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In this paper we present a generalization of a particular case of Tikhonov's singular perturbation
theorem to Banach spaces. From this we obtain sufficient conditions under which a faithful
simplification by a time-scale argument is justified for age-structured population models. An
explicit formulation for the approximating, ordinary differential equation, model is obtained.
Finally, we describe the precise class of structured population models for which we conjecture
that a similar result holds.
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1. Introduction and motivation

General structured population models have the unfortunate tendency to be very compli-
cated. It is therefore important to investigate systematic simplification methods for this class
of models. One would like to elucidate under which conditions the general problem can be
simplified in such a way that the essential information one would like to obtain from the model,
is not lost. In [10] a number of general principles of model simplification are mentioned that
operate on the level of the population (we are not concerned here with principles that pertain
to the level of the individuals). One example in case is the so-called linear chain trickery: for
some physiologies of the individuals the original infinite dimensional evolution system allows
a representation as a finite set of ordinary differential equations, which is faithful to the full
structured model as far as input-output relations on the population level are concerned. In
[9], necessary and sufficient conditions are given for a structured population model to be linear
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e. In principle, this is the only exact ordinary differential equation representation

, an idea that seems to hover in the back of most people’s minds when using
rential equation population models is not linear chain trickery, but the exploita-
mces in time-scale. One implicitly argues that the use of an ordinary differential
lel is justified if the time-scale of changes in the population size is much slower
»-scale at which the stable i-state distribution is reached. The motivation behind
aper is that one would like to have a set of sufficient conditions for the implicit
be valid in the case of general structured population models.

wever, is still wishful thinking. In this paper we give such a set of sufficient
r general age-structured populations. In the process we obtain a function @,
; exactly how the overall population parameters are linked to the parameters at
1 level. From a modelling point of view one should, instead of writing down an
srential equation model right away, start with the age-structured model which
sed on mechanistic reasoning at the individual level (individual parameters are
. neasure). Subsequently, the time-scale argument in this paper gives the precise
rdinary differential equation model that approximates the full model. It would
very difficult, if not impossible, to write down the correct ordinary differential
1 scratch.

le arguments are most frequently used in finite systems of ordinary differential
sing in applications wherever different time-scales can be distinguished, or intro-
e natural way (see e.g. [12]). The idea is that when one time-scale is very fast, as
the other time-scales inherent in the system, one assumes that the processes on
scale are actually in equilibrium at all times (however, this equilibrium changes
slower processes change in time). This then leads to a system of ordinary dif-
itions of lower dimension, capturing the essentials of the original bigger system.
um assumption is usually called the quasi-(or pseudo)-steady-state hypothesis.
itical counterpart of this intuitive notion starts by scaling the original system of
|uations in such a way that it can be rewritten as a singular perturbation prob-
se set of sufficient conditions for the quasi-steady-state hypothesis to be valid,
ensional systems of ordinary differential equations, is then given by the singular
theorem of Tikhonov [13]. Models for structured populations come in the form of
perbolic partial differential equations with an integral-type boundary condition,
1 Tikhonov theorem and the usual generalizations of it in the literature (see e.g.
'ply.

1 2 a particular case of Tikhonov’s theorem is generalized to infinite dimensional
‘h a way as to make it applicable to structured population models. Apart from
that the theorem is interesting in its own right. Based on the Tikhonov result
:tion 3, a set of sufficient conditions for the quasi-steady-state hypothesis to hold
ured population models. Finally, we give a precise description of a more general
tured population models for which we explicitly calculate the above mentioned
We conjecture that, for this more general class, our approximation result still

ular perturbation theorem

f of Theorem 2.1 below makes frequent use of Gronwall’s Lemma. We state it
easy reference, for a proof see e.g. [5].
Lemma: Assume thata, b, v : [r,T] — IRy are continuous functions, a € ct,




such that ;
u(t) < a(t) + / b(s)u(s)ds forall te([r,T].

