
/

1991

J.F. Groote, A. Ponse

Proof theory for µCRL

Computer Science/Department of Software Technology Report CS-R9138 August

C J. nationaal instituut voor onaerzoek o~ ~et ~e~iea van wiskunae en informatica

CWI is the research institute of the Stichting Mathematisch Centrum, which
was founded on February 11 , 1946, as a non-profit institution aiming at the
promotion of mathematics, computer ·science, and their applications. It is
sponsored by the Dutch Government through the Netherlands organization
for scientific research (NWO).

/

Copyright© Stichting Mathematisch Centrum, Amsterdam

Proof Theory for µCRL

Jan Friso Groote
Alban Ponse

Department of Software Technology, CWI

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract
A proof theory for the specification language µCRL (micro CRL) is proposed. µCRL consists of
process algebra extended with abstract data types. The proof theory is meant to formalize the
interaction between processes and data. Furthermore it provideo the means to prove properties
about these in a precise way. The proof theory has been designed such that automatic proof
checking is feasible.

A simple language is defined in which basic properties of processes and of data can be ex­
pressed. A proof sy~m is presented for this property language, comprising a rule for induction,
the Recursive Specification Principle, and process algebra axioms. The proof theory is illustrated
with small examples, and a case study about a bag.

Key Words & Phrases: Proof theory for specification language, ADT (Abstract Data Types),
Process Algebra.
1985 Mathematics Subjpct Classifkation: 68Q99.
1987 CR Categories: D.2.4, D.3.1, D.3.3, F3.1.
Note: The authors are supported by the European Communities under RACE project no. 1046,
Specification and Programming Environment for Communication Software (SPECS). The first
author is also supported by ESPRlT Basic Research Action 3006 (CONCUR). This document
does not necessarily re:8.ect the view of the SPECS project.

1 Introduction

In this paper we provide the simple, algebraic specification language µCRL with a proof
theory. The acronym µCRL stands for micro Common Representation Language [GP90,
GP91]. This language has been developed under the assumption that an extensive and
mathematically precise study of the basic constructs of specification languages will yield
fundamental insights that are essential to an analytical approach of much richer (and more
complicated) specification languages such as SDL [CCI87], LOTOS [IS087], PSF [MV90] and
CRL [Ss90].

The language µCRL offers a uniform framework for the specification of data and processes.
Data is specified by equational specifications: one can declare sorts and functions working
upon these sorts, and describe the meaning of these functions by equational axioms. Processes
are described in the style of CCS [Mil89], CSP [Hoa85] or ACP [BK84b, BW90], where the
particular process syntax has been taken from ACP. In section 2 we give a short overview of
the syntax and semantics of µCRL.

Report CS-R9138
ISSN 0169-11 SX
CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2 1 INTRODUCTION

The proof theory serves two purposes. First it allows to formalize the interaction between
processes and data. Particularly, we can express how the correctness of a protocol depends on
characteristics of data. Furthermore it reveals typical characteristics of the data/process re­
lationship. The conditional (or if-then-else) construct is characterised by two simple axioms,
relating the standard sort of the Booleans to processes. The axioms for the communication
merge reflect that actions may be parameterised with data. The data dependency of pro­
cesses is captured by an adaptation of the process algebra rule RSP (Recursive Specification
Principle). The last place where data and processes meet is the generalised sum construct.
It turns out to be a difficult construct with the flavour of universal quantification.

A second purpose is to enable precise proofs of the correctness of concurrent systems and
programs. It is well-known that even the slightest error in a program may have serious
consequences. Generally advocated techniques such as formal specification and systematic
testing reduce the number of mistakes, but they do in no way guarantee overall correctness.
We present a proof system that allows for automatic proof checking. The reason for this is
that even formal proofs are error prone. If proofs are automatically checked, one may expect
a considerably higher degree of correctness. We believe that this is one of the few ways, if
not the only one, to deliver error free programmed systems.

In this paper we first define a language in which we can express simple properties of
specifications. These properties consist of identities between data or process terms, linked
together with propositional connectives ...,, V, /\,-+ and +-+ •. We define a proof system in a
natural deduction format because this is close to intuitive reasoning. It contains so called
'logical' axioms and rules, suitable to derive the fundamental properties induced by = and
the propositional connectives. Next we introduce 'modules', i.e. sets of axioms and rules,
expressing basic identities about data or processes. For instance, the module BOOL contains
two axioms. One expressing that true and false are not equal and another saying that true
and false represent the only Booleans. Another module about data contains an induction rule
for many-sorted abstract data specifications. For processes we incorporate adapted versions
of standard process algebra modules [BW90).

We believe that µCRL and its proof theory do not have their counterparts in existing for­
malisms in this area. Among these formalisms we find Hoare logics [Apt81, Apt84), programs
as predicate transformers [DS90), UNITY [CM88], I/O automata [LT89], process algebra
[Hoa85, Mil89, BW90]. The first three approaches are basically about state transformations
and do not concern observable behaviour. As these approaches are essentially about assigning
values to variables, the corresponding proof systems also deal with data.

