assignment g’
that agrees with assignment g but for the fact that variable v gets value d. Formally:

sl - { 49 $uts

This allows us to dispose of the quantifier cases. We assume that s has domain E.

6. If ¢ has the form Vv, then

[elf, =1iff |[¢]]j’g(”d): 1 for every d € E, and [¢]; , = 1 iff [[¢]]:,g(v|d) =1 for every d € E.

7. If ¢ has the form Jvt), then
lelf, =1iff [[1/:]];':!](”“) = 1{or some d € E, and [¢]} ; = 1iff [¢]5 ;(,)q) = 1 for some d € E.

8. Suppose ¢ has the form Qu(¥, x).
Let A* be {d€ E|[y]], o) = 1h
let A*be {d€ | [¥I7,01a) = 0[] yope) = 11
let Bt be {d€ E|[x]] g(v|d)
let B*be {d€E|[xX]] a=0 [[X]], gola) = 1}
Then [¢]}f, = 1iff Qf(A*, A*, B¥, B*) = 1 and [¢]3 , = 1iff Q3(A*, A*,B*,B*) =1.

A few comments on these clauses are in order. First note that the recursion in terms of positive and
non-negative conditions makes the cases for the connectives A,V, the quantifiers V,3 and the binary
quantifiers more elegant than the usual definition in terms of positive and negative conditions. The shift
from [-]*,[-]” to [-]*,[-]° will turn out to have great advantages for the conceptualization of partial
binary quantifiers.

Secondly, note that we still have to prove that the interpretation functions for the binary quantifier
cases are well defined. The clause for binary quantifiers uses functions from (P[E])? to {0,1}, so this
clause presupposes that the first and second arguments of the quantifier together represent a partial set,
and similarly for the third and fourth arguments. This presupposition hinges on the coherence lemma,
which will be stated shortly.

For the extended languages that also contain one or both of ~ and ®, one or both of the following
clauses should be added.

9. If ¢ has the form ~y, then [p]f = 0iff [¢]}, =1, and [¢]; , = 0iff [¥]}, =

10. If ¢ has the form ¥ ® x, then
el = 1iff [¢]}, =1 and [x]f, =1, and [¢]3 , = 0iff [¢]5, = 0 and [x]3 , =

The reader is referred to [Blamey 1986] for a proof that every three valued truth function is expressible
in L~ g. It is useful to introduce some sentential operators by abbreviation. We will use T as an
abbreviation of ~3z(Az A —Az), ¢ — 9 as an abbreviation for (—¢) V ¢, and ¢ < 1 as an abbreviation
for (¢ — ¥) A (¢ — ¢). It is easy to see that T always evaluates to 1.

In languages containing ~, we will use ¢ ~+ 1) for ~p V9, ¢ = ¢ for (p ~ P) A (09 ~+ ~p), p = ¢
for (p~ ¥) A (¥~ ¢), and p & 9 for (¢ = P) A (—p = ~9).

Finally, in languages containing ® we will use * as an abbreviation for T ® = T. The reader should
convince her- or himself that ® does indeed get the truth table of Blamey’s interjunction, and that the
formula * always evaluates to the value *.

A simple induction argument establishes the following:

Lemma 1 (Coherence) If ¢ is a formula of Lo (or one of its eztensions), s a situation, and g an
assignment for Lo (or one of its extensions) in s, then

1. [elty =1 entails o],
2. [¢]3,; =0 entails [¢]}, = 0.

Proof: First note that 2. follows from 1. by contraposition, because [-]* and [-]° are two valued.

For 1, all induction cases except for the binary quantifier case are left to the reader. For the case where ¢
has the form Qu(¢, x), note that {d € E | [¢] g(old) = =1}n{de E | [¥]} gl = 0 [[1,b]]:”g(v|d) =1} =0,
and {d € E | [x]} gy = 13N{d € E| [[x]]:,y(vld) = 0, [xI3 4(oja) = 1} = 0, This guarantees that the
first and second arguments AT, A*, respectively the third and fourth arguments B*, B*, of the quantifier
interpretations QE and Q% are partial sets, so [-]* and [-]° are indeed well defined for the binary
quantifier case.

Assume [Qu(¢, x)]}, = 1. Then the fact that [Qu(,x)]? , = 1 follows from the semantic clause for
binary quantifiers and the fact that Q% (X, X*,Y,Y*) = 1 entails Q% (X, X*,V,Y*) = L. .

The lemma justifies the lumping together of [-]* and [-]° in a definition of an interpretation function [-]
which takes values in {1,0, *}, and guarantees that the three cases in the definition of [-] are the only
cases that can occur:

Definition 6 (Interpretation in a Situation)
o [elig=1if[elf,=1.
o [¢]s,g =0 4f [¢]5,, = 0.
o [¢lsg == if[¢]ig =0 and [¢]} , =

Note that it follows from the clauses for V, 3 and — that:

[vvely,

iff for a].l d € E: [¢]f g(old) =
iff for all d € E: [[—up]]s g(old) =
it [Bo-pl, = 0

iff [[—Elv—'go]]"” =1

=1

Also:

[vvels,g
iff for all d 6 E: [o]? g(v|d) =1

iff foralld € E: [— w]]s’gv =0
3 . + —
iff fornod € E: [- go]]”g(vld)_ 1
iff [Fo-g]t, —0

iff [[—Elvﬂp]] g

This means that V and 3 are duals. It is convenient to also have a notion of duality for binary quantifiers.
Definition 7 Qg and QE are dual quantifier interpretations if the following holds:

QL(X, XY, Y*) =1iff Qx(X,X*",E—(YUY"*),Y*)=0.
The next proposition shows that this definition does indeed have the desired effect.

Proposition 2 If Q, Q are interpreted as dual quantifiers, then for all formulae @, 9, for every situation
3, and for every g for s:

[[Q”(SO, if’) < "QU(% _'lb)]]s,g =1

Proof: The reader is invited to check that it follows from the definition of the sentential operator <
given above that the statement of the proposition is equivalent to the conjunction of the following:

L [Qu(e,)1}, = 1iff [-Qu(p,~¥)]f, = 1,
2. [Qu(e, ¥)]2,; = Liff [-Qu(p,~¥)]s , =

Suppose s has domain E.

Let At be {d€E|[¢]] g(v]d) = =1}

let A*be {d€FE| II‘P]], g(ola) = 0 [eI} 19(v]d) — =1}
let BT be {dEEHW’]],gwd)_l}

let B* be {de E| Hll)]], g(vld) =0, [[w]], 9(vld) = 1}
let Ctbe {de E|[-9] sotelg) = 1h

let C*be {deE| [[ﬂ/’]], awia) = O [¥15 g (o1a) = 1}

To be able to use the fact that Qg and Qg are duals, we have to establish that B* = C* and that
C*t = E — (Bt U B*). The first of these follows from the fact that

10

![ﬁ’/’]]f,y(vw) =0 and [~9]3 /(19 = 1
iff (clause for =) [¥]3 ;(,q) = 1 and ﬂ:¢]}j:y(v]d) =0.

The second of these follows from the fact that
[0 1) = 1
iff (clause for =) [¥]3 ;(jq) =0
iff (coherence) [[1/)]]1“””) = 0and [¢]5 ;,jq) = O-

Now from the fact that Qg and Q g are duals:
Qi (A, A%, BY,B*) = 1iff Q3(A*, A%, C*,C*) =0,
so by the semantic clause for binary quantifiers,

[Qu(e, ¥)IF, = 1iff [Qu(e, ~¥)]5,, = 0.

By the semantic clause for —:
[Quv(p, ¥y = 1iff [~Qu(p, ~¥)I}, = 1.
Similarly: [Qu(e, ¥)I3,, = 1iff [~Qu(e, ~¥)]5,, = 1. .

The preceding text illustrates that in discussing the behaviour of a formula Qu(yp,¥) in a situation s on
domain E under an assignment ¢ in F, it is often convenient to abbreviate

{de E|[¢l] yo1a) = 1} as AT,
{d € E | [¢]5,g(vja) = 0} as A7,
(€ B | [o1F yapa) = 0, 1610 yupn = 1} 85 4%,
{de E| II¢]]ig(1;|d) =1} as BY,

{d € B | [¥] ¢(vja) = 0} as B,
and
{de E| ﬂ:¢]];+:g(v|d) =0, II¢]]g,g(v|d) =1} as B".

Thus, from now on we adopt the convention that once we have fixed the situation and assignment
parameters, we represent the positive, negative, and gap extensions of the first argument of a quantifier
(the restriction argument) by A%, A~, A*, respectively, and the positive, negative and gap =xtensions of
the second argument (the body argument) by B*, B~, B*, respectively. By the coherence lemma, we
have for any domain E, any situation s on E, any assignment g in E and any Qu(yp, ¢) that AtNA- =
AT NA* = A~ NA* =0,and Bt NB~ = Bt N B* = B~ N B* = (. For convenience we will tacitly
assume from now on that in all cases where a partial set is introduced in terms of its positive and negative
extensions C*, C~ or, relative to some universe FE, in terms of its positive and gap extensions c+,Ct,
then Ct NC~ = 0, respectively Ct N C* = 0.

If we consider a quantified formula Qu(¢p,) in a situation s with domain E, given an assignment g,
then the amount of available information about the extension of ¢ is reflected in the gap A*. As long
as A* # 0, only partial information is available about the extension of . Growth of information about
the extension of ¢ means that elements of A* get inspected and classified. An z € A* caa turn out to
be a AT or a A~, which means that each new act of classification makes At increase or A~ increase,
thus narrowing the gap between At and E — A~. In the limit case of AT UA™ = E, i.e,, A* =0, full
information about the extension of ¢ is available. Similarly for the extension of the second argument .

Definition 8 A situation s = (E,I*,I7) is total if for every n >0, I*,I~ map each member of P" to
n-place relations Rt and R~ on E for which Rt UR™ = E™. Otherwise s is partial.

11

Note that the definition of the quantifier relations on a total situation need not be total. It is convenient to
keep the notions of totality for the interpretation of the nonlogical vocabulary and for the interpretation
of the quantifiers separate.

Lemma 3 (Totality) If ¢ € Lg ~ does not contain occurrences of quantifiers from Q, then for any
total s and any g for s, [plf, =1 iff [l , =

Proof: Use induction on the complexity of .]

Note that this result does not hold for the languages Lo g or Lg ~ g. In Section 6, total situations will
be used to define supervaluation quantifier relations.