Then for t € [1,T] one can estimate u as follows
t t t
u(t) < a(7) exp(/ b(s)ds) + / a(s) exp(/ b(o)do)ds .
T T 3
In case b is constant, then the estimate reduces to

¢
u(t) < a(T)eb(t"T) + / d(s)eb(t"s)ds .
T

We consider a system of evolution equations which depend on a small parameter ¢ € [0, o]
of the following form

Ye(t) = f(1e(t), we(t),€) (2.10)
ewe(t) = Aowe(t) + eF(e(t), we(t),€) (2.1b)

with an initial condition
7(0) =7, we(0) = . (2.1¢)

The unknown function 7. has values in R™, while w. has values in an (infinite dimensional)
Banach space X. We assume that Ag, f and F satisfy the following hypotheses:

1). Ao generates a strongly continuous semigroup {7op(#)} on X which is assumed

to be exponentially stable, i.e. there are constants My > 1, ¢ > 0 such that

ITo®)|| £ Mye=?* for all ¢ > 0.

2). Both f:IR™ x X x [0,60] = R™ and F : R™ x X X [0,6¢] — X are continuous

and locally Lipschitz with respect to the first two variables, uniformly in ¢.

These assumptions ensure that (2.1) has unique mild solutions for every ¢ and we always
assume that these are maximal solutions, i.e. cannot be extended to a larger time interval.
The notion of mild solution is the usual one, based on the variation-of-constants formula or
(equivalently) satisfies the integrated version of (2.1), i.e.

Ye(t) =7+ /0 F(7e(5), we(s), €)ds (2.20)

welt) = T2+ [ HETDFO1a), welo), e)ds (220

(see [11] for further details and for conditions which ensure that a mild solution is a clasical
one). We want to describe the behaviour of the solutions letting ¢ — 0. This is a problem of
singular perturbation of a similar kind as considered by Tikhonov [13]. Formally one expects
that 7. converges to the solution of the following ordinary differential equation

() = f(2(),0,0) , 0)=7% (2:2¢)

while w, tends to 0 as € — 0. This actually is true, more precisely, the main result reads as
follows.




2.1 Let 7o : [0,T] — R™ be a solution of (2.2¢). Then for every 6§ > 0 there exists
. that for € € (0,€1] the solution 7., w, of (2.1) exists on [0,T] and satisfies the
timates

[7e(t) —v0(t)] £ 6 forall tel0,T] (2.32)

lwe(®)|| £ 6 forall tel6,T] (2.3b)

1at the convergence of 7. is uniformly on the whole interval, while w, converges
ierely on intervals bounded away from 0. More cannot be proved since, in general,
£o.

prove this result in several steps, which we formulate as lemmas. The structure of
as follows. We give an estimate for [y:(t)—70(%)| in terms of ||w.(t)|| in Lemma 2.5.
y we estimate ||ws(t)|| in terms of |y.(t) — Yo(¢)| in Lemma 2.6. These estimates
nbined in the main part of the proof.

nsequence of the first lemma below we can assume that the solutions of (2.1) are
NTR,.

! If Theorem 2.1 is true for f and F globally Lipschitz (w.r.t the first two variables),
so true for f and F locally Lipschitz (w.r.t the first two variables).

start by recalling two standard facts:

n a compact set K and an open set V in a Banach space Y satisfying K C V,
xists a globally Lipschitz function ¢ : ¥ — R4 such that {y € Y : p(y) = 1} is a
od of K and suppe C V.

s locally Lipschitz on a Banach space Y, then to every compact set K C Y there
1ded open set V D K such that the restriction g|v is globally Lipschitz on V.
ge is locally Lipschitz uniformly with respect to € C [0,&¢], then V can be chosen
of € and the restrictions ge|y have a common Lipschitz constant.

1 the compact set {(70(s),0):s € [0,T]} CY :=R™ x X there exists a bounded
O K such that all the restrictions fe]V and Fejy are Lipschitz with a common
nstant. Choosing to K and V a globally Lipschitz function ¢ : R™ x X — Ry
in 1) above, and defining £, 7(B,z,€) := o(B,2)f(B,2,€) and F , F(B,z,€) :=
z,€) then f and F are globally Lipschitz with respect to the first two variables,
- €. Moreover, f and f coincide on a neighbourhood of K and the same holds for
‘hus a mild solution (¢(.),@e(.)) of problem (2.1) for f and F which is close to
ilso the mild solution of the original problem. ¢