I/O automata are suitable for modelling concurrent and distributed systems, the compo­
nents of which are (data parameterised) automata describing explicitly the interaction with
their environment. Correctness is proved by assigning properties to the states, and using
invariance techniques. Contrary to process algebras, I/O automata do not seem to be well­
suited for algebraic manipulation.

Traditionally, process algebras do not concentrate on data. There is a large body of theory
to prove preorders and equivalences based on observable behaviour. The language µCRL and
the proof theory described here are also in this style, but incorporate an explicit notion of
data. Two other extensions of process algebra with data are mobile processes [MPW89] and
the language VPL [HI90]. Mobile processes incorporate data by describing it in a process like
way. Data is modelled by pointer structures that can dynamically change. This approach

CONTENTS 3

differs structurally from µCRL. The work of [HI90] is in the same vein as µCRL as far as
the data in processes is concerned. It is not determined how data itself should be specified.

Acknowledgements. We thank Jos Baeten, Jan Bergstra, Javier Blanco, Henri Korver,
Karst Koymans and Piet Rodenburg for helpful comments.

Contents

1 Introduction

2 Overview of the language µCRL
2.1 The syntax of µCRL
2.2 Static, algebraic and operational semantics. .

3 Syntax and semantics of property formulas
3.1 Variables and substitutions
3.2 Syntax of property formulas
3.3 Semantics of property formulas

/
4 Proof system

4.1 Logical deductions
4.2 Modules for data equivalence
4.3 Modules for process equivalence
4.4 Soundness .

5 Examples
5.1 Another application of RSP
5.2 Proving some properties of bags

2 Overview of the language µCRL

1

3
3
6

1
7

10
11

12
12
18
21
29

32
33
34

This section provides a compact introduction to the language µCRL. For the formal definition
of the syntax and semantics of µCRL we refer to [GP90].

2.1 The syntax of µCRL.

First, we assume the existence of a set N of names that are used to denote sorts, variables,
functions, processes and labels of actions. The names in N are words over an alphabet not
containing

1-, +, 11. lL' I, <I, t:>-, ·, 8, T, a, p, :E, .;, x' --+, :, =,), (, }, {, ,, a space and a newline.

The space and the newline serve as separators between names and are used for the layout of
specifications. The other symbols have special functions. Moreover, N does not contain the
reserved keywords sort, proc, var, act, func, comm, rew and from.

Data types are specified as the standard abstract data types [EM85], using sorts, functions
and axioms. Sorts are declared using the keyword sort and functions are declared using the
keyword func. Axioms are declared using the keyword rew, referring to the possibility to
use rewriting technology for evaluation of abstract data types. The variables that are used
in the axioms must be declared directly before the axioms. Their scope only extends to the
next single rew declaration.

4 2 OVERVIEW OF THE LANGUAGE µORL

As an example we define the Booleans. The Booleans must be included in each µCRL
specification.

sort Bool
func T, F :-+ Bool

The following example shows how natural numbers with a zero, a successor, addition and
multiplication can be declared.

Example 2.1.1.

sort Nat
func 0 :-+ Nat

S: Nat-+ Nat
add, times: Nat x Nat-+ Nat

var x,y: Nat
rew add(X:O) = x

add(x, S(y)) = S(add(x, y))
times(x, 0) = 0
times(x, S(y)) = add(x, times(x, y))

(End example.)

Processes may contain actions representing elementary activities that can be performed.
These actions must be explicitly declared using the keyword act. Actions may be parame­
terised by data. In the following lines an action declaration is displayed.

act a, b, c
a,d: Nat

Here parameterless actions a, b, c and actions a, d depending on natural numbers are declared.
Note that overloading is allowed, as long as this cannot lead to confusion (see [GP90] for
details). In this case the actions a and a(n) (with n of sort Nat) are different actions.

In µCRL parallel processes communicate via synchronisation of actions. A communication
specification, declared using the keyword comm, prescribes which actions may synchronise
on the level of the labels of actions. For instance, in

comm in I out = com

each action in(t1, ... , tk) can communicate with out(ti, ... , t~) to com(t1, ... , tk) provided k = m
and ti and t~ denote the same data element for i = 1, ... , k.

Processes are declared using the keyword proc. An example is

proc counter(x: Nat)= p
buffer= q

In the first line a counter is declared. It is a process with one parameter x of sort Nat. The
parameter x may be used in the process term p that specifies its behaviour. In the second
line a parameterless process buffer is declared. Its behaviour is given by the process term q.

2.1 The syntax of µCRL. 5

Definition 2.1.2 (Process terms). An expression p is called a process term iff p has the
following syntax:

p ::= (p+p) I (p·p) I (PllP) I (PtlP) I (pip) I (p<1t1>p) I E(d:D,p) I
8({ni, ... ,nm},p) I r({n1, ... ,nm},p) I p({n1-+nL ... ,nm-+n~},p) I
6 I T I n I n(ti, ... , tm)·

where then, ni, n~ are names, the t, ti stand for data terms, dis a variable and D denotes a
sort name. D

Most operators stem from ACP [BW90). Only the conditional construct p<1t1>p is taken from
[HHJ+s7] (see also [BB90]). In process terms we omit brackets according to the convention
that · binds strongest, the conditional construct binds stronger than the parallel operators
which in turn bind stronger than+.

