1991

J.F. Groote, H. Huttel

Undecidable equivalences for basic process algebra

Computer Science/Department of Software Technology Report CS-R9137 August

CWI ntional insituut vooronderzoek op et ebied van wiskunde en informatica

CWI is the research institute of the Stichting Mathematisch Centrum, which
was founded on February 11, 1946, as a non-profit institution aiming at the
promotion of mathematics, computer science, and their applications. It is
sponsored by the Dutch Government through the Netherlands organization
for scientific research (NWO).

Copyright © Stichting Mathematisch Centrum, Amsterdam

1

_In the field of process theory much attention has been devoted to the study of process calculi
and in particular to behavioural semantics for these calculi. A variety of equivalences have
been proposed in order to capture the behavioural aspects of processes better than language

Undecidable Equivalences for Basic Process Algebra

Jan Friso Groote
Department of Software Technology, CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
email: jfg@cwi.nl

Hans Hiittel
Laboratory for Foundations of Computer Science
James Clerk Maxwell Building, University of Edinburgh,
Edinburgh EH9 3JZ, Scotland

email: hans@dcs.ed.ac.uk

Abstract

A recent theorem [3, 7, 15] shows that strong bisimilarity is decidable for the class of normed BPA
processes, which correspond to context-free grammars. In [16] Huynh and Tian have shown that
readiness and failure equivalence are undecidable for BPA processes. In this paper we examine
all other equivalences in the linear/branching time hierarchy [10] and show that none of them
are decidable for normed BPA processes.

Key Words & Phrases: Basic Process Algebra, Context-Free Processes, Undecidibility, n-Nested
Simulation, Ready Simulation, Ready Trace Equivalence, Failure Trace Equivalence, Simulation,
Possible-Futures Equivalence.

1985 Mathematics Subject Classification: 68Q45, 68QJ55.

1987 CR Categories: D.3.1, F.4.3.

Note: The first author is supported by the European Communities under RACE project no.
1046 (SPECS) and ESPRIT Basic Research Action 3006 (CONCUR). The second author is sup-
ported via a position at Aalborg University and by the Danish Research Academy. This paper
was written during a visit of the first author in Edinburgh.

Introduction

equivalence from traditional automata theory.

Various criteria exist for comparing the merits and deficiencies of these equivalences. A
systematic approach consists of classifying the equivalences according to their coarseness. For
this purpose van Glabbeek proposed the linear/branching time spectrum which is illustrated
in Figure 1 [10]. The least discriminating equivalences are at the bottom of the diagram.
Arrows indicate inclusion. The coarsest equivalences are trace equivalence and completed

This report also appears as report ECS-LFCS-91-169, University of Edinburgh, 1991.

Report CS-R9137

ISSN 0169-118X
CwI

1

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2 ‘ 1 Introduction

Bisimulation equivalence

\

. A .
n-nested simulation equivalence
n-bounded-tr-bisimulation

Ready simulation equivalence

Ready trace equivalence
Possible-futures eiivalence \

Readiness equivalence Failures trace equivalence

\

J

Simulation equivalence

7

Failures equivalence

Completed trace equivalence

‘ .
Trace equivalence

Figure 1: The linear-time/branching time hierarchy of equivalences.

trace equivalence (=language equivalence). Directly above them we have the testing/failures
equivalence investigated by De Nicola and Hennessy (see e.g. [13]). At the top of the di-
agram is bisimulation equivalence (or bisimilarity), a notion introduced by Park [23] and
subsequently widely used in process theories.

A somewhat less tangible criterion is that of observability. For instance it has been argued
that while bisimulation equivalence has many nice mathematical properties it fails to have a
computational justification in that (in)equivalence seems not to be intuitively observable. All
existing proposals to justify bisimulation as an observational equivalence have used unnatural
operators. In [1] global testing operators were necessary and in [11] lookahead in combination
with the possibility to check for the absence of activity was needed. Bloom, Istrail and Meyer
argue that only completed traces should count as observations and define an equivalence
which is a completed trace congruence under a ‘reasonable’ set of process constructs [5].
This equivalence is ready simulation equivalence or 2/3-bisimulation and it is clearly below
bisimulation equivalence.