A quantifier interpretation Q*, Q° on a universe E can equivalently be viewed as a function Q with
domain (P[E])? and range C {1,0, *}. In other words, a quantifier interpretation takes four set-arguments
and ranges over the values true, false and undefined (neither true nor false). Relative to a situation s and
an assignment g, the three valued quantifier function that interprets Qu(y, %) on a universe E is defined
as follows.

Definition 9 (Quantifier Interpretations as Functions of AT, A*, B B*)
e Qp(A*t,A*, BT, B*) =1if Qf(At,A*,Bt,B*) = 1.
o Qp(At, A%, BY B*) =0 if Qy(A*, A*, B+, B*) = 0.
e Qu(A*, A%, BT, B*) = x if Q}(AT, 4%, B¥, B*) = 0 and Q%(A*, A*, B+, B*) = 1.

Again, it follows from the coherence lemma that if A, A*, Bt B* interpret ¢, 1 relative to some s and
g, then the fourth case with QE(A*’,A‘, B*,B*) =1and Q%(4%, 4%, BT, B*) = 0 cannot occur.

The relation of consequence |= for language Lo (and its extensions) of partial logic with binary quantifiers
is defined as follows (let I' and A be sets of sentences of Lo or one of its extensions):

Definition 10 (Logical Consequence)
o ' =1 A if for all situations s: if [p]} = 1 for all p € T, then [¢]} = 1 for some ¥ € A.
e ' =" A if for all situations s: if [¢]; =1 for all p € A, then [¢]; = 1 for some p € T.
elEATETAandT =~ A,

This notion of logical consequence is the so-called double-barrelled consequence from [Blamey 1986].
Recall the definitions of ¢ ~ ¥ as ~p V¢, of ¢ = ¥ as (p ~ P) A (- ~ —p), of p = ¢ as
(p~ ¥) A (¥~), and of p < ¥ as (p = ¥) A (-p = —¢). It is easy to see that we have the following
(set brackets for premisses and conclusion are omitted for readability):

(11) pEtY iff Eo~ 9.

(12) ok~ v iff £ b~ g

(13) vEYifEe=>9.

(14) Bothe =+ g and § =+ p iff E o = ¥

(15) Both<p}:¢and¢}:<piﬁl;<p<:>¢.

Note that at the meta level three valued equivalence (the counterpart of &) is expressed by the iden-
tity symbol. We will use Qf(A*, A*, B*, B*) = Q},(C*t,C* D%, D*) to express that the values of
Qi (A*, A%, Bt, B*) and Q},(C*, C*, D*, D*) are the same: hoth 1, both 0 or both .

4 Constraints on Partial Quantifiers
After these preliminaries we are ready to focus on the quantifier interpretations. We need versions of
EXT, CONS and ISOM tailored to our partial perspective. We assume an information system S, a

situation s € S, and an assignment g for s fixed, so we can talk about the positive and gap extensions of
the first and second arguments of a quantifier as A*, A*, B, B* without ambiguity.

12

Figure 5: The Effect of EXT.

Bt —» Bt

B* B*

B~ B~
A-A* At A-A*At

For eztension, we want to say that adding individuals known to be neither A nor B to the universe
does not matter. Suppose At, A*, BT, B* C E. Suppose we add a set X of individuals which are neither
A nor B to the universe E of a situation. Then A1, A*, BT, B* remain unchanged, and the truth or
falsity of the quantifier is not affected. In other words, extension says that there is no need to look outside
At UA*UBtUB*.

A formal rendering of EXT runs like this.

EXT For all E,E' D At U A*U Bt U B*,
QE(A+)A.aB+1B.) = QE’(A+,A‘yB+1B')-

Note that the constraint is very easy to state, thanks to the fact that we have chosen to define partial
quantifiers in terms of positive extensions and gaps rather than positive and negative extensions. If
one views a binary quantifier on partial sets as a function on two partial sets given in terms positive
and negative extensions, then the EXT constraint would have to relate a quantifier on domain E with
given arguments to a quantifier on domain E’ with different arguments, because if £ # E'and E,E' D
At UA* UB*T U B*, the sets E — (AT U A*) and E' — (A1 U A*) will be different, and similarly for the
negative part of the second argument.
Note that EXT allows us to restrict any doma.m E D ATUA*UBtTUB®* for Qg to AYUA*UBTUB*:

(16) QE(A+)A.’B+, B‘) = QA+UA‘UB+UB‘ (A+,A‘7 B+7 B‘)

It follows that for quantifier interpretations satisfying EXT the parameter E can be dropped altogether.
Note again that this hinges on the fact that quantifiers are defined as functions of four arguments At
A*, Bt, B*.

It is convenient to use pictures to illustrate the effects of the various quantifier constraints. The
pictures show which of the subsets of the domain are relevant for the interpretation Q g(At, A*, BT, B*)
of Qu(p,¥) in s, given g. The boxes O in the first parts of the pictures indicate on which sets the
quantifier interpretation depends when the relevant constraints are not imposed, the boxes 11 in the part
of the picture following the — indicate on which sets the quantifier interpretation depends when they
are imposed. A pictorial representation of the effect of EXT is given in Figure 5. The picture shows that
Qs observing EXT do not depend on the set A= N B~.

For conservativity the situation is less straighforward. Prima facie there are several options. The
weakest possible variant seems to be to demand that the quantifier is only sensitive to the effect of those
entities in the domain that may end up in the positive extension of the first argument. In other words:
the set AT U A* sets the stage. We will call this weak conservativity, abbreviation W-CONS. Here is
the formal version.

W-CONS Qg(AT,A*, B+, B*) = Qp(A*, A*, B¥ N (At UA*),B* N (At UA*)).

The effect of W-CONS is pictured in Figure 6. The picture shows that quantifiers observing W-CONS
are invariant under borderline crossings between A~ NB~, A~ N B*, and A~ N B™*. Figure 7 pictures the
combined effect of EXT and W-CONS. This picture shows that quantifiers observing these constraints
are insensitive to changes in A™.

Several strenghtenings of weak conservativity can be considered. A strong requirement is the following.
The set of entities that definitely are in the positive extension of the first argument sets the stage. In
other words: the quantifier is only sensitive in its Bt, B* arguments to what happens inside AT. There
are two variants of this: in the first variant (very strong conservativity), the A% set also szts the stage
for the first argument, so the quantifier is completely insensitive to the contents of A*. In the second
variant (strong conservativity), At only sets the stage for the B argument. Formally:

13

Figure 6: The Effect of W-CONS.

B+ —_— B+

B‘K o B‘

B- N B-
A-A*A+ A-A* A+

Figure 7: The Combined Effect of EXT and W-CONS.

Bt — :,__ Bt

B* N B*

B- , B-
A-A* AT A~ A At

VS-CONS Qg(At, A*, BY,B*) = Qu(A+,0, B+ N A*, B* N A*).
S-CONS Qg(A', 4%, B, B*) = Qu(A*, A*, B¥ 0 A*, B* n A%).

Note that VS-CONS implies S-CONS, and S-CONS in its turn implies W-CONS. The combined
effect of EXT and VS-CONS is pictured in Figure 8. The combined effect of EXT and S-CONS is
pictured in Figure 9. We will see in the next section that the constraint VS-CONS can be ruled out
immediately as being too strong.

Still another version of conservativity is considered in [van Benthem 1988]. Van Benthem discusses the
merits of the version of conservativity that results from generalizing ‘total intersection’ AN B to ‘partial
intersection’ A* N B*, A~ U B~. This version of conservativity holds if the quantifier is indifferent to
a substitution of A* N B* for Bt and a substitution of A~ U B~ for B~. Van Benthem’s version of
conservativity can be formulated as the following principle of mized conservativity. The constraint is
easy to state for quantifiers defined in terms of positive and negative extensions, but it becomes awkward
for quantifiers defined in terms of positive extensions and gaps. We give both formulations, using Q for
the quantifier corresponding to Q but defined in terms of positive and negative extensions rather than
positive extensions and gaps.

M-CONS (in terms of A, A*, BT, B*)

Qgp(AT,A*, Bt,B*) = Qg(A*, A*, Bt N A*, (At N B*)U(4* N BH)U (A* N B*)).
M-CONS (in terms of AT, A=, Bt B™)

Qp(A*,A~,B*,B7) = Qg(4T,A~, B+ nA*,B-U4").
The combined effect of EXT and M-CONS is pictured in Figure 10.

Looking at the pictural effects of the various conservativity restrictions, we see that there must be a fourth
possibility, namely the constraint that blurs the distinction between A* N B~ and A* N B*, while leaving
the borderline between A* N BT and A* N B* intact. This turns out to be the following principle (again

Figure 8: The Combined Effect of EXT and VS-CONS.

Bt — Lo Bt

B* B*

B~ [B-
A-A*At A-A*AT

14

Figure 9: The Combined Effect of EXT and S-CONS.

Bt — | | |B*

B* Bt

B~ : B~
A4 A A-AT AT

Figure 10: The Combined Effect of EXT and M-CONS.

Bt — | [[|B*

B* - B

B- . B~
A-ATAF A-A% A+

we use Q for the quantifier corresponding to Q but defined in terms of positive and negative extensions
rather than positive extensions and gaps):

M’-CONS (in terms of At, A*, Bt , B*)

Qu(A*, A%, B, B*) = Qu(A*, A*, B N (A* UA*), B* N 4%).
M’-CONS (in terms of A*, A=, Bt ,B™)

Qz(At,A~,B*,B~) = Qp(4t, A", Bt N(4T UA*),B- UA™ U A*).

The combined effect of EXT and M’-CONS is shown in Figure 11. Note that S-CONS implies both M-
CONS and M’-CONS. The choice between W-CONS, S-CONS, M-CONS and M’-CONS will not
be made until later. The following table shows that all these versions of conservativity are systematically

related, and that the list of possibilities that we have given is exhaustive. The relationships are clearest
if the principles are formulated in terms of positive and negative extensions. In the arguments of the
quantifiers, S is used for the complement of S with respect to the domain of the quantifier.

VS CONS | Jg(A*,A~,B*,B-) iff Qg(A+,AF, Bt NA* B~ UAT)
S CONS | Qg(At,A~,B+,B-) iff Qg(A*,A~,B*nA*, B~ UAT)
M CONS QE(A+,A- B*,B-) iff Qg(At, A ,Btn At B-UA).
M’ CONS | n(A¥,47,B*,B”) iff Qu(A*, A", B*N4~,B~ UAT).
W CONS | Qm(A*,A-,B+,B-) iff Qg(A7, A ,BtNA=,B-UA")

The new version of isomorphy says that only the sizes of the sets A, A*, B, B* matter:
ISOM If f is a bijection from E to E’, then: Qg(AT, A*, B, B*) = Qg (f[AT], f[A*], f[B*], f[B*]).