ere on in this section we will always assume that f and F are globally Lipschitz
to the first two variables with constant L. Hence we do not have to care on the
;he solutions and have estimates uniform with respect to €. This is stated in the

i Assume f and F are globally Lipschitz with constant L. Then (2.1) has solutions
Y4+ and the following estimate holds:

e)] + el < (514 Malal] + Na(t + 7)) exp(L(1 + M3t (24)

as in hypothesis 1 and N1 := suPy<c<co11£(0,0,€)| + M1]|F(0,0,¢)|[}-



Proof: From the variation-of-constants formulas (2.2a-b) we obtain
t
1)1+ e < 31+ [ 17ele) we(e),)lds + TSy
t
+ 31 [ 1P ((e) wels),)lds
0
t
< 71+ Mol + [ 1710) wels),e) - £0,0,)lds

+ M /Ot [[F(7e(s), we(s),€) — F(0,0,¢€)||ds + tNy.

Now use the Lipschitz continuity of F and f and apply Gronwall’s Lemma to the function

t [7e(t)] + [lwe(®)]]- %
Lemma 2.4 For every § > 0 there exist 7y > 0 and €1 > 0 such that for ¢ < €; we have

|lwe(em)|| < 6 and (2.5a)

t<en = |7.(t) - 7| < 6. (2.5b)

Proof: We choose 7 such that ||To(r1)®|| < 4. This is possible due to assumption 1.

By Lemma 2.3 {(7.(s),we(s)) : 0 £ s £ 11,0 < € < &} is bounded in R™ x X. Thus
| f(7e(8), we(8),€)| and ||F(7e(s), we(s),€)|| are uniformly bounded by a constant N say. The
variation-of-constants formulas imply

[7e(t) — 7] £ Nt

t—s
£

let) = To(2)al < N [ T2 lds < 4, V.

We can choose €1 > 0 such that N7 < § and eeMiNT < -g—. Then obviously (2.5b) is
satisfied and for & < e1: ||we(em)|| < |lwe(em) — To(m)B|| + | To(r1)®|| < £ + £ = 6. o

Lemma 2.5 For 0 < 7 < t the following estimate holds
re(t) = 20()] < (hre(r) = 70(r)] + Ma(t,€)) exp(L(t ~ 7))
‘ (2.6)
+ [ Lexp(L(t - )we(s)lds

where Mj(t,e) — 0 for € — 0 uniformly on bounded t—intervals.
Proof: We have

7e(t) = 0(t) = 7=(7) — (7)) + / (f(7e(8), we(s), €) — f(70(5),0,0))ds .

Hence

() = W) < 1e(r) = 10(r)| + / 1£(10(5),0,€) = £(10(s),0,0)|ds+

+ / F(76(8) 0e(5),) = F(70(5),0,)|ds



t t
< 1r) = 20Dl + (¢ = T)a(t,) + [ Dlwe(o)ds + [ Zive(e) = ro(s)ids
where My(t,¢) := suPg<s<t 1F(70(8),0,€) — f(70(3),0,0)|. Applying Gronwall’s Lemma to the

function s — |7e(8)—70(s)| and the interval [r, ], (hereby estimating M;(s,€) by the "constant’
My(t,e)!) yields

[e(®) = 10())] < |7e(7) — vo(7)| exp(L(t — 7)) + /r (Ms(t,€) + Lilwe(s)|l) exp(L(t — 5))ds .

From this the estimate (2.6) follows, with M>(%,¢) := M;(t,€)/ L. Note also that continuity of
f implies that M;(t,€) converges to 0 uniformly on bounded #-intervals. ¢

Lemma 2.8 For ¢ sufficiently small (¢ < £%-) and 0 < 7 < t the following estimate holds:

loe®ll < Mallwe(r) +eMa() + [ LMy exp ((Lby — Dt = ) els) = o(s)ds (2.7

Here M, and o are as in assumption 1 and M3(t) is a suitable constant not depending on €.