We give a short description of the behaviour represented by closed process terms.
/

• The + denotes the alternative composition. The process p + q has the same behaviour
as the argument that performs the first step.

• The · represents the sequential composition operator. The process p · q behaves as p,
and in case p terminates, it continues to behave as q . .

• The merge (or parallel composition operator) II denotes the interleaving of its argu-
ments, except that actions from both arguments may communicate if explicitly allowed
in a communication specification.

• The left merge tL and the communication merge I are auxiliary operators, to be used
for analytical purposes. The left merge is as the merge, except that the first step of
p tL q must originate from p. The communication merge I is also as the merge, except
that p I q has a communication action between p and q as its first step.

• The conditional construct p <1 t I> q is an alternative way to write an if - then ~ else­
expression and is introduced by HOARE cs. [HHJ+87). The data term t is supposed to
be of the standard sort of the Booleans (Bool). The process p <It I> q behaves as p if the
data term t evaluates to true (T) and it behaves as q if t evaluates to false (F).

• The sum operator is used to declare· a variable d of a specific sort D for use in a process
term p. The scope of the variable d is exactly the process term mentioned in the sum
operator. The behaviour associated to E(d: D,p) is a choice between the instantiations
of the process term p with values of the sort of the variable d.

• The encapsulation operator (8) and the hiding operator (r) are used to rename the
action labels n1, ... , nm to 6, resp. r. The renaming operator p renames action labels
according to the scheme in its first argument.

• The constants 8 and r describe two basic types of behaviour. The constant 8 describes
the process that cannot do anything, in particular it cannot terminate. The constant
r can be used to represent internal activity that cannot be observed.

6 2 OVERVIEW OF THE LANGUAGE µCRL

e The terms n and n(ti, ... , tm) represent either process instantiations or actions: n refers
to a declared process (or to an action) without parameters and n(t1 , .•• , tm) contains
the arguments (i.e. the data terms) of the identifier.

A complete µCRL-specification consists of an interleaving of sort, function, axiom, action,
communication and process declarations. We provide no modular structuring mechanism.
Structuring and organising a specification is up to the specifier. As an example we give a
specification of a data transfer process TR. Data elements of sort Dare transferred from in
to out.

sort Bool
func T, F :-+ Bool
sort D
func dl, d2, d3 :-+ D
act in, out : D
proc TR =/E(d: D, in(x) · out(x) · TR)

2.2 Static, algebraic and operational semantics.

This section explains how the semantics of µCRL is organised. First we shortly describe the
'static' semantics of a specification, i.e. the circumstances under which it is correctly defined.
This is the case if all objects that are used are declared exactly once and are used such that the
sorts are correct. Furthermore it must be the case that action labels and process names cannot
be mixed up and that constant and variable names cannot be confused. Finally, it should
be the case that communications are specified in a functional way and that the rewrite rules
satisfy the (usual) condition that the variables used at the right-hand side of an equality sign
must also occur at the left-hand side. Because all these properties can be statically decided,
a specification that is internally consistent is called SSC (Statically Semantically Correct).

We say that a µCRL-specification is well-formed if it is SSC, it has no empty sorts (which
can easily be checked), the communication function is associative and the Booleans are de­
fined. In [GP90] the concepts 'SSC' and 'well-formed' are defined in a precise manner.

For any well-formed specification E its algebraic semantics is defined as follows. If E is the
signature of the data part of E, i.e. all function symbols that are declared in E, then any
minimal E-algebra that satisfies the axioms in E and that contains exactly two elements of
sort Bool is considered as a model of E. We call this latter property boolean preserving, and
requiring this property guarantees that 'the conditional construct behaves as expected.

Based on this algebraic semantics a structured operational semantics for processes specified
by a well-formed specification E has been defined in the standard way [GP90, GV89]. The
idea is that, given some model A of E, any closed process term yields a labelled transition
system of which the labels can be instantiated with (a preferred representation of) closed data
terms. The notation p tt AQ then expresses that the transition systems associated with the
process terms p and q are bisimilar [Par81]. This relation is a congruence w.r.t. the operators
of µCRL, and it is the basic equality relation on process terms that we consider. However,
we leave it open to consider other (coarser) congruences, provided these are representation
insensitive, i.e. the equivalence of process terms is invariant under the actual representation
of data terms.

7

3 Syntax and semantics of property formulas

In this section we introduce 'property formulas' with which we can express properties that a
specification may have. We provide their syntax and semantics and we introduce variables
and substitutions. In the sequel of this paper we adopt the following conventions:

1. We will only consider µCRL-specifications that are well-formed, and further call these
simply 'specifications'.

2. Concerning the names declared in a specification E: a name n is a function from E if
E contains a function declaration of the form n : S1 x ... x Sm -l> S, where Si, S are
names of sorts declared in E. If m = 0 we call n a constant. A name n is an action
from E if it is declared as such, it is a process if E contains a process declaration n = p.

3.1 Variables and substitutions

In order to express general properties that a specification may have we introduce variables.
We further introduce substitutions to extract the precise instances we are interested in. As
properties always refer to a particular specification and as we are dealing with names in a
very precise and restrictive way, we define both these concepts relative to the signature of a
specification.