Note that EXT, ISOM and the various versions of CONS state both verification and falsification
conditions. The statements used to formulate these principles say that two truth values are equal: both
1, both 0, or both * (undefined).

Figure 11: The Combined Effect of EXT and M’-CONS.

A-A AT

15

Bt
LB
B-

Figure 12: Situations Where Closed Quantifiers Yield 1 or 0.

o| B+
0|0]|0|B*

0| |B-
A-A* At

In what follows, we restrict attention to quantifier interpretations that observe EXT and ISOM, so that
we can drop the parameters for the universes that the quantifier relations range over.

5 Basic Properties

In this section we will look at three basic properties that partial quantifiers can have, namely closedness,
persistence under growth of information and predictiveness. It will turn out that if one knows that
the quantifiers that interpret the binary quantifier symbols Q in a language have one or more of these
properties, one can say quite a lot about the expressive power of the language.

In Section 2 a property of quantifiers called closedness was mentioned. In a total setting, a quantifier
is closed if it does not itself introduce truth value gaps. In the present partial setting this requirement
takes the following natural shape.

CL Forall X,Y C E, Q}(X,0,Y,0) = 1iff Q%(X,0,Y,0) = 1.

We can also consider the property of closedness for certain given arguments A+, B+. A quantifier Qg is
closed for those arguments if Qf(A*,0, B+,0) = Q%(A*,0, B*,0). Quantifiers not satisfying CL (for
arguments A%, Bt) are open (for arguments A+, Bt). For a pictorial rendering of CL, observe that a
closed quantifier must yield either true or false in all situations satisfying Figure 12.

We can now relate the CL property of quantifier interpretations to the following property of formulae.

Definition 11 A formula ¢ 18 determinable if for any total situation s and any g for s, [[(p]]:g =1iff
lel5e = 1.

If we know that all quantifiers in £ are closed, then we can strengthen the totality lemma.

Theorem 4 (Determinability) If all quantifiers in Q are interpreted as closed quantifiers, then any
¢ € Lo~ is determinable.

Proof: Induction on the complexity of . For the case where ¢ has the form Qu(¥, x), the induction
hypothesis yields that for total s and arbitrary g(v|d) it holds that M’]]j,g(ﬂd) = [[1/1]]:’g(v|d) and [[x]];':g(vld) =

[[X]]:,g(vw)’ and therefore A* = B* = 0. But then it follows from the fact that Q}(A*,0, B+,0) = 1 iff
Q3(A%,0,B+,0) = 1 that [Qu(p, ¥)]1, = 1 I [Qu(p, B)I5, - 1. .

It follows immediately from the theorem that all quantifiers definable in Lg,~ in terms of closed quantifiers
will be closed. Also, we have the following corollary.

Corollary 5 All quantifiers definable in L~ observe CL.

Note that Theorem 4 does not generalize to the languages Lg g or Lo~ g. If Q and Q' are interpreted
as two different closed quantifiers, then Qz(Az, Bz) ®Q'z(Az, Bz) does not define a closed quantifier, as
can be easily seen, as follows. From the fact that Q, Q' are interpreted as different closed quantifiers we
have that there are interpretations for 4, B for which there is a total situation ¢ with [Qz(Az, Bz)]; = 1
and [Q'z(Az, Bz)]; = 0. By the semantic clause for ®, [Qz(Az, Bz)®Q'z(Az, Bz)]; = *, so Qu(p, ¥)®
Q'v(p, ¥) is not determinable, i.e., the sentence does not define a closed quantifier.

The second property we are interested in is persistence under growth of information about the positive
and/or negative extensions of the quantifier arguments. First we define a relation < between situations.

16

Figure 13: Climbing Up on the < Ladder in a Three Valued Truth Table

o

>'|{\|" —
>|| *
b |o

N

T
uin
Nl

p—
N
4
4

Definition 12 s < u if the following hold:

e E,=-F,,

e for all predicate symbols P in the language: I} (P) C IF (P) and I; (P) C I (P).
It is easily checked that < is a partial order.

Definition 18 (<-persistence) A formula ¢ is < persistent if for any s < u and for any assignment
g for s, u the following hold:

o [pls,g =1 implies [¢]u,qg = 1.
o [¢ls,g = 0 tmplies [@]u,g = 0.

This notion carries over to truth functions, as follows. Call a three valued truth function f(z1,...,2z,) <
persistent if it interprets a < persistent formula ¢(p1,...,pn), where the py,..., p, are the atomic parts of
@. Then it is not difficult to see that f(z1,...,%,) is < persistent iff for no argument sequences yielding
the function value 1 or 0 is it possible to change that value to something else by a series of changes of
arguments z; from * to 0 or 1.

We can simply inspect the truth tables of the sentential connectives for this property. Just checking
if none of the steps in Figure 13 get one from a 1 position to a non 1 position or from a 0 position to a
non 0 position is all there is to it. This truth table inspection yields immediately that -, A, V and ® are
< persistent, but that ~ is not.

| = | ~ Al * 0 v|ii * 0
170 110 111 * 0 111 1 1
* | ¥ *| 1 ¥ | ¥ ¥ g ¥ 7 * ¥
0|1 0|1 0j0 0 0 0|1 * 0

It is useful to be able to impose < persistence directly as a constraint on quantifier interpretations.
<-PERSIST If At CC+tCE, A~ CC-CEand Bt CD* CE,B~ C D~ CE then:

e Qf(A*, A%, Bt, B*) = 1implies Q5(C*,C*,D*,D*) = 1.

o Q%(At,A*, BT, B*) = 0 implies Q%(C*,C*, D", D*) = 0.

We now turn to some expressibility issues for languages with < persistent quantifiers.

Theorem 6 If all quantifier symbols in Q are interpreted as quantifiers satisfying <-PERSIST, then
any ¢ € Lg g 18 <-persistent.

Proof: Induction on the complexity of ¢. The atomic formulae are <-persistent by the definition of of
the evaluation function. Formulae of the forms =, ¥ A x, ¥ V x, and ¥ ® x are < persistent if their
components are, by the preceding truth table argument. The cases cf Vvy and Jvi) are left to the reader.
For the binary quantifier case, suppose ¢ has the form Qu(¢, x) and let s, u be situations with s < .

17

Figure 14: 1,0-Preserving Transitions for <-Persistent Quantifiers

4= B+
7y (B
B-

f
ll<
V4

Let At be {d€FE| [[¢]]j:g(‘vld) =1},
let A*be {d€ B|[¥]] 1a = O [¥]2 010 = 11
let Bt be {d€ |} uq=1h
let B*be {d€E|IX]] yo1a) = O XIS yo1a) = 11,
let Ctbe {de€E| W]]I;(ﬂd) =1},
let C*be {de€E| |]:"/)]]I,g(vld) =0, [w’]];,y(vld) =1}
let D* be {d€E|[x]] =1}
let D*be {d€E|[xI} 1q)= 0 IXI5 gu1a) = 13-

In order to be able to use the fact that Qg satisfies <-PERSIST, we have to establish that A* C C* CE,
A= CC CE,and that BYC Dt CE,B-CD CE.

The induction hypothesis yields that [[1/)]]: o(v|q) = 1 implies that l[iﬁ]]:,g(v') = 1, and therefore At CcCtC
E. The induction hypothesis also yields that [¥I;, g(vja) = 0 implies that [4]2 g(vja) = 0, and therefore

that A= C C~ C E. Similarly, the induction hypothesis that BY C D* C E and B~ C D~ C E.

Assume [Qu(p, ¥)]s,g = 1. Then [Qu(p, ¥)]}, = 1,ie., Qf(A*, A%, B+, B*) = 1.
By <-PERSIST of Qg, it follows that Q5(C*,C*, D*,D*) = 1.

Assume [Qv(p, ¥)]s,g = 0. Then [Qu(p,¥)]S , =0, ie.,, Q%(A*, A%, B+, B*) = 0.
By <-PERSIST of Qg, it follows that Q% (C*,C*, D, D*) = 0. "

The theorem shows that provided all quantifier symbols in Q are interpreted as quantifiers satisfying
<-PERSIST, any quantifier definable in Lo g will satisfy <-PERSIST as well. Also, we have the
following corollary.

Corollary 7 All quantifiers definable in Lg satisfy <-PERSIST.

The pictorial effect of <-persistence for binary quantifiers is given in Figure 14. We can look at the
process of finding out more about a situation s as a shift from s to a situation u with s < u. Moreover,
we can picture this process of information growth in a step-by-step way. Finding out that an object in
A*NB*isin fact in AT can be pictured as a transition = from the A* N B* region to the A* N B* region
in the diagram. It is clear that in the case of two partial predicates there are twelve possible transitions
of information growth. Thus, for <-persistent quantifiers, all twelve => transitions in Figure 14 must
preserve truth as well as falsity.

The third property we are interested in is predictiveness. We first define this property for formulae.

Definition 14 A formula ¢ is predictive if for any pair of situations s, u with s < u and any assignment
g for s and u the following holds:

If [¢ls,g = * and [¢]lu,g = 1(0), then there is a w with s < w and [pl,,g = 0(1).

What predictiveness of ¢ says is that if there are situations where ¢ is still neither true nor false, and
it is possible by acquiring more information to arrive at a situation where ¢ is true (false), then things
might have turned out differently, and we might have ended up in a situation where ¢ was false (true).
This notion carries over to truth functions, as follows. Call a three valued truth function f(z1,. ., 2a)
predictive if it interprets a predictive formula ¢(p1,...,p,), where the p1,...,p, are the atomic parts of

18

@. It is not difficult to see that f(z1,...,z,) is predictive iff for any change of an input argument z;
from # to 1 that results in a function value change from x to 1(0), it is the case that after a change of z;
from * to 0 there exists a number of zero or more changes of other input arguments from * to 1 or 0 with
a function value of 0(1) as a result.

To check whether a given sentential connective expresses a predictive truth function we can again
simply inspect the truth table for this property. To see if a truth table pictures a predictive truth
function, simply refer to Figure 13 and check whether for any = step from a * position to a 1(0) position
there also is a path of = steps to a 0(1) position. It is easily seen from the truth tables that —, ~, A,
and V are predictive, but that ® is not.