Proof: The variation-of-constants formula yields

we(®) = To(Z ) + [ To( TP (o) wele),e)ds
hence ;
t—-1 t—s
llwe(l <l To(— )Hllwe(T)lH/T I1Zo(—=)II1F(r0(s), 0, ) l|ds+
+ [ I CEDE (o), wels), ) — Flan(e), 0, )

We have ||To(t)|| £ My exp (—ot) by assumption 1, F is Lipschitz with constant L and define
N(t) := SUP,<¢ || F(70(5),0,€)||- Then

()l < My exp(=2(¢ = el + [ My (o) exp(=Z(t - 9))ds

- / LMy exp(—Z(t - $))7e(s) — To(s)lds + / LM; - exp(—2(t - 5))llwe(s)llds -

Now we apply Gronwall’s Lemma to the function s — exp(Zs)||we(s)|| (hereby considering
N(t) as a constant) and obtain

exp(Z)|we(B)] < M exp(Z)[we(r)l| exp(LMy(t = 7))+

/T MlN(t)exp(-gs)exp(LMl(t — s))ds + /T MlLexp(%s)l'ye(s) — yo(s)] exp(LMy(t — 5))ds

From this one easily deduces (2.7), where we write M3(t) := M1 N(t)/(% — LM). o

With the estimates proved in Lemma 2.5 and Lemma 2.6 and we can now give the proof
of Theorem 2.1.
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sorem 2.1: To get an estimate on |7.(t) — 7o(t)| we insert (2.7) in (2.6) thus
re(®) = ()] < (17e(r) = 10()| + Ma(t,€)) exp(L(t - 7))

+ (M ()] + €Ms(®)) 7 (exp(L(t ~ 7)) = 1)+ (28)

Lexp(L(t - ) /T " LMy exp (LM - Z)(s = M) 1e(r) = 70(r)| dr ds

= LM, — £ (then p. < 0, provided that € < £f7-), and My(e) := LMy /(L - p¢)
» 0 as € | 0). The last term of (2.8) equals

[ EMue) (exp(n(t - 5)) = exp(=p(t = ) 1e(s) = ()] ds

imated by

t
[ M) exp(Lt = )rele) = T0(o)] ds
; terms in (2.8) can be estimated by an expression of the form

(Ma(bre(r) = (7] + lwe(™I]) + Ms(e)) exp(L(t — 7))

ends to zero for £ — 0. Thus applying once more Gronwall’s Lemma (to the
xp(—Lt)|7e(t) — v0(t)]) we obtain

< (M (17e(r) = (7| + [[we (DI + Ms (€)) exp(L(Mafe) + 1)(t = 7)) (2.9)

s in Theorem 2.1 we can choose, according to Lemma 2.4, €1 and 11 such that
10

1) — Yo(em)| + ||we(em)|| < (M1 exp(L(My + 1)T)) ! 5 Ve < €.

15(¢) = 0 one can achieve (by making £; smaller) that

10
—_ ')’O(ETI)I + Hwe(s'rl)”) + M5(€) < (exp(L(M1 + 1)T)) b 5, Ve S £1. (210)
1d the boundedness of V := {(7¢(s),w:(s)) : 0 < s <7y, 0 < € < g} it follows
ot) - 71 < Kt (211)
f(7e(0), we(0),€). Now choose

é o

< mln(Eo,El,m,m).

nates (2.9) and (2.10) with 7 := 7y give (2.3a) for t € [ery,T]. Furthermore
) together with Lemma 2.4 gives |7:(t) — 70(t)] < |7e(t) — 7] + |7 — 70(t)| < 6 for




[o prove (2.3b) one starts with inserting (2.6) in (2.7) and proceeds in a similar
%