Decidability is another relevant criterion for evaluating behavioural equivalences. For finite-
state processes, i.e. finite automata, all equivalences in Figure 1 are decidable [17]. However,
it is well known (see e.g. [14]) that completed trace equivalence becomes undecidable when
one moves beyond finite automata to context-free languages, which correspond to processes
specified in Basic Process Algebra (BPA) [2]. A recent theorem [3] (but see also (7, 15])
shows that strong bisimilarity is decidable for normed BPA processes. In [16] Huynh and
Tian have shown that readiness and failures equivalence are undecidable for BPA processes.
In this paper we examine all other equivalences in Figure 1 and show that none of them are
decidable for normed BPA processes. We also present a slightly more elegant version of the
undecidability proof of [16].

2 Preliminaries

2.1 Normed recursive BPA processes

The BPA (Basic Process Algebra) processes or process expressions [3] are given by the ab-
stract syntax

pu=a|X|p1+p2|p1-p2

Here a ranges over a set Act of atomic actions, and X over a set Var of variables. The symbol
+ is the non-deterministic choice while p; - po represents the sequential composition of p; and
p2 (we often omit the ‘).

We say that a process expression is guarded iff every variable occurrence in p occurs in a
subexpression aq of p. Recursive processes are defined by a finite set A of guarded equations

A={X;¥p|1<i<k}

where the X; are distinct process variables, and the p; are guarded BPA expressions with
free variables in Var(A) = {X1,..., Xk}

The operational semantics of a BPA process expression, given a finite system of guarded
equations A, is a transition relation — containing the transitions provable by the following
rules (e denotes the empty process with the convention that eq is q):

p—7p g—q
p+g—p p+g—q
p——p' a
—a a—e€ a € Act
Pg—p'q
p—p def
X o X=peA

We omit the subscript A if it is clear from the context. A process expression together with
an associated transition relation is called a process. If it is important that a process and
its operational semantics are generated by the rules above, we speak explicitly about a BPA
process.

4 2 Preliminaries

Notation 2.1. We use the notations
a] a (]
e p—ap for p—p' € —4,

o p—2s5 for 3p' : p——sap/,

o p—h4 for not p-2ua,

o p —fp for Va € Act : p-Spa,

o p"L57ap for phpaEp - ap' and

e p =g iff p and ¢ are syntactically the same.

In this paper we restrict our attention to normed BPA process expressions. As all normed
BPA processes are also BPA processes, all our undecidability results immediately carry over
to BPA in general.

Definition 2.2. The norm of a process p is defined by
|p| = min {length(w) | p—e€}.

A finite set A of guarded equations is normed if for all X € Var(A) it holds that |X| is
finite. A BPA process is called normed, if it has been generated via a normed set of guarded
equations.

Note that the class of normed BPA processes does not include all the regular processes (such
as X ¥ aX). Nevertheless, it is a very rich family, including processes with infinitely many
states.

Deterministic processes play an important role in our proofs.

Definition 2.83. We say that a process p is deterministic iff if p—p; and p—ps, then
p1 = p2.

2.2 Normed recursive BPA processes in Greibach Normal Form

In [3] it is shown that any set of guarded equations can be effectively presented in the following
normal form

N4
AI = {Xi c}_gf Zaijaij | 1 S 1 < m}
j=1
where a;; is a sequence of variables, such that the root of A’ is bisimulation equivalent to that
of A. Moreover, A is normed exactly when A’ is. By analogy with context-free grammars
this normal form is called GNF (Greibach Normal Form). Whenever the a;;’s have length
less than three, we talk of restricted GNF or 3-GNF.

There is an obvious relationship between normed sets of guarded equations over BPA and
context-free grammars. Variables correspond to non-terminals and actions correspond to ter-
minals. Each set {X; = }°7%, aj045|1 < i < m} of guarded recursive equations corresponds
directly to the family of productions {X; — ajjeij | 1 < i <m, 1< j < ni}.

The following definition is an adaptation to process theory of the well-known notion of an
accepted language.