Definition 3.1.1 (Data and process variables). Let E be a specification. A finite set Vd
containing elements of the form (d : D} with d some name is called a set of data variables
over E iff

• the name D is declared as a sort in E,

• d is not a constant, or an unparameterised action or process from E,

• for each sort name D' ';:/: D of E it holds that (d: D'} f/. Vd.

If we are not interested in the sort of d, we just say that dis 'a variable from Vd'·
Given a set Vd of data variables over E, a finite set VP of names is called a set of process

variables over E and Vd iff non of its elements occur as a variable in Vd. D

We generally use triples E, Vd, Vp, meaning that Eis a (well-formed) specification, Vd is a set
of data variables over E, and VP is a set of process variables over E and Vd. Given E, Vd, VP,
we define many sorted terms that may contain variables. We distinguish two kinds of such
terms: data terms and process terms.

Definition 3.1.2 (Data terms and process terms). A data term over E, Vd, VP is either a
constant from E, a variable from Vd, or an application of a function from E to data terms
over E, Vd, Vp of the appropriate sort. A data term is called closed iff it does not contain any
variables from Vd. Note that for data terms the actual contents of Vd is not relevant.

A process term over E, Vd, VP is defined inductively over the syntax given in definition 2.1.2:

• po q with o E { +,·,II, !l, I, <3t1>} and t a data term over E, Vd, Vp of sort Bool, is a
process term over E, Vd, VP if both p and q are,

8 3 SYNTAX AND SEMANTICS OF PROPERTY FORMULAS

• E(d: D,p) is a process term over E, Vd, Vp if p is a process term over

E, (Vd \ {(d: n} In a name}) U {(d: D}}, Vp \ {d},

• C({ni, ... , nm},p) with C E {8, T} is a process term over E, Vd, VP if p is, and the ni are
labels of actions from E,

• p({n1 - n1, ... ,nm - n~},p) is a process term over E, Vd, VP if p is, and the ni are
labels of actions from E such that if ni is an action from E then so is ni, and if
ni : S1 x ... x Sk is an action declaration in Ethen so is ni : S1 x ... x Sk,

• {J and T are process terms over E, vd, Vp,

• n is a process term over E, Vd, Vp if n is an action or a process from E or if n E Vp,

• n(t1, ... , tm) is a process term over E, Vd, Vp if either E contains an action declaration of
the form n : S~x ... x Sm or a process declaration of the form n(x1 : S1, ... , Xm : Sm) = q
and any ti is a data term over E, Vd, Vp of sort Si.

A process term is called closed iff it does not contain any variables from Vd or VP. D

Let p be a process term over E, Vd, VP. We say that an occurrence of a name x is free in p iff
x is a variable from Ver-or VP and this occurrence of x is not in the scope of E(x: D, -).

Next we introduce 'substitutions'. We distinguish data substitutions and process substi­
tutions. This simplifies the definition of substitutions on process terms containing the sum
operator E.

Definition 3.1.3. A data substitution er over E, Vd, VP is a mapping from the elements of Vd
to the data terms over E, Vd, Vp that preserves sorts. We say that er is ground iff its range only
contains closed data terms. Data substitutions are extended to the data terms over E, Vd, VP
in the usual way:

er(d) ";;! er((d : D}) if (d : D} E Vd,

er (c) ";;! c if c is a constant from E,

er(f(ti, ... , tm)) ";;! J(er(t1), ... , er(tm)).

D

Definition 3.1.4. A process substitution a over E, Vd, VP is a mapping er : VP__, P, where 'P
is the set of process terms over E, Vd, VP. We say that er is ground iff its range only contains
closed process terms. Process substitutions are extended to the data terms over E, Vd, VP by

er(t) ";;! t

for any data term t over E, vd, VP. D

We also extend both data and process substitutions to process terms. This allows a uniform
definition of proof rules. We define this extension simultaneously:

3.1 Variables and substitutions 9

Definition 3.1.5 (Substitutions on process terms). Let P be the set of process terms over
E, Vd, VP and let u be either a data substitution or a process substitution over E, Vd, VP. We
extend u to P as follows (the only non-trivial cases are the sum operator :E and process
variables):

• u(p o q) c1.,;f u(p) o u(q) for o E { +,·,II, lL, I},
u(p ~ t r> q) c1.,;f u(p) ~ u(t) r> u(q),

u(C(nl, p)) c1.,;f C(nl, u(p)) for C E { 8, r, p} and nl being the first argument of C,

u(8) c1.,;f 8 and a(r) c1.,;f r,

u(n(ti, ... , tm)) c1.,;f n(a(t1), ... , u(tm)).

e For a process term :E(d: D,p) E P let e be some name not in Vd or Vp such that p is a
process term over

/
E, (Vd \ {(d: n} In a name}) U {(d: D}, (e: D}}, VP\ {d}.

So p[e /cl] (notation is explained after this definition) is a term over E, Vd U { (e : D}}, VP.
We define

u(:E(d: D,p)' c1.,;f :E(e: D,a'(p[e/d]))

where

- if u is a data substitution, u' is the data substitution over E, Vd U { (e : D} }, VP
defined by

'((S}) de/ { e if x = e,
O" x : = u((x : S}) otherwise,

- in the case that u is a process substitution, u' is the process substitution over
E, Vd U { (e: D}}, Vp equal to u.

e For a name n E P we define

u(n) c1.,;f { u(n) if O" is~ pro~ess substitution and n E VP,
n otherwise.