Je arguments for structured populations

. by briefly describing the nature of general models for (age)-structured popu-
refer to [8] for an extensive treatment of many aspects of model-building for
pulations.
the individuals that make up a certain population, are distinguished from one
ie basis of a certain set of characteristics, called the i-state. Let §) denote the set
» i-states. In this paper we will take 2 C IR. At the level of the individuals, a
consist of a specification of birth- and death rates for individuals and a descrip-
1e i-state of an individual changes with time. In general these rates of change will
e condition of the environment. One can think of, e.g. food availability, temper-
tion density of predators (of course, what actually constitutes the environment
he nature of the i-states and the mechanisms that are taken into account). If
n, in turn, influences the condition of the environment, then our model becomes
’e assume however that the future behaviour of an individual can be determined
nt state if the time evolution of the environment is known, so if the environment
ised as a known function of time, the model is linear.
ne from now on that only the birth- and death rates are influenced by the envi-
that the rate of change of the i-state is not (so the key i-state variable we have
2).
pulation, or rather the environment, is well mixed, the population state (p-state)
o an element of some Banach space X of functions (or measures) over . In our
consider X = L;(f2), the space of integrable functions on 2, or X = M(Q) the
ar Borel measures of bounded variation on 2 (with the standard variation norm).
:ase, the measures give, for each measurable subset of {2, the total spatial density
whose i-states are elements of that subset. From the model on the individual
by doing the bookkeeping correctly, derive balance laws that describe the time
he p-state. Basically this corresponds to the Kolmogorov forward equation from
weory (for details see [3],(8],[9]). Let us denote the condition of the environment
E taking values in some IR™. The state u of our structured population then
istract equation of the form

%(t) = AE(t)u(t), u(0)=<®, (3.1)

s a linear, usually unbounded, operator on X for each possible fixed condition of
:nt E.

el should now be completed by specifying some output quantities. In our case
sssarily of the form (v, u), where ¥ € Cy(§2), the space of continuous functions
ish at infinity (and (,-) denotes the duality pairing between M () and its pre-
If Q is bounded then one possibility is to take the total population size as a
ne N(t) = (Eq,u), where Zq is the characteristic function on (2. Finally, if the
d the environment influence each other then we have to specify the dynamics of
mt.

ironment is constant, then the problem (3.1) is linear. Assume that the operator
:he generator of a (positive) semigroup {S(¢)}, t > 0, on X and has a strictly
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renvalue Ag. Let ¢4 be the eigenvector associated with A4, and let ¢} be the
g eigenvector of the adjoint of A. We normalize such that ||¢q]| = 1 and (¢4, 93) =
1e conditions on the semigroup generated by A (irreducibility and a condition on
ound, see e.g. [6],[8]) one proves that there exist constants §, M > 0 such that for
: following estimate holds '

lle= 4! S(t)yu ~ (u, 3}l < Me™%|[uf],

igenvector ¢g is called the stable distribution of the population over the i-state
: dominant eigenvalue Aq has the biological interpretation of the intrinsic growth
otal population (see [8]). So as ¢ — oo, the distribution of individuals over
i-states approaches ¢4 and becomes fixed. The sizes of the various classes of
hen only grow or diminish, depending on whether the total population size N
inishes.

proceed with the time-scale argument for the type of structured population models
ove for the case that X = L,(2). We attach a subscript € to A in (3.1) for our
ise, and we make the following assumptions.

Ju = Aou + H(E)u, and

s a linear operator and generates a Cyp-semigroup {So(t)} on X; the strictly
t eigenvalue of Ag is zero; there exist unique (up to scalars) eigenfunctions
and ¢5 € X*, corresponding to the eigenvalue 0, for Ag and its adjoint
ictively (we normalize such that {(¢o,¢g) = 1, and ||¢o|| = 1); the following
for the semigroup {Sp(¢)} holds

[1So(t)u — (u, 45)oll < Me™?
M>1,6>0.
0,60]XxR"X X — X islocally Lipschitz continuous in the last two arguments.

E)u — 0 in the strong sense for ¢ | 0; the limit

.1 "
y_{% ;.'(He(E)‘ﬁo, %)

ar
ronmental feedback is direct: £ = G(u) for some sufficiently nice operator

onmental feedback is indirect: % = K(u, E). Here K satisfies the condition:

3 !G(u) € R" such that K(u,G(u)) = 0 and E = G(u) is a globally stable
ate of 4€ = K (u, E).

ste the solution to (3.1) (subject to the conditions I, 1) at time t. The fact that
m . exists follows from the theory of semi-linear evolution systems [11].