Definition 2.4. The language L(p) accepted by a process p is given by L(p) = {w| p——¢}.
The trace language Tr(p) of a process p is given by T'r(p) = {w|p——}. Two processes p and
q are completed trace equivalent, notation p ~¢ g, (or language equivalent) iff L(p) = L(q).
Two processes p and q are trace equivalent, notation p ~i, g, (or language equivalent) iff
Tr(p) = Tr(q)-

It is well known that it is undecidable whether two context-free grammars define the same
language [14], or in our terminology if p ~cr g for BPA processes p and g. This result also
holds for normed processes because normedness corresponds to a grammar not having use-
less productions. It is consequently also straightforward to show that it also is undecidable
whether two BPA processes are trace equivalent — in our notation whether p ~¢, ¢. Any un-
normed grammar can be effectively transformed to a (language) equivalent normed grammar
in restricted GNF. So we have

Theorem 2.5. Completed trace equivalence (or language equivalence) and trace equivalence
are undecidable for normed BPA processes.

A simple grammar is a context-free grammar in restricted GNF such that there are no two
distinct productions A — ac;, A — aas for any nonterminal A [9]. Thus, simple gram-
mars correspond to those sets of guarded equations over BPA that generate deterministic
BPA processes. For simple grammars the language equivalence problem is decidable [18].
Consequently we cannot effectively transform a set of guarded equations over BPA into a
deterministic set of equations, while retaining language equivalence. If such an effective
transformation would exist, we could reduce language equivalence for non-deterministic pro-
cesses to language equivalence for deterministic processes.

As shown by Friedman the language containment problem for simple grammars is unde-
cidable [9]. Formulated in our setting this theorem reads:

Theorem 2.6. Let p and q be two normed and deterministic BPA processes. It is undecid-
able whether L(p) C L(q).

However, it is important to note that for deterministic BPA processes trace equivalence
and bisimulation equivalence coincide [8] (where ~ denotes strong bisimulation equivalence):

Proposition 2.7. Ifp and q are deterministic processes, then Tr(p) = Tr(q) iff p ~ g.
Proof. {(p,q)| Tr(p) =Tr(q)} is a bisimulation. a

Consequently, in the deterministic case the linear/branching time hierarchy collapses, and
since language equivalence is decidable, all equivalences are decidable in this case.

3 Simulation and simulation equivalence

In this and the subsequent sections all equivalences in figure 1, except strong bisimulation and
completed trace equivalence, are considered and proven undecidable for normed BPA pro-
cesses by reducing language containment for deterministic processes or language equivalence
to them. We start off with simulation and simulation equivalence.

6 4 n-nested simulation equivalence

Definition 3.1. A relation R between processes is a simulation iff whenever pRgq then for
each a € Act p—p' = 3q:q—q' Ap'Rq’. A process p is simulated by a process g, notation
pSg, iff there is a simulation relation R with pRg. Two processes p and q are simulation
equivalent, notation psq, iff pCq and ¢Cp.

We first show that simulation is undecidable for deterministic normed BPA processes. This
is a direct corollary of Theorem 2.6.

Theorem 3.2. Simulation is undecidable for deterministic normed BPA processes.

Proof. Let p and g be normed deterministic BPA processes and let / be a ‘fresh’ action.
It is straightforward to show that

L(p) C L(q) iff py/Sqv/

as p and ¢ are deterministic. With this observation, we reduce language containment for
deterministic normed BPA processes to simulation preorder for deterministic normed BPA
processes. O

Theorem 3.3. Simulation equivalence is undecidable for normed BPA processes.

Proof. We can reduce simulation to simulation equivalence by the following observation:

pSq iff p+gsq.

4 n-nested simulation equivalence

The notion of n-nested simulation equivalence was introduced by Groote and Vaandrager [12]
in their study of the tyft/tyzt-format for structured operational semantics because 2-nested
simulation equivalence is the completed trace congruence for this format.

Definition 4.1. For all n € N, n-nested simulation, written S", is inductively defined by
e pSY% for all processes p and g,
e pC™tlg iff there is a simulation relation R C (S™~! with pRy.

Two processes p and q are n-nested simulation equivalent, written ps™q, iff pG™q and ¢ S™p.