Again, there is a corresponding notion for quantifier interpretations (this notion was defined already in
[van Benthem 1988]). A quantifier interpretation observes prediction in its first argument if the following
holds. If, in a given situation s, the discovery about some set of objects X that X C AT makes the
quantifier true (false), and the discovery that X C A~ also makes the quantifier true (false), then the
quantifier is already true (false) in s. Similarly, a quantifier observes prediction in its second argument
if the same holds for the B predicate. In the formal version of these prediction properties we lump
prediction for the first and second argument together.

PREDICT For all A*,A~,B*,B- C E,X C A*,Y C B*: if Qg(A*, A*, Bt B*) = «,
then Qu(A* UX,A* — X,B+UY,B* —Y) =1 (0) iff Qz(4*,A* — X, B+, B* —¥) = 0 (1).

The first thing to be noted is that PREDICT does not follow from <-persistence: the quantifier which
is true in all situations which are total with respect to A, B and undefined otherwise is <-persistent, but
does not observe PREDICT. This quantifier is defined by the following formula of Lg:

(17) Vz((Az V ~Az) A (Bz V ~Bz)) V *.
Note, by the way, that the quantifier of (17) does satisfy VS—CONS.

Also, <-PERSIST does not follow from PREDICT, witness the quantifier that is true in all partial
situations (with respect to either A or B) and false in all situations which are total with respect to these
predicates. This quantifier observes PREDICT without satisfying <-PERSIST. It is defined by the
following formula of L~.:

(18) Jz((~Az A ~—Az) V (~Bz A ~—Bz)).

Theorem 8 If all quantifier symbols in Q are interpreted as quantifiers observing PREDICT, then any
formula ¢ of Lo ~ is predictive.

Proof: Induction on the complexity of . Atomic formulae of Lo ~ are surely predictive. To see that
predictiveness is preserved for ¢ of the form -, ~¢, ¥ A x, ¥ V x, check the truth tables in the manner
explained above.

Suppose ¢ has the form Vvi) and assume 1 is predictive. Assume there is an s, g with [¢], 4 = *, and
there is an 8’ > s with [V¢],, 4 = 1(0). For definiteness, let us assume [V4],/ 4 = 1. Let E be the universe
of s and s'. We have to show that there is a w > s with [Vv9],,g = 0. Let D be {d € E | [¥], g(vja) = *}-
By the semantic clause for V, this set is nonempty. If d € D, then by the fact that [V¢],, , = 1, we have
[%].,g(wja) = 1, so by the predictiveness of ¢ there is some situation u for which [¥]4 g(vja) = 0. Let
U be the set of all such u and let ug be the situation (E,N,cy I}, N,cp I). Let w be the situation
(E,Ugep I Uaep Ia,)- Tt is then easy to check that w > s and [Vvi]u,q = 0, so ¢ is predictive.

Finally, the binary quantifier case. Suppose ¢ has the form Qu(v,x), where ¥ and x are predic-
tive, and @ is interpreted as a quantifier Q which observes PREDICT. Assume there is some sit-
uation s and assignment g where [Qu(¥,x)]s,y = *. Then by the semantic clause for binary quan-
tifiers, Q(A*, A*, BT, B*) = x (here the sets A%, A*, Bt B* depend on the parameters s,g). As-
sume that for some u > s, [Qu(y,¥)]u,g = 1(0). Then by the semantic clause for binary quantifiers,
Q(Ct,C*,D*,D*) = 1(0) (here the sets C*,C*, D, D* depend on the parameters u,g). For the sake
of definiteness we assume Q(C*,C*, D, D*) = 1. It is not difficult to see that the sets are related as
follows: there are X CY C A* and U C V C B* such that Ct = AT UX,C*=4*-Y, Dt =BT UU,
D* = B* — V. Thus, Q(C*,C*,D*,D*) = 1 can be rewritten as (19).

(19) Q(ATUX,A*-Y,BTUU,B*-V)=1.

19

Now consider the value of Q(A* U X, A* — X, Bt UU, B* — U). There are three possibilities.
Suppose the value is 0. This gives a w > s with [p], g = 0, so ¢ is predictive, and we are done.

Suppose the value is 1. Then use the PREDICT property of Q to derive that Q(A*, A* — X, B, B* —
U) = 0. So again we have a w > s with [¢],,¢ = 0, which shows ¢ is predictive.

Finally, suppose the value is . Using Z for Y — X and W for V — U, we see that (19) can be rewritten
as (20).

(20) Q(AtUX,(A*-X)-Z,BtUU,(B*-U)-W)=1.

Now use the PREDICT property of Q in the other direction to see that (21).

(21) Q(ATUY,A* - X,BTUV,B*-U)=0.

So in this case as well there is a w > s with [¢], ¢ = 0, and again ¢ is predictive.]

It follows from the theorem that all quantifiers built from predictive quantifiers in the language Lo ~
will themselves be predictive. Finally, we have the usual corollary:

Corollary 9 All quantifiers definable in L~ satisfy PREDICT.

6 Supervaluation Quantifiers

Supervaluation quantifiers are the ordinary generalized quantifiers, transposed in a three valued setting
via a ‘supervaluation’ definition. There is good reason of being interested in supervaluation quantifiers,
for by virtue of their respectable origins they can be expected to be well-behaved. By studying them
we can find out more about how well-established intuitions for total quantifiers generalize in the present
partial setting.

Supervaluation quantifiers are defined in terms of quantifiers for total situations. However, these
quantifiers for total situations need not themselves be two valued. We therefore represent a binary
quantifier on total situations over a domain E as a pair of functions Q*, Q° both in (PE)? — {0,1},
and satisfying the condition that Q"'(X Y) = 1 implies Q°(X, Y)=1.

Definition 15 A guantifier interpretation Q is a supervaluation interpretation if its truth and falsity
conditions are given tn terms of binary quantifiers Q for total situations, as follows:

. QE(A+ A*,B*,B*) =1 iffor all X,Y with At C X C AYUA* and Bt CY C B* U B*, it holds
that QF(X,Y) = 1.

* Q3(A*,A*,B*,B*) =0 1iffor all X,Y with At C X C At UA* and B* CY C B+t UB"*, it holds
that Q% (X, Y) = 0.

It is instructive to look at some examples of supervaluation quantifiers. Consider the supervaluation
quantifier all based on the total binary quantifier X C Y. Its truth conditions are given by:

allt(At, A%, B+, B*) = 1iff for all X,Y with A* C X C A* UA* and B* CY C B UB*:
Xcy.

Equivalently:
allt(A*, A*, B*, B*) = 1iff At U A* C B*.
Its falsity conditions are given by:

all°(A*, A*, B, B*) = 0 iff for all X,Y with A* C X C A* U A* and B* CY C B+ UB":
Xqgv.

Equivalently:
all°(At, A*, Bt,B*) = 0iff At ¢ Bt UB*.

20

The reader is invited to check that this quantifier is defined in £ by the following formula.
(22) Vz(Az — Bz).

Next, consider the supervaluation quantifier at least 2 based on the total binary quantifier #(XNY) > 2.
Its truth conditions are given by:

atleast2t(A*, A*, Bt,B*) = 1 iff for all X,Y with At C X C At UA* and Bt CY C
BT UB*: #(XNnY) > 2.

Equivalently:
atleast2t(A*, A*, Bt, B*) = 1iff #(A* N B*) > 2.
Its falsity conditions are given by:

atleast2°(A*, A*, B* , B*) = 0 iff for all X,Y with AT C X C ATUA*and Bt C Y C
Bt UB*: #(XNY)<2.

Equivalently:

atleast2°(A*, A*, BY, B*) = 0 iff #((A* U A*) N (BT UB*)) < 2
The reader is invited to check that the following £ formula defines this quantifier:
(23) Jz3y((—z = y) A Az A Ay A Bz A By).

Consider supervaluation most, based on the total binary quantifier #(X NY) > #(X — Y). Its truth
conditions are given by:

mosttT(At, A*, BT, B*) = liffforall X,Y with At C X C AtUA* and BT CY C Bt UB*:
#HXNY)>#HX-Y).

Equivalently:
mosttT (A1, A*, BT, B*) = 1iff #(A* N B*) > #((AT U A*) — B*).
Its falsity conditions are given by:

most°(At, A*, Bt, B*) = 0iff forall X,Y with AT C X C ATUA*and Bt CY C BtUB*":
HXNY) < #(X Y.

Equivalently:
most®(AT, A*, Bt, B*) = 0 iff #((A* UA*)N(B*UB*)) < #(At — (BT UB*)).

In order to express this in our partial language we will have to interpret some binary quantifier symbol
M as the quantifier most with precisely the behaviour described above. Under these conditions, the
formula Mz(Az, Bz) of L defines this quantifier.

We conclude with an example of an open quantifier, the supervaluation quantifier the 2 based on the
total quantifier X C Y with presupposition #(X) = 2. Its truth conditions are given by:

the2t(A+, A*, B+, B*) = liff for all X, Y with A* C X C A*UA* and B* C Y C B*UB*:
#(X)=2and X CY.

Equivalently:
the2t(A*, A*, BT, B*) = 1iff #(4%) =2, A* =0, and At C Bt
Its falsity conditions are given by:

the2°(A+, A*, B+, B*) = 0iff for all X,Y with A+ C X C At+UA* and B* CY C B+ UB*:
#(X)=2and X ¢ Y.

Equivalently:

21

the2°(At, A*, Bt,B*) = 0 iff #(4A*) =2, A* =0, and AT ¢ Bt U B*.
The reader is invited to check that this quantifier is defined in Lg by the following formula.

(24) JzIYWz(Az « (2 =z V z = y)) AVz(Az — Bz)
® ,
JzIYWz(Az — (2 =z V z = y)) A ~Vz(Az — Bz).

To demonstrate that supervaluation quantifiers in a partial setting provide a litmus test for extensions
of notions defined for quantifiers in a total setting, we will now look at the generalisations of the notions
of extension, isomorphy and conservativity. First we show that the notions of extension and isomorphy
that were given in Section 3 are indeed the correct generalizations from the total to the partial case for
the supervaluation guantifiers.

Proposition 10 The supervaluation quantifier Q based on the total quantifier Q satisfies EXT ff Q
satisfies EXT-T.

Proof: Suppose Q satisfies EXT. Then:
QE(X’ Y)=1
iff (definition of Q) Q4(X,0,Y,0) =1
iff (Qg satisfies EXT) Q},(X,0,Y,0)=1forall E'C XUY
iff (definition of Q) QL (X,Y)=1forall E' C X UY.