1 Under assumptions I, II the following holds

we have ||uc(t/e) — N(t)go]| — 0 for € | 0 on (0,T), uniformly on intervals
v from zero. Here N denotes the total population size when the population-state
ts stable distribution ¢g, and N is the solution of

L(0) = lim (TGN o)y G0 IN = QDN N(0) = (&,65).  (32)




»ulation output, specified by some ¥ € Co(?) is obtained as N(t){(v, do).

irst prove the result under assumptions I, IJa. We suppress the subscript
'p in mind that our functions depend on e.

se X as
X=RoY

+ Y is the projection given by

Pu = u — (u,¢g)do-

5 and (u,¢}) =:7 then u=F¢o + W with 7: IRy >R and @:IRy — Y. Then
rrmed into the system

¥' = (He(E)(F¢o + ), ¢5) =: Ho(e,7,®) (3:3)
@' = By + P(H.(E)(Fdo + ) =: Hy(¢,¥, ). (3.4)

perator By is the restriction of Ag to Y. Furthermore we define a semigroup
» restriction of Sp(t) to Y. It is easy to see that Sp and P, and Ap and P,
[To(t)} is actually the Cy-semigroup generated by By. By assumption [a this
xponentially stable.

- scale time with a factor 1/e and put 7(¢) := F(t/¢) and w(t) := w(t/e), then
uds

7' = f(e,7,w) (35)
ew' = Bow + eF(¢e,7,w), (3.6)

v) := LHy(e,y,w) and F(e,7,w) := 1H(e,v,w). Due to the assumptions on
1t f and F are continuous and locally Lipschitz in the last two arguments, and
.0,0) and F(0,0,0) are zero.

transformed our original problem into the frame of the singular perturbation
:tion 2, system (2.1). Denote the solution to the unperturbed form of equation
. The only solution to the unperturbed form of equation (3.6) is w(y) = 0.
"Theorem 1 to the system (3.5,3.6) now gives

llue(t/e) = N(E)goll = [[7(t/€)¢o + @(t/€) — N(t)ol|
= [[7(t)¢o + w(t) — N ()|
< flwll+ | 7(@®) — N (@) | ll¢oll — O

0,T), and the first part of the theorem follows.
> of the theorem for the case of assumptions I, ITb is completely analogous to
above. Instead of the single equation (3.1) we then treat the system

dz

= = = ,0
= Vz, 2(0)==z,

= X x R™ is the vector z = (), and V : Z — Z is an operator that maps the

Tz = (’é‘(SLEI%’)‘) As above we decompose our space as

Z=RoPZ,
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le projection given by

()= (0)- ()

1e proof is a straightforward analogy to the case of assumptions I, ITa. ¢

:plain, in somewhat more detail, what the gist of the result is. Let Ey denote the
nment’, i.e. the condition of the environment when the population that we study
t’. Then the auxiliary parameter € can, for example, be interpreted as the inverse
1g time for the population after introduction into Fy (i.e. a measure for the time
lation growth). So if population growth is slow, then ¢ is small. If € = 0 then
that describes the (abstract) time-evolution is given by Ag. Our assumptions
he solution u will approach a stable distribution of individuals over the i-state
1at this distribution is given by the eigenvector ¢y of Ay corresponding to the
anvalue Ay = 0. For € | 0 the population growth becomes slower and slower and
veen the time-scale for convergence of the p-state to its stable distribution, and
s of changes in the total population size, continues to increase. Theorem 3.1 gives
ditions for the quasi-steady-state hypothesis that the population state is always
ge distribution. The solution u(%,a) is then approximated by N(t)¢e(a).

f L1() it is often biologically speaking more reasonable to take M () (which is
'*, say) as p-state space for our age-structured population in Theorem 2 and the
preceding it. In that case we do not have that Ay generates a Cp-semigroup on
Ap is the weak*-generator of a weak*-semigroup {So(t)} on Y*. We then make
,*)-formalism of Clément et al. [1,2,3] for the handling of semilinear evolution
ie perturbation H is then viewed as a mapping from [0,69] x R" x Y® — Y*,
L1(f2) in our case, and it is defined as that part of Y* where {Sp(%)} is strongly
a [1,2,3] it is shown that a mild solution u, i.e. based on a variation of constants
).1) exists and is unique. The proof of our original perturbation result Theorem
this fact, so the proof carries over verbatim to the weak*-continuous case. In the

the proof of our time-scale argument Theorem 3.1 carries over to the weak*-
se.