Note that 1-nested simulation is just simulation and that therefore 1-nested simulation equiv-
alence is simulation equivalence.

Lemma 4.2. For alln € N, n-nested simulation is a precongruence under action prefixing
and +.

Proof. Induction in n.

Figure 2: r(p,q) and s™(p,q) for n=1,2,3

= 1: This simply states that G is a precongruence under action prefixing and +. Clearly
if pCq and pSq’ we have that ap Saq and p+p’ Sq+q’.

Step - assuming for n: Here if pS™tlg we have that there is a simulation R C (S™)~! such
that pRg. But then, since ¢S™p we must by induction hypothesis have aqgS"ap and
thus R U {(ap,aq)} is a simulation with RU {(ap,aq)} C (S™)~1. The proof for + is
entirely similar.

O

The class of processes defined in the following can be used to reduce simulation to both n-
nested simulation and n-nested simulation equivalence. Some of these processes are depicted
in Figure 2.

Definition 4.3. Let p and g be processes and let a be an action. The processes r™(p,q) and
s™(p, q) for n > 0 are inductively defined by:

r'(pg) =p+4q, st(p,q) = p,

r"*1(p,q) = ar™(p,q) + as"(p,9), s"*1(p,q) = ar"(p,9)-
Observe that if p and ¢ are normed BPA processes, r™(p,q) and s™(p,q) are also normed.
Lemma 4.4. Let p and q be processes. For all n > 0 it holds that
1. s™(p,q) S"r™(p, 9),
2. r™(p,q) S"s"(p, q) iff ¢Sp-

Proof. Both proofs proceed by induction. For 1 we get

8 4 n-nested simulation equivalence

n =1: The lemma then reduces to pSp + ¢ which obviously holds.

Step - assuming for n: Define for processes p and ¢ the simulation

R={(ar™(p,q),ar™(p,q) +as™(p,q))}U Id

where Id is the identity relation. R C (S™)~!, as we have r™(p,q) S"r"(p,q) and
s™(p,q) S"r™(p,q) by induction hypothesis, which by Lemma 4.2 gives us ar"(p,q) +
as™(p,q) S"ar"(p,q).

The proof for 2 has

n = 1: The lemma here reduces to p+qSp iff ¢ Sp. If there is a simulation R with gRp then

{(p+4¢,p)}URUId is a simulation. And if p+ gRp for a simulation R, then {(q,p)}UR
is a simulation.

Step - assuming for n: For the ‘if’ direction suppose for processes p and ¢ that ¢Cp and
™(p,q) S"s™(p,q). Then define the simulation

R={(ar™(p,q) +as™(p,q),ar™(p,q))} U (S™)™

R C (S™)7! since Lemma 4.2 gives us a7™(p,q) S"ar"(p,q) + a s™(p, q), which means
that "1 (p,q) G"*1s"*1(p,q). For the ‘only if’ direction suppose ¢ € p. By induction
hypothesis 7*(p, g) " s™(p,q). Then we cannot have r"+1(p, ¢) Gt s"*1(p, q), for any
candidate simulation would be one containing the pair (a 7"(p, ¢) +a s™(p,), ar"(p, q)).
As r™*1(p,q)—s"(p,q) can only simulated by s"*!(p,q)—>r"(p,q) it must be that
(s™(p,q),™™(p,q)) € R. But since R C (S™)~! we would have r™(p, q) S"s"(p, q),

0O

Theorem 4.5. For n > 0 n-nested simulation and n-nested simulation equivalence are
undecidable for normed BPA processes.

Proof. We reduce simulation to n-nested simulation using the following observation:
gSp iff r(p,q)S"s"(p,q).

We reduce simulation to n-nested simulation equivalence using:
gSp iff r(p,q)S"s"(p,9).

Because n > 0 both facts follow directly from lemma 4.4. As simulation is undecidable,
n-nested simulation and n-nested simulation equivalence cannot be decidable. m|

One should notice here that the limit of the n-nested simulation equiva.lencés forn — wis
strong bisimulation equivalence:

Theorem 4.6. [12] For any finitely branching labelled transition graph we have
~ = ﬁ ="
n=0

So we see here have the odd situation, because of Theorem 4.6 and the result of [3], that
while ~ is decidable, it is the limit of a series of undecidable approximations.