Similarly: Q%(X,Y) =0iff Q. (X,Y)=0forall E'C X UY.
Conversely, suppose Q satisfies EXT-T. Then:

Q5(At, A", Bt B*) =1
iff (definition of Q) Q}(X,Y) = 1 for all X,Y with
At CXCAtUA*and BFCY C BtTUB*
iff (Q satisfies EXT-T) Q},(X,Y) = 1 for all X,Y with
AT CXCAYUA*CFEF and BFCYCBYUB*CE'
iff (set theoretic reasoning) Q}/(X,Y) =1 for all X,Y with
AT CXCAtUA*and Bt CY C BtUB*
and all E' with E' D AT UA*UBT UB*
iff (definition of supervaluation quantifiers) Q},(A*, A*, Bt, B*) =1
for all E’ with E' D AT U A* U Bt U B*.

Similarly: Q%(A*, A*, B*,B*) = 0iff Q% (A%, A*, B, B*) =0

for all E’ with E' D At UA* U Bt U B*. =
Proposition 11 The supervaluation quantifier Q based on the total quantifier Q satisfies ISOM iff Q
satisfies ISOM-T.

Proof: Assume Qg satisfies ISOM and let f be a bijection of F to E’'. Then:

QL(X,Y)=1
iff (definition of Q) Qf(X,0,Y,0) =1
iff (Q satisfies ISOM) Q. (f[X],0, f[Y],0) =1
iff (definition of Q) QF,(f[X], f[Y]) = lfor all ' C X UY.
Similarly: Qg(X,Y) = 0iff Qg (f[X], f[¥Y]) = 0.
Conversely, assume Q satisfies ISOM-T, and let f be a bijection of E to E'. Then:
QL(4t,A* B*,B*) =1
iff (definition of Q) Q}(X,Y) = 1 for all X,Y with
A*CXCAtUA*and BY CY C B*UB*
iff ISOM-T of Q) QF (f[X], f[Y]) = 1 for all f[X], f[Y] with
fl[A*] C f[X] C f[A* U A*] and f[B*] C f[Y] C f[B* U B’
iff (definition of Q) Qf.(f[A%], f[4°], f[B*], f[B*]) = 1.

22

Similarly: Q%(A%, A*, BT, B*) = 0iff Q% (F[A*], f[4*], f[BT], f[B*]) = 0.]

The following proposition tells us which of the varieties of conservativity that were distinguished in
Section 3 is the proper generalization for the case of supervaluation quantifiers.

Proposition 12 The supervaluation quantifier Q based on the total quantifier Q satisfies W—CONS iff
Q satisfies CONS-T.

Proof: Assume Q satisfies CONS—-T. Then:

Qf(A*,A*,Bt,B*) =1
iff (Q supervaluation quantifier based on Q) QE(X ,Y)=1forall X,Y with
AT CX CAtUA*and Bt CY C Bt UB*
iff (CONS—T of Q) QL(X, X NY) =1 for all X,Y with
AT CXCAtUA* and BFCY C BtUB*
iff (set theoretic reasoning) Q% (X, X NY) =1 for all X,Y with
AT CXCAtUA*and ATNBY CXNY C(BTN(ATUA*))U(B*N(ATUAY))
iff (Q supervaluation quantifier based on Q) Q% (A*, A*, Bt N(AtUA4*),B* N(ATU4Y)) = 1.

Similarly: Q% (A", A*, BT, B*) = 0iff Q3 (AT, A*, BT N (AT UA*),B*N(AT UA*)) =0.
Conversely, assume Q is a supervaluation quantifier based on Q, and Q satisfies W—CONS. Then:

Qb(x,¥) =1

iff (Q supervaluation quantifier based on Q) Q%(X,0,Y,0) = 1
iff (Q satisfies W-CONS) Q}(X,0,X NY,0) =1

iff (Q supervaluation quantifier based on Q) QfL(X, X NY) = 1.

Similarly, Q%(X,Y) = 0 iff Q% (X, X NY) = 0. .
Finally, there is a simple result about closedness.

Proposition 13 The supervaluation quantifier Q based on the total quantifier Q satisfies CL off Q
satisfies CL-T.

Proof: Immediate from the definitions. =
It is useful to define the supervaluation property for formulae in general:

Definition 16 A formula p 1s a supervaluation formula if for any situation s and any assignment g for
8:

[els,g = 1 (0) iff for all totalt > s, [¢]e,g =1 (0).
Now the following useful theorem is easy to prove:
Theorem 14 A formula ¢ i3 a supervaluation formula iff ¢ is both predictive and < persistent.

Proof: Assume g is a supervaluation formula. Then it is easy to check that ¢ is both predictive and <
persistent.

Assume ¢ is not a supervaluation formula. Then for some situation s and assignment g for s, either of
the following must be the case.

1. [¢ls,g = 1(0) and for some total t > s, [¢]:,4 # 1 (0).

2. [¢]s,g = * and for all total t > s, [p]:,, = 1(0).
In case 1 ¢ is not < persistent, in case 2 ¢ is not predictive.]
We can immediately derive the following:

Theorem 15 Q is a supervaluation quantifier iff Q observes both <-PERSIST and PREDICT.

23

Theorem 186 If all quantifier symbols in @ are interpreted as supervaluation gquantifiers, then every ¢
in Lo 18 a supervaluation formula.

Theorem 17 If all quantifier symbols in Q are interpreted as closed supervaluation gquantifiers, then
every ¢ in Lo 138 a determinable supervaluation formula.

Finally, the characterization of supervaluation quantifiers as quantifiers satisfying < PERSIST and
PREDICT makes it possible to rule out some of the conservativity notions that were distinguished in
Section 4.

For a given universe E, Ty, Tp and T}, are the quantifiers on E which are respectively always true, always
false or always undefined on E. We call these quantifiers trivial on E. Also, we use T2, T° and T* for
the quantifiers which are always true, always false or always undefined, on any universe. These are the
trivial quantifiers. Note that a quantifier Q can be trivial on any universe without being identical to any
of T1, T° or T* (Q might equal T} on E and T§, on E', say.)

Theorem 18 The only supervaluation quantifiers satisfying VS-CONS are the quantifiers which are
trivial on any universe E.

Proof: Let E be a universe, and let s be the situation on E with A* = B* = E. Let Q be a supervaluation
quantifier satisfying VS-CONS. If Q is false on s, then because of < persistence, Q will always be false
on E, so Q = T3, i.e.,Q is trivial on E. Similarly, if Q is true on s, Q = Tg.

Assume Q has value * on 5. The one step transitions from A*NB* in the directions BT and B~ cannot
change this value because of VS-CONS. Suppose some one step transition from A* N Bt to A* N B+
changes the value % to 1 (0). Then by PREDICT, the transition from A* N B* to A~ N BT changes
the value * to 0 (1), thus leading to a contradiction with VS-CONS. Thus, no one step transition from
A* N Bt to AT N B* does change the value *. It follows from < PERSIST that no one step transitions
from A* N B* to AT N B* and from AT N B* to AT N Bt can change the value *. For information growth
in the direction towards A* N B~ the reasoning is similar. Thus, in this third case Q = T}.]

To also rule out the constraint of strong conservativity S-CONS we need the property of variety, well
known from standard generalized quantifier theory:

VAR-T If A # () then there are B, B' C E with QgAB = 1 and Qg AB' = 0.

Here is the variant we need for the present partial setting.

VAR If At # 0 then there are BY, B'* C E with Qg(4*,0, B*,0) = 1 and Qz(A*,0, B',0) = 0.
The following proposition is immediate.

Proposition 19 The supervaluation quantifier Q based on the total quantifier Q satisfies VAR iff Q
satisfies VAR-T. -

Theorem 20 If a supervaluation quantifier satisfies VAR then it will not satisfy S—CONS.

Let Q be a supervaluation quantifier satisfying S-CONS. We show that Q will not satisfy VAR. Let E
be a universe, and let s be the situation on E with A* = B* = E. If Q is false on s, then because of
< persistence, Q will always be false on E, so Q = Tg, i.e.,Q is trivial on E, and so Q does not satisfy
VAR. Similarly, if Q is true on s, Q = T3, and Q does not satisfy VAR.

Assume Q has value * on s. The one step transitions from A* N B* in the directions BT and B~
cannot change this value because of S-CONS. Suppose that some one step transition from A4* N B+
to AT N Bt changes the value * to 1 (0). Then by PREDICT, in that situation the transition from
A* N Bt to A~ N B* changes the value * to 0 (1). But then by S-CONS, the transition from A* N B~
to A~ N B~ also changes the value * to 0 (1), so, again by PREDICT, the transition from A* N B~ to
A* N B~ will change the value * to 1 (0). It follows from < PERSIST that in the same situation the
two step transition from A* N B* to At N B via AT N B* and tke two step transition from A* N B* to
A* N B~ via A* N B* will also change the value * to 1 (0). This shows that in this case too, Q does not
satisfy VAR. ™

24

7 Domain Persistence and Information Persistence

The inclusion relation C between models is defined in the usual way:
Definition 17 s C u if E, C E, and for alln, for all P € P*;

e I7(P)NE™=1I}(P).

e I_(P)NE*=1I;(P).
The definition engenders the following notion of domain persistence.

Definition 18 A sentence o is C persistent if for all s C u the following holds: [¢]; = 1 implies [p]. =1
and [p]l. = 0 itmplies [p], = 0.

Domain antipersistence is the converse of domain persistence. Truth domain (anti)persistence (C*)
and falsity domain (anti)persistence (C~) are the two halves of domain (anti)persistence. There are
corresponding properties for quantifier interpretations.

C PERSIST If X*,X-,Y*+,Y~ C E', then:
e Qp(A*,A*, BT, B*) = 1implies Qg (AT UXT, A*UX*, Bt UY T, B*UY*) =

1,
o Qp(AT UX*, A*UX*,B¥ UY+, B*UY*) = 0 implies Qg(4™, 4*, B+, B*) = 0.

It is sometimes useful to exclude cases where a formula ¢ is < persistent for the trivial reason that it is
always undefined in partial situations. This can be accomplished by means of the following definition.

Definition 19 A formula ¢ of Lo ~ g s informative if there is a partial situation s and an assignment
g for s such that], = 0 or [¢], = 1.

Again, there is a corresponding property for quantifier interpretations.
INFORM There are X*,Y* with X* UY* # 0, such that
Qe(X,X*,Y,Y*)=1or Qg(X,X*,Y,Y*)=0.