7ing Theorem 3.1 to simplify 'real’ structured population models we have to be
is the function Q(N) in terms of the basic parameters that relate to the level of
s. Actually this calculation can be carried out for a larger class of models than
isfy the assumptions of Theorem 3.1. We describe this class and the calculation

‘hat we have an ¢-state space @ C R, and that all individuals are born with the
z%. 'We regard the following differential operator on Lq(2),

AB @) = ~ X2 _ i pyn(a), (37)

y condition

o(e", En(t,a”) = [ (e, Eyntr, ),



birth of new individuals. We assume that the environment E is coupled to the
te as in hypothesis ITa or IIb preceding Theorem 3.1, for some G or K.

ions g(-, E),p(-, F), and B(-, E) are elements of L (f2) and describe the rate
he i-state z, the death-rate of individuals, and the birth-rate of individuals,

uce a small parameter € by making the following assumptions on g,z and 3

9(z,E) = go(z) + £g1(z, E) + o(¢), (3.8)
w(z, E) = po(z) + epr(z, E) + o(e), (3.9)
B(z, E) = fo(z) + eba(z, E) + o(e), (3.10)

x '0’ indicates evaluation of the function at £ = 0, and the index ’1’ indicates
of the function at € = 0. If we write A.(E) for the operator in (3.7) with (3.8)
tituted, then A-(E)n = Agn + H.(E)n with

(Aon)(z) = _290((”;;__@ — po(x)n(z), (3.11)

condition go(z%)n(z°) = [, Bo(z)n(z)dz, and

(He(E)n)(z) = _Ea_g}_(%gmr_) — epr(z, E)n(z) + ofe). (3.12)

condition £g1(z°, E)n(2°) = ¢ [, Bi(z, E)n(z)dz + ofe).
:d with describing how € can be expressed in the parameters of (3.7). As
step we consider the age-representation of the i-state for the case of a fixed

. Switching to this representation is allowed because everybody is born equal
duce an auxilliary function X(a, F) that is the solution of the ODE

% =9(X,E), X(0,E) =2,

the changes in the i-state variable z with the increasing age of the individual.
e

]_'(a E) - e"fou ﬂ(X(avé))E)dO‘
robability that, in environment E, the individual is still alive at age a. The

tion ratio, i.e. the expected number of future offspring produced by a newborn
then be calculated as

R(e, E) = /0 ” B(X(a, B), B)F(a, B)da.

e age at childbearing as

1

™) = e B)

/0 ” aB(X(a, B, B)F(a, E)da. (3.13)

3.10) we write X = Xy + €X; + o(¢) then Xj is the solution of

dXo

"a';’ = go(Xo), (3.14)
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e solution of

dX d .
'E';l' = H(QO(XO))XI + 91(Xo, E). (3.15)

-we write R(e, E) = Ry + Ry (E) + o(¢) and m(e, E) = mg + O(¢). Then Ry, Ry
be calculated in a straight forward way in terms of Xo, X1 and the parameters.
= [ Bo(Xo(a))Fo(a)da, where Fo(a) = exp(— [ po(Xo(a)da) and

my = /0 " aFo(a)Bo(Xo(a))da, (3.16)

0= [ 7] j}(ﬂo(xo(a)))xl(a, B) ~ pu(Xo(a), B) (317)
~ ho(Xa(@) [ 7 (a(Xo(@))Xi(a, B)da — i (Xo(a), E)da] do.

* have all the ingredients to determine ). We first show that ¢ describes the
e population on the slow time-scale. We assume that, for ¢ = 0, the individuals
nly replace themselves in the population, i.e. Ry = 1. This implies that Ao has
renvalue zero. Let ¢y and @5 be the eigenvectors of Ag and Ag corresponding to
50,¢0) = 1, and [|¢o]| = 1. We expand the dominant eigenvalue of A (E)in € as
ve write formally Ag(e, E) = sAl(E) + o(¢) (Ao = 0, by assumption). The term
bes the growth of the population, in dependence of the environment, on the slow

1 3.2 For the differential operator A.(E) with Ay and H.(E) defined by (3.11)
:spectively, the following holds

M(B) =lim (e, B) = lim = (H.(E)do,45) = Q).