5 mn-bounded-tr-bisimulation

We now consider n-bounded-tr-bisimulation. This equivalence is a generalisation of trace
equivalence and possible futures equivalence, in that 1-bounded-tr-bisimulation corresponds
to trace equivalence and 2-bounded-tr-bisimulation is the possible futures equivalence of [25].

Definition 5.1. We define n-bounded-tr-bisimulation, written ~., inductively as follows.

e p ~9 g for all processes p and g,
oD ~;:.+1 q iff

— if p-2>p' then 3¢ such that g—¢' and p’ ~. ¢’ and

— if ¢—2q’ then 3p’ such that p—p’ and p’ ~% ¢'.

This notion of equivalence also arises naturally as the consecutive approximations of bisim-
ulation equivalence [20, 21]. For finitely branching transition graphs, and therefore for BPA
processes, the limit of the n-bounded-tr-bisimulations for n — w coincides with bisimulation
equivalence:

Theorem 5.2. [21] For any finitely branching labelled transition graph we have

w
— n
~ = n ~ir
n=0
The following proof uses the same reduction that was employed in [17] to show that
n-bounded tr-bisimulation for regular processes is PSPACE-complete. The following easy
lemma is crucial:

Lemma 5.3. [17]
p~pqiffp+g~i. pandp+q~i. q

Lemma 5.4. [17] Let p and q be processes. For all n > 0 it holds that

p~Egiffa(p+q) ~itlap+ag

Proof. For the “f’ half we prove the contrapositive, stating that p % ¢ implies that
a(p + q) 2 ap + ag. Assume p £} ¢. Then a(p + q)—p + q whereas ap + ag—p and
ap+ag—q. Since p £L. g we have by the previous lemma that either p+q %, p or p+¢ *5. q,
so clearly a(p+q) 2%+ ap+ag. The ‘only if” half of the proof also proceeds by contraposition,
showing that a(p + q) #%'! ap + ag implies p #}. g. Assuming a(p +) #71 ap + ag, the
‘action string that distinguishes a(p + q) and ap + aq must be a, since for any longer string
w the w-derivatives are identical. Thus, either p + g #£%. p or p + ¢ #%, g, and again by the
previous lemma we get p £ g. m|

Theorem 5.5. For n > 0 n-bounded-tr-bisimulation is undecidable for normed BPA pro-
cesses.

Proof. We reduce n-bounded-tr-bisimulation to n+1-bounded-tr-bisimulation using Lemma
5.4. Since 1-bounded-tr-bisimulation is trace equivalence, which is undecidable, the result
follows. m]

The consequence of the above result is again the rather odd one that ~ is decidable while
none of these non-trivial approximations are!

10 6 Failures, readiness, failure-trace and ready-trace equivalences

6 Failures, readiness, failure-trace and ready-trace equiva-
lences

In their paper [16] Huynh and Tian show that failures equivalence [6] and readiness equiva-
lence [4, 22] are undecidable for normed BPA processes. Here we give an alternative account
of their technique, using a simpler transformation than that of [16] to show that ready trace
and failure trace equivalence are undecidable.

Definition 6.1. For any process p, define

failures(p) = {(w, X) | 3p': p——p',Va € X : p' 35},
readies(p) = {(w, X) | 3p' : p—p',p'— <= a € X}.

Processes p and q are failures equivalent, written p~ ¢q, iff failures(p) = failures(g). Processes
p and g are readiness equivalent, written p ~, g, iff readies(p) = readies(q).

The proof technique of Huynh and Tian involves defining a class of processes, called locally
unary processes, for which failures and readiness equivalence coincide with completed trace
equivalence.

Definition 6.2. [16] A process p is locally unary iff for each p’ with p——p' there is at most
one a € Act such that p'—.

Lemma 6.3. [16] If p and q are locally unary normed processes then
p~rq iff p~yq iff L(p) = L(q).