An example of a quantifier which is not informative is the supervaluation quantifier an even number
of. It is easily seen that < persistence is only an interesting notion for informative quantifiers: quantifiers
that are not informative are always <-persistent. The following proposition is immediate.

Proposition 21 If Q satisfies CL and PREDICT, then Q satisfies INFORM.

For convenience in what follows we will sometimes abbreviate Q E_(Aj‘,A:, Bj, B¥*)=1ass | Qand
QE:(A:-’A:’Bj-,B:) — 0 as 3-_—4 Q

Proposition 22 For all closed supervaluation quantifiers Q:
Q is truth C (anti)persistent iff Q is falsity C (anti)persistent.

Proof: Assume Q is a closed and truth C—persistent supervaluation quantifier, and consider a situation
s with s ={ Q. Assume for some u C 3, u #4 Q. Now u = Q would contradict the truth C—persistence of
Q, so we have u [~ Q and u A Q. Because Q is a closed supervaluation quantifier there is a total ¢ > u
with ¢ = Q. Let w be the result of adding to ¢t what must be added to u to get s. We then have ¢t C w
and s < w, i.e., we have the situation in the following picture:

-

IA
IN

N

25

Because Q is truth C—persistent, w |= Q. But this contradicts the fact that Q is a supervaluation
quantifier: every situation > s must falsify Q. This proves that u = Q for all u C s, ie., Q is falsity
C-persistent. The reasoning for the converse and for the case of antipersistence is similar. =

Proposition 23 Q is trivial iff Q is both C—persistent and C—antipersistent.

Proof: It is easily checked that the trivial quantifiers 72, 7° and T* (always true, always false or always
undefined, on any universe) are both C—persistent and C-antipersistent.

Conversely, assume Q is both C—persistent and C-antipersistent. We show that if there is some s with
8 |= Q then u |= Q for any situation u. Take an arbitrary situation u and let u’ be the result of deleting
the part of u outside A} U A}. Transform s into s’ by adding (deleting) elements to (from) At N B+,
At NB*, A*NB~, A*NB*, A* N B* and A* N B, until there is a one-one map from the domain of
s' onto that of u'. Now s’ = @, by C—persistence and C-antipersistence of Q. By ISOM, «' = @, and
by conservativity it follows that » = Q. Similarly, if there is some s with s = @ then @Q is false in any
situation. =

Note that C-persistent quantifiers need not be <—persistent. A counterexample is the clone quantifier
with the truth conditions of at least 1 and the falsity conditions of at least 2, which is C-persistent
(because both at least 1 and at least 2 are C—persistent), but not <-persistent (because the quantifier
is true in situation s with just two individuals, one of which is in AT N Bt and the other in AT N B*,
and undefined in situation u > s where the object in B* has been found out to be in B™.

The precise connection between <-persistence and being a supervaluation quantifier was given in
Theorem 15. We have seen some examples already of quantifiers lacking <—persistence. Example (25)
gives another such case:

(25) All entities known to be A are B.

The quantifier in (25) might be true in some situation s but become false at a later stage of knowledge
acquisition, in a situation s’ with s < s’. The non <-persistent quantifier of this example is the result
of ‘relativising’ a supervaluation quantifier to local knowledge. In fact, this localising process can take
place in an ‘existential’ and a ‘universal’ sense, in both arguments. (25) gives a ‘universal’ local for all.
Other possible localisations are given in the following examples.

(26) All entities not known to be not A are B.

(27) All A are entities known to be B.

(28) All A are entities not known to be not B.

(29) All entities known to be A are entities known to be B.

(30) All entities not known to be not A are entities known to be B.

(31) All entities known to be A are entities not known to be not B.

(32) All entities not known to be not A are entities not known to be not B.

These locals can be seen as applications of modal operators O, to the predicates. If one views a class
of situations partially ordered by < as an S4 Kripke frame, then OAt = O(A* U A*) = At (the set of
objects satisfying A in every < extension of the current situation) and CAT = O(AT U A*) = ATt U 4*
(the set of objects satisfying A in some < extension of the current situation). This connection motivates
the following notation.

Definition 20 For any Q, the locals Q©, Q°, Qo, Qo, QF, QF, QS, Q32 are defined as follows:
o Q°(A*,A*, BT, B*) = Q(41,0,B*, B*).
e Q°(A*,A*,BT,B*) = Q(AT UA*,0, Bt, B*).
e Qu(A*,A*, B*,B*) = Q(41, 4%, B,0).

Qo(A*, A*, BY,B*) = Q(At, A*, Bt U B*,0).

Qp(At,A*, BT, B*) = Q(A4t,0,B,0).

26

e Q9(AT,A*, Bt,B*) = Q(A',0, Bt U B*,0).
e QS(A%,A*, BY,B*) = Q(AT U A*,0, B+,0).
e Q3(At,A*, Bt B*) = Q(AT U A%, 0, BT U B*,0).
Note that for every Q it is the case that Q. = Q"‘ ® Qm/(m,m' € {O,C}).

m'

In general, the local of a quantifier need not be everywhere defined, but the locals of closed quantifiers
are. Note:

e Localisation does preserve closedness and informativeness but does not in general preserve <-
persistence.

e If Q is closed, then all its locals are two valued and (thus) informative.

There also is a kind of converse to localisation, namely globalisation: adding the information that all is
known about the first and/or second argument of a quantifier. A quantified formula Qu(yp,) is globalized
in its first argument by taking the following interjunction:

(33) (Qu(p, %) AVu(p V =p)) ® (Qu(p, %) V ~Vu(p V —p)).

Similarly for globalisation in the second argument. Thus, if Q is a quantifier interpretation, then its first
argument globalisation (abbreviation Q') is given by:

e Q'(At,A*,BT,B*) = 1if Q(A',A*,B*,B*) =1and A* = 0.

e Q'(At,A*,BT,B*) = 0if Q(A*,A*, BT, B*) =0 and A* = 0.
Thus, if Q is the quantifier all, then Qi is the quantifier in the following example.
(34) All A are B, and A and B are fully known.

For every Q: QE is not informative and (thus) trivially <-persistent. Also: if Q is not informative then
Q= Q: Finally, Q is closed iff Q| is.

8 Monotonicity

To extend the monotonicity properties from the total case to the case of partial information, verification
and falsification must again be considered separately. For the verification part of MON in the left
argument, T-direction, we want to say that if the quantifier holds for given AT, A*, then it will continue
to hold in a situation in which things which were A~ or A* have changed into things which are A*.
Formally: if X C E, and the quantifier holds for AT, A*, then it must also hold for AT U X, 4* — X.
Conversely, if the quantifier yields falsity for given A*, A*, and things which were AT or A* have changed
into things which are A~, then the quantifier must again yield falsity. Here are the two parts of upward
left monotonicity:

TMON
o If X C E and Q}(A*, A*, B, B*) = 1 then Qf;(At U X, 4* — X, B+, B*) = L.
o If X C E and Q%(A*, A*, BT, B*) = 0 then Qy(At — X, A* — X, B*,B*) = 0.

Note that there is a clear difference between upward monotonicity and <-persistence: all supervaluation
quantifiers are <-persistent, but it is certainly not the case that all supervaluation quantifiers are upward
monotone in their first arguments.

The formulation of left monotonicity in the downward direction is completely analogous:
IMON

o If X C E and Q}(A*,A*, B*, B*) = 1 then Q}(4" — X, A* — X, B+, B*) = L.
o If X C E and Q%(A*, A*, B¥, B*) = 0 then Q% (AT U X, A* — X, B+, B*) = 0.

27

Similarly, principles MONT and MON| for monotonicity in the second argument can be formulated.

The first thing we must show is that these principles are the correct generalizations of the monotonicity
principles for the total case. As before, we use the supervaluation quantifiers as a litmus test.

Proposition 24 The supervaluation quantifier Q based on the total quantifier Q satisfies TMON (|MON,
MONT, MON|) iff Q satisfies T MON-T ({MON-T, MON{-T, MON|-T).

Proof: We will just prove the case of TMON. Suppose Q satisfies TMON. Then:
QL(X,Y) =1
iff (definition of Q) Q}(X,0,Y,0) =1
only if (Qg satisfies 'TMON) Qi(XUZ0,Y,0)=1forall ZC E
iff (definition of Q) Q}(X’,Y) =1 for all X' with X C X' C E.

Similarly: if Qy(X,Y) = 0 then Q%,(X’,Y) = 0 for all X’ C X.
Conversely, suppose Q satisfies TMON-T. Then:

QL(A*,A*, B+, B*) = 1
iff (definition of Q) Q}(X,Y) = 1 for all X,Y with A* C X C At UA* and B¥ C Y C
BtUB*
only if (Q satisfies TMON-T) Q},(X',Y) = 1 for all X’ with X C X' C E
and all X,Y with At C X CE' and Bt CY CE'
iff (definition of supervaluation quantifiers) Q}(A* U Z, 4* — Z, Bt, B*) = 1.

Similarly: if Q3 (AT, A*, B, Bx) = 0 then Q% (At — Z,A* — Z, Bt,B*) = 0.]

Next, we chart the connection between monotonicity and persistence properties. The first connection is
immediate.

Proposition 25
1. If Q 1s TMON then Q is truth < persistent and falsity < antipersistent in its first argument.
2. If Q is []MON then Q is truth < antipersistent and falsity < persistent in its first argument.
3. If Q is MONT then Q is truth < persistent and falsity < antipersistent in its second argument.
4. If Q is MON| then Q is truth < antipersistent and falsity < persistent in its second argument.
Proposition 26
1. Quantifiers which are C-persistent and <-persistent are TMON.
2. Quantifiers which are C-antipersistent and <-persistent are |MON.
Proof: 1. Suppose Q is C—persistent and <-persistent. Because of
(E,A*,A",B*,B")C(EUX,ATUX,A",B*, B~ UX),
it follows from C persistence of Q that:
Q(A*,A*,BT,B*)=1= Q(4* U X, 4*,B*,B*)=1.
Because of < persistence of Q:
Q(AtUX, A% Bt,B*)=1= Q(AtUX,A* - X,B*,B*) = 1.
This establishes the positive part of the {MON property for Q.

Because of

(E— X,At — X,A”,B*,B~ — X) C (E,A*, A=, B*,B"),

28

it follows from C persistence of Q that:
Q(A*,A*,B*,B*)=0= Q(AT — X, 4*,B*,B*) = 0.
Because of < persistence of Q:
Q(At —X,A*",B*,B*)=0=Q(A" — X, A* - X,B*,B*) =0.