D

If u is a substitution over E, Vd, VP that maps variables x1, ... ,xm to terms ti, ... , tm, respec­
tively, and that is the identity for any other variable, we use the abbreviation

u[t1, ... ,tm/x1, ... ,xm] c1.,;f u(u)

for any term u over E, vd, Vp. Furthermore, given E, vd, Vp we sometimes write p(xi, .. ., Xm)

for a process term p that possibly contains the data variables x1, ... , Xm from Vd. In this case
we write p(t1, ... , tm) for p[ti, ... , tm/x1, ... ,xmJ, the simultaneous substitution of ti for Xi·

10 3 SYNTAX AND SEMANTICS OF PROPERTY FORMULAS

3.2 Syntax of property formulas

In this section we define 'property formulas' to express properties of specifications. A property

formula consists of two parts. The first part is the property, which is either an identity

between terms, or an application of the operators :F ("Falsum"), •, V, /\, ->, ~ known from

propositional logic (see eg. [Dal83]) between such identities. The second part of a property

formula contains the names of the specification and variable sets.

Definition 3.2.1. A property over E, Vd, VP is defined inductively in the following way:

• :Fis a property over E, Vd, Vp,

e t = u is a property over E, Vd, VP iff

- either t and u are data terms over E, Vd, VP that are of the same sort,

- or t and u are process terms over E, Vd, VP,

e •(<P) is a proferty over E, Vd, VP iff <Pisa property over E, Vd, Vp,

o (<Po'l/J) with o E {v, /\,->,~}is a property over E, Vd, Vp iff both <P and 'If; are properties

over E, Vd, VP.

D

Example 3.2.2. Let Ebe the specification defined in example 2.1.1. Then

(times(x,x) = x -> (x = 0 V x = S(O)))

is a property over E, { (x: Nat)}, 0. (End example.)

In properties we omit brackets according to the convention that = binds stronger than any

of the logical operators •, V, A,___.,~, that -, binds stronger than any of the logical binary

operators, and that V, /\bind stronger than___.,~.
For notational convenience we extend the domain of substitutions to properties.

Definition 3.2.3 (Substitutions on properties). Let a be either a data substitution or a

process substitution over E, Ycl, VP. We extend a to the properties over E, Vd, VP as follows:

a(:F) ~ :F,

O"(t = u) ~ a(t) = a(u),

a(•<P) ~ •(a(<P)),

a(<Po'l/J) ~ a(<P) o a('lf;) where o E {v, /\, ___., ~ }.

D

Now a 'property formula' simply consist of a property that has as an attribute the originating

specification and variable sets:

Definition 3.2.4. A property-formula is an expression of the form

3.3 Semantics of property formulas 11

</> from E, Vd, Vp

where</> is a property over E, yd, Vp. A property formula</> from E, Vd, VP is called closed iff
</>contains neither variables from Vd, nor process variables from Vp. D

Note that if</> from E, Vd, VP is a property formula and u is a (process or data) substitution
over E, Vd, Vp, then u(</>) from E, Vd, Vp is also a property formula.

We have introduced more logical symbols than strictly necessary for expressing the prop­
erties we are interested in. We regard the symbols --+ and F as basic, and use the other
symbols as abbreviations:

Definition 3.2.5. The logical symbols -., V, A,+-+ are defined as follows:

D

3.3 Semantics of property formulas

In this section we define whenever a property-formula </>from E, Vd, VP is valid in A, ;;:::.A,

notation

A, ~A I=</> from E, Vd, Vp

(see for A and ;;::,A the definition below). We use the notation

A, ~A ~ </> from E, Vd, Vp

if it is not the case that A, ;;::,A I=</> from E, Vd, Vp.

Definition 3.3.1 (Interpretation of property formulas). Let E be a specification and A be a
minimal, boolean preserving algebra that is a model of E (see [GP90]). Let furthermore ~A
be a congruence relation on the closed process terms over E such that ~A ~ ':::::?"A and such
that ~A is representation insensitive.

We define the validity of property formulas in two steps:

1. The validity of a closed property formula </>from E, Vd, Vp in A, ~A is defined by
induction on the syntax of the property </>:

A, ~A ~ F from E, Vd, Vp,

A, ~A I= t = u from E, Vd, Vp for data terms t and u iff A I= t = u,

A, ~A I= p = q from E, vd, Vp for process terms p and q iff p ~A q,

A, ~A I=</>--+ 'I/; from E, Vd, Vp iff

A, ~A ~ </> from E, Vd, Vp or A, ~A I= 'I/; from E, Vd, Vp·

12 4 PROOF SYSTEM

2. A property formula</> from E, Vd, Vp is valid in A, :::::A iff

for any ground process substitution u over E, Vd, Vp and any ground data substitution
u' over E, Vd, VP.

0

Note that in clause 2 of this definition it holds that u'(u(</>)) = u(u'(<P)) because u is a ground
process substitution.