Proof. [16] As ~,C~yCny,, it is sufficient to show that L(p) = L(g) implies p ~, q.
Suppose L(p) = L(q) and (w,X) € readies(p). If X = 0 we have w € L(p) and hence,
(w,0) € readies(p). Otherwise, since g is locally unary we have X = {a} for some a € Act.
Since p is normed, there must be a w' € Act* such that waw' € L(g). Since L(p) = L(q) and
g is locally unary, we must therefore also have that (w, {a}) € readies(q). O

The idea is now, given a A to construct a locally unary A’ containing the variables of A
such that L(a) = L(B) in A if and only if L(a) = L(B) in A’. The following construction
accomplishes this. The idea is simply to precede any action by a # that indicates that a
nondeterministic choice has been made.

Definition 6.4. Given a system of equations A in GNF let A’ have the action set ActU{#}
(where # is a new action) and process variables Var U {X, | a € Act}. For every process
equation in A

def
Xi = Z: a; ;04

11

create the equations

X; ¥ S #X,0

def
in the new system A’.

It is obvious that A’ is normed iff A is (in fact if |X| = k in A then |X| = 2k in A). We
now have

Proposition 6.5. A’ is locally unary.

Proof. If a state is of the form X+ with X € Var we must have X 'y—f—» and nothing else.
Otherwise, if it is of the form X,y we can only have X y— m|

The following is now obvious from the definition of A'.
Proposition 6.6. For o € Var* we have a—aa'o” iff a1 Xpa/ @' =2 prc .
We therefore also see that

Proposition 6.7. For a € Var* biby...b, € L(a) relative to A iff #bi#bs...4#b, € L(c)
relative to A,

Theorem 6.8. [16] Failure and ready equivalence are undecidable for locally unary normed
BPA processes.

Proof. From Proposition 6.7 we can reduce language equivalence to language equivalence
for locally unary normed processes and the theorem now follows from Lemma 6.3. a

The above ideas can also be used to prove that failure trace and ready trace equivalence
are undecidable. For normed BPA, failure trace equivalence [10] coincides with the notion of
refusal testing [24].

Definition 6.9. The refusal relation A, for A C Act is defined for any processes p,q

by p—2+q iff p = q and whenever a € A, p-%. The failure trace relations —= for u €
(ActUP(Act))* are defined as the reflexive and transitive closure of the refusal and transition
relations. Define

failure-traces(p) = {u € (Act UP(Act))* | 3p' : p—p'}.

Two processes p and q are failure-trace equivalent, written p ~g, q iff failure-traces(p) =
failure-traces(q).

Lemma 6.10. If p and q are locally normed unary processes then p ~g, q iff L(p) = L(q).

12 7 Ready-simulation or 2/3-bisimulation

Proof. The ‘only if’ direction is straightforward. We only show the ‘if’ direction. Define
h: (ActUP(Act)) — Act* as the homomorphic extension of

_J e ifueP(Act)
h(u) = { u otherwise.

Then, if u € failure-traces(p) and p normed, clearly for some v € Act*, h(u)v € L(p). Thus,
since p ~¢, ¢ we must have h(u)v € L(g) and since q is locally unary and normed, it is now
easy to see that u € failure-traces(q). i

Corollary 6.11. Failure trace equivalence is undecidable for locally unary normed BPA
processes.

The definition of ready trace equivalence that is used here is a characterisation presented in
[10].

Definition 6.12. Define

ready-trace(p) = {Aoa141...anAn |
3po, .- Pn i P = Po—>p1 - —2Pp, Pi—— = a € A;,0<i<n}.

Two processes p and q are ready trace equivalent, written p ~r4 g, iff ready-trace(p) =
ready-trace(q).

Lemma 6.13. If p and q are locally unary processes then p ~4. q iff L(p) = L(q).

Proof. The ‘only if’ direction is straightforward. We only show the ‘if’ direction. First note
that if AgajAiasz...a,A, is a ready trace for a locally unary process, all A; (0 < i < n) are
singleton sets and A, is the empty or a singleton set. Now define h : (Act UP(Act))* — Act*
as in Lemma 6.10. Then if u € ready-trace(p) we have, as p is normed, a v € Act* such that
h(u)v € L(p). Since L(p) = L(q) we must have h(u)v € L(g), and since q is locally unary we
get u € ready-trace(q).]