This establishes the negative part of the TMON property for Q. It follows that Q is TMON. The
reasoning for 26.2 is similar. =

Proposition 27
1. TMON and <-persistent quantifiers are C-persistent.
2. IMON and <-persistent quantifiers are C-antipersistent.

Proof: We only prove 1, the proof of 2 being analogous. Assume Q is TMON and <-persistent,
but not not C—persistent. Then there are s,u with s C u and either Qg, (A}, A}, B},B!) = 1 and
QEu(AI’ A BI» B}) # 1, or QEu(A;ra A, Bf, B;) = 0 and Qg, (A;*-»sz Bf, B}) # 0. Suppose the
former is the case. Let u’ be the situation (E,, A}, A7, B}, B;). Then u' < u, and because Q is
<-persistent, (35) holds.

(35) QEu(A;t’A:iBj,Eu_(B;{-UB:))751
Put X = A} — A}. Then (35) can be rewritten as (36).
(36) QE.UX(ATUX’A:yijB:UX)7é1

It follows from Qg, (A}, A, Bf,B!) = 1 and EXT, W-CONS that Qg,,x (47, A:,Bf,BIUX) = 1.
By TMON of Q, it follows from this that Qg,ux (A} U X, A%, B, B} UX) = 1, and contradiction with
(36).

The assumption of Qg (Af, AL, Bf,B.) = 0 and Qg, (A}, A%, B}, B!) # 0 leads to a contradiction
with TMON in a similar way. [

The next proposition combines the previous two.

Proposition 28 For all < persistent Q (and a fortiori for all supervaluation quantifiers Q):
1. Q is TMON iff Q is C-persistent.
2. Q s IMON 1ff Q s C-antipersistent.

The proposition is relevant for the semantics of perception reports.

(37) I saw John prepare a sandwich.

Perception verbs such as ‘see’ in (37) can be interpreted as relations R between individuals (perceivers)
and situations (perceived scenes) for which principle S-INCL holds.

S—-INCL For all R denoting relations between perceivers p and perceived situations s: if pRs holds in
situation s’ then s C s'.

In other words: if in a given situation some scene is perceived by someone in that situation, then the
scene is included in the situation.

The fact that proper names, viewed as properties of properties, are C persistent explains the entailment
relation between (37) and (38).

(38) John prepared a sandwich.
Similarly, Proposition 28 explains the entailment between (39) (from a Dutch children’s song) and (40).

(39) I saw two bears prepare a sandwich.

(40) Two bears prepared a sandwich.

29

Pace Alice’s White King, (42) does not follow from (41). Again, this non-entailment is explained by
Proposition 28.

(41) I see nobody on the road.

(42) Nobody is on the road.

In case the reader wonders why the reasoning from Proposition 26 cannot be used to establish a connection
between C—persistence and monotonicity in the second argument, the answer is that in this case the
connection is spoilt by (weak) conservativity. If X C A~, then (BT UX) N (At U 4*) = B, so adding
a set X of individuals from A~ to BT does not change the truth or falsity conditions of a (weakly)
conservative quantifier.

There is a nice connection between monotonicity properties and a property attesting to the possibility of
knowledge acquisition in the face of basic ignorance. We can ask ourselves which quantifiers remain true
or false when individuals are added to the domain that are in the gap extensions of both the first and
the second quantifier argument. Here is a formal version of this requirement.

IGNOR (in terms of A*, A*, Bt B*)

Q(A*, 4%, B+, B*) = 1(0) and X N AT N BY = 0 = Q(A+, 4* UX, B+, B* UX) = 1 (0).
IGNOR (in terms of AT, A=, B* B™)

Qs(At,A",B*,B")=1(0) and X NE =0 = Quux(A*, A=, B+,B~) = 1(0).

Note that the converse of IGNOR follows immediately from < PERSIST. The connection with mono-
tonicity is given by the next proposition.

Proposition 29 TMON implies positive IGNOR. |MON implies negative IGNOR.
Proof:

Q*t(A+,A*, BT, B*) =1
= (TMON) Q*+(A*,A* UX,B+,B*) =1
& (W-CONS) Q+(A+,A*UX,B*,B*nNX)=1.

The proof of the second claim is similar. (]

It is not difficult to show that TMON does not imply negative IGNOR, nor does | MON imply positive
IGNOR. It follows from these facts and the above proposition that it is possible to verify Some A are
B or Not all A are B in a world which is only partially known, but impossible to falsify such claims in
such a world. By the same token, it is possible to falsify All A are B, At mostn A are B, and no A are
B in a fathomless world, but impossible to verify such claims. Contemporary philosophy of science bears
witness to the fact that one may spin long yarns of philosophical argument starting from such simple
logical observations.

Next we give an example of a connection between monotonicity and one of the conservativity notions
that we have called M-CONS in Section 4.

Proposition 30 TMON, < PERSIST and IGNOR imply the positive part of M-CONS;
IMON, < PERSIST and IGNOR: imply the positive part of M-CONS.

Proof:

Qfi(AT,A~,B*,B~) =1

iff (=: < PERSIST, <: {MON) Q}(At, A~ UAT,B+,B-) =1

iff (W-CONS) @} (4+, A~ UAT,B*NA-UAF,B-UA-UAF) =1

iff Q5 (AT, A" UAF, BtNnAT,B-UA-UAT) =1

iff (EXT) Q} (4%, 47,B*nA*,B-U4") =1

iff (=: IGNOR, «: < PERSIST) (% (4%,4-,B*NA*+,B-UA") =1

30

The second claim is proved similarly. m

We close off this section with a proposition which gives useful information about the monotonicity prop-
erties of localisations of quantifiers.

Proposition 31 Localisation of quantifiers preserves monotonicity properties.
Proof: Immediate from the definitions. =

The readers is invited to check that propositions 25, 28 and 31 together explain all the valid implications
between the examples from the following list.

(43) Some animals known to be quarrelsome are parrots.

(44) Some quarrelsome animals are parrots.

(45) Some animals which as far as we know are quarrelsome are parrots.
(46) All horses are animals known to be intelligent.

(47) All horses are intelligent.

(48) All horses are animals which as far as we know are intelligent.
(49) All animals which as far as we know are horses are intelligent.
(50) All animals known to be horses are intelligent.

(51) No lions are animals which as far as we know are vegetarians.
(52) No lions are vegetarians.

(53) No lions are animals known to be vegetarians.

9 Decomposing Quantifiers

Every three valued quantifier interpretation Q can be seen as a composition of a two valued verifying
part Q* and a two valued non falsifying part Q°. It is sometimes useful to be able to refer to these parts
directly. Provided we employ a language including L£g,~, this is easy, as the following proposition shows.

Proposition 32 If ¢ defines a quantifier Q (in the three valued sense), then ~~¢ defines Q* and ~—p
defines Q°.

Proof: Straightforward checking using truth tables.]

If we employ the language Lg ~ g, We can glue the verifying and the non-falsifying part of a sentence
together again.

Proposition 83 For any sentence ¢ of Lo~ g: E ¢ & (~~p ® ~—p).
Proof: This follows directly from the truth tables of ~, = and ®. B

The two previous propositions taken together yield that we can view any quantifier as a composition of
its verifying and its non falsifying part, for we have:

(54) E Qu(py) & (~~Qu(p, ¥) ® ~=Quv(p, ¥)).
The following is a useful fact about three valued logic.

Proposition 34 The following are equivalent for all sentences ¢, ¥ of Lo~ g

1L.oEY
2_ ~~Sp h*’ ~~'(l) a’nd ~-p }:_ ~—|1/)_
Proof: Use the definitions of |=, =7 and =", and the truth tables of ~ and —. =

Proposition 35 For any formulae ¢, ¥ in Lg ~ g with at most v free, for any Q € Q:

31

F ~~Qu(p, ¥) — ~=Qu(p, ¥).
Proof: Use the truth tables of ~ and — and the fact that for any quantifier interpretation Q,
Qf (X, X*,Y,Y*) = 1 implies Q°(X, X*,Y,Y*) = 1. =

The decomposition of a quantifier in a verifying part and a non falsifying part provides a means of
expressing the notion of quantifier dependence on a three valued presupposition.

Proposition 36 Let ¢ and Qu(y, x) be sentences of Lo ~ . Then the quantifier that is like Qu(¥, x),
but loaded with presupposition p, is expressed by:

(9 AQu(¥,x)) ® (~¢ V Qu(¥, x))-
This quantifier is open if - o < T.

Proof: A check of the operator definitions shows that (¢ A Qu(v¥,x)) ® (—¢ V Qu(¥, X)) is true in a
situation s if ¢ and Qu(%, x) are both true in s and false in s if ¢ is true in s and Qu(4, x) is false in s.
The quantifier will be undefined in all situations u where ¢ is not true, so it is open if there are such u. =

The operators =, ~ and ® can be used to construct quantifiers by a process of ‘cloning’. We give some
examples.

(55) ~~Vz(Az — Bz) ® ~—3z(Az A Bz).

This quantifier has the truth conditions of supervaluation all and falsity conditions of supervaluation
some, and is undefined in case of conflict. In other words, the quantifier is true if both A* U A* C B+
and (At UA*)N (BT UB*) # 0, and false if both (At U A*) N (Bt U B*) =0 and At U A* ¢ B*.

(56) ~~Jz3y((—z = y) A Az A Ay A Bz A By) ® ~—Vz(Az — Bz).

This quantifier has the truth conditions of supervaluation at least 2 and the falsity conditions of super-
valuation all, and is undefined in case of conflict. In other words, the quantifier is true if #(ATNBt)>2
and AT ¢ Bt U B*, and false if A¥ C BY UB* and #(At N B*) < 2.

Both these examples were clones of non supervaluation quantifiers. Here is an example of a supervaluation
clone.
(57) ~~3edyFe((-z = y) A(-z = 2) A(~y = z) A Az A Ay A Az A Bz A By A Bz)

®

~=3z3y((—z = y) A Az A Ay A Bz A By).

This sentence defines the quantifier with truth conditions of supervaluation at least 3 and falsity con-
ditions of supervaluation at least 2. In this example there is no possibility of conflict. In fact, the
example quantifier is itself a supervaluation quantifier, for it can be based on the total quantifier Q given
by Qt(X,Y)=1if #(XNY) >3 and Q°(X,Y) = 0 iff #HXNnY)<2

One would like to know in what circumstances a cloned quantifier is determinable, predictive or <
persistent. To answer that question it turns out to be profitable to switch to a more general perspective
and ask under what circumstances a cloned formula ~~¢ ® ~— is closed, predictive or < persistent.
The following proposition first gives us the circumstances under which a cloned sentence is trivial, in the
sense that it always evaluates to the value *.