2xpand the dominant eigenvector ¢q(e, E) of A.(E) formally as da(e, E) = do +
:). Furthermore we write H, (E) = eH(E) + o(¢) as suggested by (3.12). Then
2) = Aa(e, E)pa(e, E) can be written as

(Ao + eH(E)) (b0 +¢1(E)) = eM(E)(do + ed1(E)) + o(e),

fo
Aogo + eAod1 (E) + eH(E)do = eM(E)do + o).

uality pairing on both sides with ¢§ and using Aogo = 0 = AJd§ we finally find
(H(E)g0,85) = M(E) + ofe)

‘he desired result. ¢

m Q = 1, the characteristic equation of A(E) is then a scalar equation. If A (E)
issumptions of Theorem 3.1 then we can calculate A4(e, £) from the characteristic



rever, if we try the same for the more general situation of (3.11-3.12) we run
‘he characteristic equation is given by

(g, EZ-}-,\
Bz, ) E) g K> %z, (3.18)
0 9@, E)

“one real solution. To obtain an approximation of A one could substitute (3.8)-
n write A explicitly. However, if we let ¢ | 0 the domain of integration can
or example, means ’size’, then it may well be that there is a maximal size z™
: [z°,2™], and that the value of z™ is influenced by the environment which
let € — 0. In the more general situation we therefore have to calculate Ag in

3.3 Let dimQ = 1, assume Ry = 1 and write Ay(e, E) = eA1(E) + o(e) for the
walue of A(E) from (3.7). Then the following holds

2z = Fa(E)
my

s given by (3.17) and my given by (3.16).

f all we switch to an age-representation in the characteristic equation (3 18) by
— X(a, E). This leads to

IB(X(G' E) E)e fo“ “(X(GIE)vE)dae—}\ada

1= R(e, E) / R(
=1 R(E,E)/O m(a,e,E)e“}‘“da,

multiplied by R(e, E) and its inverse. We write A, for the unique real solution.
rithms on both sides we obtain

= log R(e, E) + log(/ m(a,¢€, E)e""““da) ,
0
nding X4 in Ay

log R(e, E) + 1og( / m(a,e, E)da — g / am(a, ¢, E)da + o(Ad))
0 0

log B(e, £) +10g(1 - Aa(e, B)m(e, E) + o(2a))
log R(e, E) — Ma(e, EYm(e, E) + o(\a),

is defined by (3.13). We proceed with expanding R(e, E), (e, E) and m(e, E)

Tog(1+eRi(E) +0(e)) + (eMa(E) + o(e)) log(mo + O(e)) + O(e)

0 = eR1(E) + eAr(E)mo + o(e).
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should hold for all £ € [0,€0] and therefore we finally find

M(E) = —R;EOE)

is given by (3.17). &

from propositions 3.2 and 3.3 that @(/V) can be expressed in the basic parameters
1al level as

QN) === (3.19)

1arize the above in the following recipe: Fix the environment in an arbitrary
Xo and X7 from (3.14) and (3.15), respectively; calculate mqo from (3.16) and
3.17); finally calculate Q(N) from (3.19). On the slow time-scale then the
and therefore Q(N), changes according to some feedback mechanism specified
tions.

| our differential operator defined by (3.11-3.12) will not satisfy the assumptions
.1. In general, the operator H.(E) will become unbounded. We conjecture
for the operator A.(E) = Ag + H.(E) with Ay and H.(FE) given by (3.11) and
wvely, with ¢ small, Theorem 3.1 still holds, i.e. the solutions are approximated
where N is the solution of dN/dt = Q(N)N with @ given by (3.19).

ore, in (3.19) we do not need the one-dimensionality of the individual state space
ession for R1(E) (3.17) we only integrate along orbits of the i-state variable) we
t (3.19) also holds in the case that dim Q > 1 (of course, the operators in (3.11)
7e to be re-defined in terms of divergences).

ide that from a biological as well as from a mathematical point of view the future
1pt to extend the Tikhonov result Theorem 2.1 to operators of the kind described
yove discussion about the calculation of the dominant eigenvalue suggests that
haps not work with the differential operator itself but more in the vein of [4]
ated version of it.
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