4 Proof system

We give a proof system in a 'natural deduction' format in which we can derive property
formulas. Natural deduction provides rules that agree well with informal reasoning, and is
well-known as a formal system of logic. Furthermore the correspondence with proof systems
suitable for automatic reasoning is also widely studied [GTL89]. Our set-up is based on
[TD88]; other references on natural deduction are eg. [Dal83, Sza69].

Deductions can be constructed according to three types of rules:
~

1. 'Logical' rules, defining the relations between property formulas that depend on the
meaning of the logical symbols, the equality relation and substitution.

2. Rules by which identities between data terms depending on the particular contents of
a µCRL specification can be derived.

3. Rules by which identities between process terms depending on the particular contents
of a µCRL specification can be derived.

In the next section we introduce the logical rules of our proof system, and present a formal
definition of deductions.

4.1 Logical deductions

A deduction can be seen as a tree of which each node is labelled with a property formula
(and possibly the name of a rule which has been applied to obtain the property formula).
The leaves of the tree are the assumptions (also called hypotheses) of the deduction. We use
symbols V, possibly subscripted, for arbitrary deductions. We write

v
'l/J from E, Vd, VP

to indicate that 'D has conclusion

'l/J from E, Vd, VP

(so the occurrence 'l/J from E, Vd, VP is part of 'D itself). We use the notation

4.1 Logical deductions 13

for a possibly empty set of occurrences of a property formula <P from E, Vd, Vp in a deduction,
thus

is a deduction 1J with a set [<P from E, Vd, Vp] of assumptions in 1J. As a rule we assume that

[<P from E, Vd, Vp]

refers to all assumptions of the form <P from E, Vd, Vp in 1J.

We define logical deductions in a recursive way (recall that -.<jJ abbreviates <P - :F).

Definition 4.1.1 (Logical deductions).
/

e The single-node tree with as label a property formula </J from E, Vd, Vp is a deduction
from the open assumption <P from E, Vd, Vp. There are no cancelled assumptions.

e Let 1J1, 1J2 be deductions. A new deduction can be constructed according to the rules
in table 1. These rules are subject to the following restrictions:

1. In applications of the introduction rule -I and the rule RAA (Reductio Ad Ab­
surdum) all open assumptions of the form indicated by [...] are cancelled.

2. In applications of -1>!, RAA, the reflexivity rule REFL, the variable rule VAR and
the substitution rule SUB the conclusion should be a property formula.

3. In applications of SUB the variable x may not be free in any (uncancelled) hy­
pothesis of 1J1 .

4. Each application of VAR is restricted to one of the following two cases:

(a) Vd ~ VJ or VJ ~ Vd, and Vp = V~,
(b) Vp ~ V~ or V~ ~ Vp, and Vd =VJ.

D

The reflexivity rule REFL has an empty premiss, and is therefore cal.led an 'axiom'. The rule
VAR is a structural rule that allows (restricted) replacement of variable sets. In the next
section we introduce axioms that specify the minimal variable sets involved. With VAR we
can obtain variable sets that are suitable for further derivations.

In most deductions the form of the property formulas itself already determines which rule
is being applied. Therefore we often omit the names of the rules in deductions. A method
that helps to grasp the structure of a given deduction is to number the occurrences of as­
sumptions which are being cancelled, and to repeat the number near the node where the
cancellation takes place. Assumptions which are cancelled simultaneously may be given the
same number. However, the numbering of discharged assumptions is redundant: by definition
any assumption is cancelled at the earliest opportunity. We provide some examples of typical
deductions.

14 4 PROOF SYSTEM

[tf> from E, Vd, Vp)
V1

'l/J from E, Vd, Vp
tf>-+ 'l/J from E, Vd, lip

[..,q, from E, Vd, lip)
V1

V1 V2
</> from E, Vd, Vp tf> -+ 'l/J from E, Vd, Vp

'l/J from E, Vd, Vp

:F from E, Vd, Vp
tf> from E, Vd, Vp

RAA REFL
t = t from E, Vd, Vp

V1 / V2
tf>[t/x] from E, Vd, lip t = u from E, Vd, Vp

tf>[u/x] from E, Vd, lip

V1

SUB tf> from E, Vd, Vp
tf>(t/x] from E, Vd, Vp

REPL

V1
</> from E, Vd, Vp
tf> from E, VJ, V~

Table 1: Rules for logical deductions

VAR

Example 4.1.2. Let tf> from E, Vd, lip and 'l/J from E, Vd, Vp be two property formulas. We
derive

-+I, [1]
tf>-+ ('l/J-+ tf>) from E, Vd, Vp

Here the (1) in '-+I, [1)' indicates that the assumption tf> from E, Vd, Vp (l) is cancelled. (End
example.)

Example 4.1.3. We here show how to derive the congruence properties of the equality
relation = over data terms. Let t, u, v be data terms of sort D, and t = u from E, Vd, Vp
and v = t from E, Vd, Vp be property formulas. Let furthermore x be a name not occurring

in Vd or Vp and VJ~ Vd U {(x: D)}.

4.1 Logical deductions 15

Reflexivity. Immediate by the axiom REFL.