Proposition 37 For all sentences ¢, of Lo ,~ g, the following are equivalent:
1. Epo .
2 | (nmp @ ~mip) & k.
5. = (e ® ~mp) 1.

32

Proof: If = ¢ < —9 then for all 3, [~~p], = 1iff [p], = 1 iff [¢], = 0 iff [~—9], = 0. So for all s:
[~~¢p ® ~—¥], = *, and therefore [(~~p ® ~—9) <], = 1. The reasoning from 2 to 3 and from to 1
is similar. =

Of course the result of cloning a sentence ¢ with itself will get the original sentence back, for E ¢ <
(~~p ® ~—p). What we want to show next is that cloning essentially destroys determinability.

Let Q71 be a set of quantifier symbols disjoint from Q, and such that for each Q € Q there is a different
Qt € Qt. Similarly, let Q° be a set of quantifier symbols disjoint from @ and @7, and such that for
each @ € Q there is a different Q° € Q°. These new quantifier symbols are to be interpreted as follows.
If Q is interpreted as Q, then its corresponding Q% is interpreted as Q¥, and its corresponding Q° is
interpreted as Q°. Let Q' be the set of quantifier symbols @t U Q°. Thus, all quantifier symbols in
Q' are interpreted as closed quantifiers. Now assume that all quantifier symbols in Q are interpreted as
T MON 1 quantifiers. Then we can get at an expressibility result by means of the following inductive
definition of functions *° mapping formulae of Lg ~ g to formulae of Lg/ ~.:

(Pty--tp)* = Pty---t, (Pty---t,)° = ~=Pty-- -ty

(ty =t2)* =t; =t
(—p)* = —p°
(~9)* = —p*
(pAY)* =p* AY®
(pVY) =p*Vy*
(p®Y)* =p*AY*
(Vvp)® = Vup*
(Fvp)® = Fvp®

(b =t2)° =t =,
(me)° = —p*
(~p)° = —p*
(pAP)° = ° AY°
(pV)° =p°Vy°
(p®¥)° =° Vi°
(Vvp)® = Vop°
(Fvp)°® = Jve®

(QU(SP, 1)b)). = Q+U(<P., 1/).) (Qv(% 1/)))0 = Qov(soo’ '¢'°)-

Any sentence ¢ of Lo ~ g can be expressed in a normal form as a sentence of Lo/ ~ g, as the following
lemma (a variation on a theorem of [Langholm 1988]) shows.

Lemma 38 Assume all Q € Q are interpreted as TMONT quantifiers. Then for any sentence ¢ of
Lg,~,p there are sentences ¥, x of Lo/~ such that ¢ is strongly equivalent to 1 V (x A *).

Proof: Take ¥ equal to ~~p® and x equal to ¢°, An inspection of the definition makes clear that ¢°
and ¢° do not have occurrences of ®, and do only have occurrences of binary quantifier symbols from
the sets QT and Q°. A simple induction establishes the following (note that the assumption of double
upward monotonicity is needed for the binary quantifier case):

1. [¢], = 1iff [¢°], = 1.
2. [¢]s = 0iff [¢°], = 0.
3. If [¢*], = 1 then [¢°], = 1.
4. I [¢°], = 0 then [¢°], = 0.

Consider the truth table for ~~¢® V (¢° A *):

~pt V(PP AK) [T F 0
1 11 (1)

* * ¥

* o+

The case of [¢°*], = 1 and [¢°]s = 0 is put in brackets, as this cannot occur, by virtue of the fact that
any situation s is assumed to be coherent. A case by case inspection of the other cases using the four
facts above yields that |= ¢ < (~~p® V (p° A %)). =

Let C be the conjunction for all n, for all predicate letters P € P™, of the sentences Vz; - - -Vz,(Pz1-- -2,V
=Pz;---2,). Then the following lemma holds.

Lemma 39 If a sentence p V (¢ A %) in Lg ~ g i3 determinable, then = (¥ A C) ~ o.

33

Proof: Suppose ¢V (1) A*) is determinable, and assume for some s, [y AC], = 1. Then by the construction
of C, s is total. Assume that [¢], # 1. Then [p V (% A *)], # 1. By the determinability of ¢ V (% A *)
and the fact that s is total: [p V (¥ A #)], = 0. This leads to a contradiction, as it implies [¢], =0. =

Theorem 40 Suppose all Q € Q are interpreted as TMONT quantifiers. Then any determinable sen-
tence ¢ of Lg,~,g 18 strongly equivalent to a sentence ¢' of Lo/ ~.

Proof: Suppose ¢ is determinable. By Lemma 38 we have that ¢ is strongly equivalent to v V (x A #),
where 9, x in Lo/, ~. By Lemma 39, the fact that ¢ V (x A *) is determinable implies that % V (x A #) is
strongly equivalent to % V (x A C), which is an Lg/ ~ sentence. |

Note that the theorem implies that every determinable quantifier definable in Lo ~. g can be defined in
terms of closed quantifiers in Lg ~.

Theorem 41 If all Q € Q are interpreted as < persistent, TMONT gquantifiers with their |MON1
duals, then any truth (falsity) < persistent sentence p of Lo~ g is positively (negatively) equivalent to
a sentence ¢’ of Lg.

Proof: An induction argument shows that ¢ is truth < persistent iff ¢® is defined and = ¢ = ¢®, and
similarly, ¢ is falsity < persistent iff ¢® is defined and |= ~¢p = ¢®, where the functions 8.0 are given by
the following inductive definition (Q is used for the TMONT quantifiers and Q for their |[MON1 duals).

(Pty--t3)® = Pty---t, (Pt1--+t,)® = =Pty---t,

(t]_ i‘tz)Q :tl ﬁtz (t]_ i“tz)e :tl #tz
(~9)® = p® (—p)® = ¢®

(~p)® =1 (~p)® = ¢®
(pA9)® = p® Ay® (pAY)® = O vy®
(pVY)® =p®vy® (pVY)® =p® Ay®
(p®$)® = p® Ay® (P ® %) = p® Ay®
(Vop)® = Vop® (Vvp)® = Juyp®
(Fvp)® = Fvp® (Fvp)® = Vovp®

(Qu(p,¥))® = Qu(¢®,42) (Qu(p,4))® = Qu(¢®,%°)
(Qu(p,¥))® = Qu(¢®,9®) (Qu(p,¥))® = Qu(p®,v°).

Inspection of the definition shows that ¢® and ®, if they are defined, do not contain occurrences of ®
or ~. This establishes the result. n

10 Conclusion

We have sketched the relational theory of three valued generalized quantifiers. It emerged that the
supervaluation approach generates a class of extremely well behaved three valued quantifiers. This
approach made it also possible to test a number of generalizations of quantifier intuitions from the total
to the partial case. But the partial perspective also gave rise to a number of new intuitions, with
information persistence as the most important.

The theory of total quantifiers makes use of tree representations and semantic automata to represent
quantifiers. Extensions of these notions to cover the partial case are given in [van Eijck 1991b]. On the
application side, one would like to know more about the ways in which logical properties of quantified
expressions influence linguistic usage. Also, a link should be established between partial generalized
quantifier theory and theories of vagueness for natural language expressions, e.g. the theory of vague
adjectives.

Acknowledgements

I wish to thank Sergei Artemov, Johan van Benthem, Marcus Kracht, Elias Thijsse, Jgrgen Villadsen
and Fer-Jan de Vries for their helpful comments on earlier versions of this paper.

34

References

[Barwise 1981] J. Barwise, ‘Scenes and Other Situations’, The Journal of Philosophy, 78, 369-397.

[Barwise & Perry 1983] J. Barwise & J. Perry, Situations and Attitudes, Bradford Books/ MIT Press,
Cambridge Mass.

[Barwise & Cooper 1981] J. Barwise & R. Cooper, ‘Generalized Quantifiers and Natural Language’, Lin-
guistics and Philosophy, 4, 159-219.

[van Benthem 1986a] J. van Benthem, Essays in Logical Semantics, Reidel, Dordrecht.

[van Benthem 1986b] J. van Benthem, ‘Partiality and Nonmonotonicity in Classical Logic’, Logique et
Analyse 29, 225-24.

[van Benthem 1987] J. van Benthem, ‘Towards a Computational Semantics’, in P. Gérdenfors (ed.), Gen-
eralized Quantifiers, Linguistic and Logical Approaches, Reidel, Dordrecht.

[van Benthem 1988] J. van Benthem, A Manual of Intensional Logic, Second Edition, Revised and Ez-
panded, CSLI Lecture Notes Number 1, Stanford University. '

[Blamey 1986] S. Blamey, ‘Partial Logic’, in: D. Gabbay & F. Guenthner (eds.), Handbook of Philosoph-
ical Logic, vol. 111, 1-70.

[van der Does 1991] ‘A Generalized Quantifier Logic for Naked Infinitives’, Linguistics and Philosophy,
14, 241-294.

[van Eijck 1991a] J. van Eijck, ‘Quantification’, In Von Stechow & Wunderlich (eds.), Handbook of Se-
mantics, De Gruyter, Berlin.

[van Eijck 1991b] J. van Eijck, ‘Representing Partial Quantifiers’, manuscript, CWI, Amsterdam.

[Gilmore 1974] P.C. Gilmore, ‘The Consistency of Partial Set Theory without Extensionality’, Aziomatic
Set Theory, Proceedings of Symposia in Pure Mathematics, Part II, AMS, Providence.

[Kripke 1975] S. Kripke, ‘Outline of a Theory of Truth’, The Journal of Philosophy 72, 690-716.

[Langholm 1988] T. Langholm, Partiality, Truth and Persistence, CSLI Lecture Notes Number 15, Stan-
ford University.

[Muskens 1989] R. Muskens, Meaning and Partiality, Ph D Thesis, University of Amsterdam.

[Westerstahl 1989] D. Westerstahl, ‘Quantifiers in Formal and Natural Languages’, Gabbay & Guenthner
(eds.), Handbook of Philosophical Logic, Vol. IV, Reidel, Dordrecht, pp 1-131.

[Zwarts 1986] F. Zwarts, Categoriale grammatica en algebraische semantiek, Ph D Thesis, University of
Groningen.

35