Corollary 6.14. Ready trace equivalence is undecidable for locally unary normed BPA
DPrOCesses.

7 Ready-simulation or 2/3-bisimulation

The notion of ready simulation (or 2/3-bisimulation) originated in work by Bloom, Istrail
and Meyer [5] and Larsen and Skou [19]. It is the completed trace and the trace congruence
induced by the GSOS-format [5].

Definition 7.1. A relation R between processes is a ready simulation iff it is a simulation
and whenever pRq then for each a € Act we have p— if g—. We say that q ready simulates
p, written pG..q, iff there is a ready simulation R with pRq. Two processes p and g are ready
simulation equivalent, written pS,q, iff pS,q and ¢S, p.

13

The idea behind the proof is to find a class of processes where the ready simulation and
simulation preorders coincide. The following class of processes is essential here:

Definition 7.2. A process p is said to be two-step deterministic iff whenever p-irpl—é-»
and pl*pg—b-> then p; = p2

Note that the notion of being two-step deterministic is strictly weaker than that of being
deterministic.

We now show that for locally unary, two step deterministic processes language inclusion
coincides with ready simulation. We use the construction of Definition 6.4 to show that
language inclusion for deterministic processes can be reduced to language inclusion for unary
locally, two-step deterministic processes. This enables us to show that ready simulation is
undecidable for locally unary, two step deterministic processes.

The following two results follow immediately from Propositions 6.6 and 6.7.

Proposition 7.3. If A is deterministic, then A’ is two-step deterministic.

Lemma 7.4. Let A and A’ be given as in Definition 6.4. Then for a, 8 € Var* L(a) C L(f)
in A iff L(e) € L(B) in A"

Proof. Direct from Proposition 6.7. a

The next lemma states the correspondence between simulation and ready-simulation that we
are seeking.

Lemma 7.5. Let A define a normed BPA process. If A is locally unary and two-step
deterministic, then for any a,3 € Var* we have L(c) C L(B) iff ay/Sr8y/ (where / is a
new action not occurring in Act).

Proof. The ‘if’ half is obvious, so it suffices to prove the ‘only if’ half. We define the relation

R={(av,BV) | L(a) € L(B)}
and show that it is a ready simulation. This is easy for the pair (1/,+/). So we only consider

pairs (ay/, 8/) where a, 3 # €.

First we show that if By/— then ay/—. So, assume (3y/——. First observe, as « is

normed, that a\/b 120V for some n > 0. As L(a) C L(B), ﬂ\f 170V As @ is locally unary,
it must be that a = by. Hence, ay/—.
Now we show that R is a simulation relation. Assume (ay/,3y/) € R and a/—=a/. There

is exactly one action b such that o/ -2,. If b=/ then o’ = /. Moreover, there is some §'

such that By/~*>3'-Ys. Clearly §' = +/, so (o/, ') € R. If b # / then o/ = o'y/ for some
o' and

L(a"y/) = {bw | abw € L(a/),w € (Act*)v/}.

As 34/ is two step deterministic, there is exactly one ' such that B3 —-b—>, B =p"y/ and
L(B"\/) = {bw | abw € L(Bv/)}. As clearly L(a"\/) € L(8"V/) it follows that (a"V/, ") €
R. O

14 REFERENCES

We now have the following:

Theorem 7.6. Ready simulation is undecidable for locally unary, two-step deterministic
and normed BPA processes.

Proof. We reduce language containment for deterministic processes to ready simulation for
locally unary, two step deterministic processes. Given a deterministic A, let o, 3 € Var*.
We now have the following (strongly relying upon Lemmas 7.4 and 7.5):

Lle) CL(B)inA if L(a)CL(B)in A’
if ay/S.0yinA’

Here 4/ is a new action. o

Theorem 7.7. Ready simulation equivalence is undecidable for locally unary normed BPA
processes. '

Proof. We reduce ready simulation to ready simulation equivalence by the following obser-
vation:

aS.f iff a+pBs.6.
a

Acknowledgements. We would like to thank Didier Caucal for useful discussions and for
pointing out several major mistakes in an earlier version of this paper. Also thanks to Kim
Larsen and Colin Stirling for useful discussions on the subject of this paper.