Symmetry. In the application of the replacement rule REPL we take </> = x = t, so that
</>[t/x] = t = t and </>[u/x] = u = t (as x occurs not in t or u).

u = t from E, VJ, Vp
~~~~~~~ VAR 
u = t from E, Vet, Vp 

VAR 

REPL 

Transitivity. Take</>= v = x in the application of REPL with the substitution [t/x]: 

v = u from E, VJ, Vp 
~~~~~----'"--~ VAR 

/ v = u from E, Vet, Vp

VAR

REPL

Substitutivity. Let w be some (process or data) term over E, Vet, Vp and let [t/z], [u/z] be
data substitutions over E, Vet, Vp. Take</>= w[t/z] = w[x/z], and apply REPL with the
substitution [t/x]:

t = u from E, Vet, Vp
REFL

w[t/ z] = w[t/ z] from E, "Yd, Vp t = u from E, VJ, Vp
w[t/ z] = w[u/ z] from E, VJ, Vp

VAR
w[t/ z] = w[u/ z] from E, Vet, Vp

VAR

REPL

In a similar way it can also be proved that = is a congruence relation over process terms.
(End example.)

Definition 4.1.4 (Derivability). Let r be a set of property formulas. We write

r 1- </> from E, Vet, Vp

iff there is a deduction with all uncancelled assumptions in r, and with</> from E, Vet, Vp as
conclusion. In this case we say that there is a proof of</> from E, Vet, Vp from r. If r = 0 we
just write I-</> from E, Vet, Vp and say that</> from E, Vd, Vp is logically valid. D

We state without proof:

Theorem 4.1.5.(Deduction Theorem.) We have the following standard theorem concerning
the derivability of property formulas:

r U { </> from E, Vd, Vp} I- 'ljJ from E, Vd, Vp {::::::} r I- </>-+ 'ljJ from E, Vet, Vp.

0

We adopt the following two conventions. If in a derivation only property formulas over fixed
E, Vd, Vp are considered, we often leave out the additions' from E, Vd, Vp'·

16 4 PROOF SYSTEM

Furthermore, once

... '

is proved, the deduction step

</>1 from E, V,i, Vi , .. . , </>n from E, Vdn, VPn

</> from E, Vd, Vp

(possibly labelled with some identifier of the proof) may be used in other deductions.

The following lemma provides some standard results.

Lemma 4.1.6. Let E, Vd, Vp be given. It holds that

1. I- </> - (1/J - </>) ' 5. {</> - 1/J, 1/J - x} 1- </> - x,
2. {t = u} I- u7 t,
3. { v = t, t = u} I- v = u,

6. { </> - 1/J} I- •1/J - •<P,
7. { </> - 1/J, •</> - 1/J} I- 1/J

4. {t = u} I- w[t/z] = w[u/z],

where in 4 it is assumed that w is a (process or data) term over E, Vd, VP and [t/ z], [u/ z] are
substitutions over E, Vd, Vp.

Proof. Result 1 is proved in example 4.1.2, and 2,3 and 4 are proved in 4.1.3. The results 5

and 6 are standard in propositional logic (derivations can be found in [Dal83]) and we give a
proof of 7:

</> - 1/J (by 6)

•1/J - •</> •</> - 1/J (by 5) •1/J (1)
_.E

F
1/J RAA, [1]

D

Given the abbreviations for the connectives V and I\ in definition 3.2.5, we can derive the
following deduction rules. ·

Definition 4.1. 7 (The other connectives). Let 'Di, 'D2 be deductions. A new deduction

containing the connectives V and /\ may be constructed according to the rules in table 2.
These rules are subject to the following restrictions:

1. In the introduction rules Vlr and and VI1 the conclusion should be a property formula.

2. In the elimination rule VE all open assumptions</> from E, Vd, VP and 1/J from E, Vd, Vp
are cancelled.

D

4.1 Logical deductions

'D1
</> from E, Vd, Vp

</> V 'I/; from E, Vd, Vp

/

[</> from E, Vd, Vp]
V2

X from E, Vd, Vp

'D1 'D2
</> from E, Vd, Vp 'I/; from E, Vd, VP

</>A 'I/; from E, Vd, Vp
/\I

Vi
</>A 'I/; from E, Vd, Vp

</> from E, Vd, Vp

['I/; from E, Vd, Vp]
'Da

x from E, Vd, Vp

'D1
</>A 'I/; from E, Vd, Vp

'I/; from E, Vd, Vp

Table 2: Rules for the other logical connectives

17

VE

18 4 PROOF SYSTEM

Whenever convenient, we prove results with the help of these derivable rules. As an example

we show the derivability of the rule VE, where the double bar indicates the abbreviation of

V:

<P (i)

1J2
x .,x (2)

-+E
Vi

:F <P v 'l/J

-i<l
RAA, [1] -i</J --+ 'l/J

-+E
'l/J

:F
RAA, [2]

x
For readability we further introduce the notations

V <Pi from E, V~ Vp and
iEI

f\ <Pi from E, Vd, Vp
iEI

'l/J (3)

'Da
x .,x (2)

- -+E

-+E

for iterated finite disjunctions and conjunctions, respectively. We adopt the convention that

and

4.2 Modules for data equivalence

As µCRL is based on ACP [BW90] we follow its methodology and consider 'building blocks'

of axioms and rules that describe a feature of concurrency in a certain semantical setting.