References

[1] S. Abramsky. Observational equivalence as a testing equivalence. Theoretical Computer
Science, 53:225-241, 1987.

[2] J.A. Bergstra and J.W. Klop Process algebra for synchronous communication Informa-
tion and Computation, 60:109-137, 1984.

[3] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation equivalence
for processes generating context-free languages. In J.W. de Bakker, A.J. Nijman, and
P.C. Treleaven, editors, Proceedings PARLE conference, Eindhoven, Vol. II (Parallel
Languages), volume 259 of Lecture Notes in Computer Science, pages 94-113. Springer-
Verlag, 1987.

[4] J.A. Bergstra, J.W. Klop, and E.-R. Olderog. Readies and failures in the algebra of
communicating processes. SIAM J. on Comput., 17:1134-1177, 1988.

[5] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. Technical Report 90-

1150, Department of Computer Science, Cornell University, Ithaca, New York, August
1990.

REFERENCES | 15

[6] S.D. Brookes, C.A.R. Hoare, and W. Roscoe. A theory of communicating sequential
processes. JACM, 31:560-599, 1984.

[7) D. Caucal. Graphes canoniques de graphes algébriques. Theoretical Informatics and
Applications 24:339-352, 1990.

(8] J. Engelfriet Determinacy — (observation equivalence = trace equivalence) Theoretical
Computer Science 36:21-25, 1985.

[9] E.P. Friedman. The inclusion problem for simple languages. Theoretical Computer
Science, 1:297-316, 1976.

[10] R.J. van Glabbeek. The linear time — branching time spectrum. In J.C.M. Baeten and
J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, volume 458 of LNCS, pages
278-297. Springer-Verlag, 1990.

[11] J.F. Groote. Transition system specifications with negative premises. Report CS-R8950,
CWI, 1989. An extended abstract appeared in J.C.M. Baeten and J.W. Klop, editors,
Proceedings CONCUR 90, Amsterdam, LNCS 458, pages 332-341. Springer-Verlag, 1990.

[12] J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisimulation as
a congruence (extended abstract). In G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi
Del la Rocca, editors, Proceedings of ICALP89, volume 372 of LNCS, pages 423-438.
Springer-Verlag, 1989. Full version to appear in Information and Computation.

[13] M. Hennessy. Algebraic Theory of Processes. MIT Press, Cambridge, Massachusetts,
1988.

[14] J. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, 1979.

[15] H. Hiittel and C. Stirling. Actions speak louder than words: Proving bisimilarity for
context-free processes. In Proceedings 6th Annual Symposium on Logic in Computer
Science, Amsterdam, The Netherlands, pages 376-386. IEEE Computer Society Press,
1991.

[16] D.T. Huynh and L. Tian. On deciding readiness and failure equivalences for processes.
Technical Report UTDCS-31-90, University of Texas at Dallas, September 1990.

[17] P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state processes, and three
problems of equivalence. Information and Computation, 86:43-68, 1990.

[18] A.J. Korenjak and J.E. Hopcroft Simple Deterministic Languages In Proc. Seventh
Annual IEEE Symposium on Switching and Automata Theory, pages 36-46, 1966.

[19] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. In Proceedings
16t* ACM Symposium on Principles of Programming Languages, Austin, Texas, pages
344-352, 1989.

[20] Milner, R. A Calculus of Communicating Systems Springer-Verlag LNCS 92, 1980.

16 REFERENCES

[21] Milner, R. Communication and Concurrency Prentice-Hall International 1989.

[22] E.-R. Olderog and C.A.R. Hoare. Specification-oriented semantics for communicating
processes. Acta Informatica, 23:9-66, 1986.

[23] D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor,
Proceedings 5th GI Conference LNCS 104, pages 167-183. Springer, 1981.

[24] 1.C.C. Philips. Refusal testing. Theoretical Computer Science, 50:241-284, 1987.

[25] W.S. Rounds and S.D. Brookes. Possible futures, acceptances, refusals and communicat-
ing processes. In Proc. 22nd Annual Symposium on Foundations of Computer Science,
pages 140-149, New York, 1981. IEEE.