We call such building blocks modules. If Mi, ... , Mn are modules, then the notation

Mi+ ... + Mn+ r I- <P from E, Vd, Vp

expresses that with the axioms and rules from Mi, ... , Mn we can derive <P from E, Vd, VP
with all uncancelled assumptions in the set r of property formulas.

In this section we introduce three modules that permit us to derive identities between data

terms that depend on the contents of a specification.

The module BOOL. Concerning the standard sort Bool we define two axioms, corre­

sponding with the demand that any model of a specification E is boolean preserving:

Bl
-i(T = F) from E, 0, 0

which states that the Booleans T and F are considered different in our proof system, and the

axiom

4.2 Modules for data equivalence 19

B2
-,(b = T) - b = F from E, {(b: Bool)}, 0

which expresses that there are at most two Boolean values, represented by T and F. The
two axioms Bl and B2 form the module BOOL. The following lemma states that the reverse
implication in B2 is derivable.

Lemma 4.2.1. For any specification E it holds that

BOOL I- b = F - ..,(b = T) from E, { (b : Bool) }, 0.

Proof. In the following deduction, which proves the lemma, we again leave out all the
additions from ... and only display the properties. However, note that we need an application
of the rule VAR that changes the variable set 0 from the axiom Bl to the variable set
{ (b: Bool)}.

b = F (l) b = T (2)

T=F
REPL

-,(b = T) RAA, (2]

b = F - -,(b = T)

..,(T = F) Bl, VAR
->E.

->I, [1]

D

The module FACT. The basic identities on data terms are those declared in a specification
E. Assume t = u occurs as an axiom in E, i.e. t = u is preceded by the keyword rew. Then
we have an axiom

FACT
t = u from E, Vd,0

where Vd is the set of data variables occurring in t and u. Note that the module consisting of
all the FACTs from Eis implicitly present in the E occurring in property formulas. Therefore
we generally do not mention FACT before the turnstyle, although it may have been used.

The module IND(C). It is required that any model for the data part is minimal. In the
proof theory this can be captured via induction. Therefore we introduce an induction rule. In
example 4.2.3, based on example 2.1.1, we illustrate this rule by deriving the commutativity
of addition on natural numbers. We start with a preparatory definition.

Definition 4.2.2 (Constructors). Let Ebe a specification, S the name of a sort occurring in
E, and Ca subset of the function declarations occurring in E. We say that C is a constructor
set of the sort S iff all functions in C have target sort S, and any closed data term of sort S
can be proved equal to a data term that is obtained from applications of the functions in C
and terms not of sort S only. D

In general it is not possible to prove that a given set is a constructor set within our framework.
Reasons for this are that we can neither express 'existential' properties of data terms, nor that
a term is obtained from application of a constructor function. Therefore such a proof must be

20 4 PROOF SYSTEM

given on a meta-level. In example 4.2.3, we can prove that 0 =-Nat and S: Nat - Nat form
a constructor set of the sort Nat by using the axioms given there and structural induction
on the complexity of closed terms.

Assume that for given E, Vd, Vp we have that

. { (x1 : S1}, .. , (xm: Sm}}~ Vd.

Let for 1 $ i $ m:

de/ · · i · .
Ci = {/i;: ~3 x ... x s1;; - Si I 1 $ J $ ki, ki > O, lii ~ O}

be a constructor set of the sort Si of cardinality ki. We introduce the following induction
rule IND(Ci, ... ,Cm) that is parameterised by the constructor sets 01, ... ,Cm. The induction
takes place on the variables x 1, ... , Xm·

'[)ij

f\ a(c/>) - c/>[/i;(zt~···i zff;)/xi] from E, Vd u {(z:/: S:/} I 1 $ n $ li;}, Vp
uElij 1::; i::; m

</>from E, Vd, VP o ::;; ::; ki

where for each 1 $ i $ m and 1 $ j $ ki the index set Iii is a set of data substitutions over

E, Vd u {(z:/: S:/} I 1 $ n $ li;}, Vp satisfying for 1 $ k $ m:

a E Iii ~ o-is the identity, except that it maps Xk to some Yk, where

Yk E {xi, ... ,xm} U {z:/ I 1 $ n $ li;},

Yi "i!j. Xi,

if 1 $ k < k' $ m, then Yk "i!j. Yk'.

Note that in IND(C1, •.. ,Cm) all the variables xi, ... ,xm,zfi, ... ,zt are pairwise different for .,
all appropriate i, j. In section 4.4 we give an argument for its soundness.

Example 4.2.3. Let Ebe the specification from example 2.1.1:

sort Nat
func 0 :- Nat

S: Nat - Nat
add, times: Nat x Nat - Nat

var x,y: Nat
rew add(x, 0) = x

add(x, S(y)) = S(add(x, y))
times(x, 0) = 0
times(x, S(y)) = add(x, times(x, y))

We prove that the function add is commutative, i.e. add(x, y) = add(y,x) from E, Vd, 0,

where Vd d,;f { (x : Nat}, (y : Nat}, (z : Nat}}. The proof is in four steps:

a. add(O, x) = x,
b. add(S(O), x) = S(x),
c. add(x, add(y,z)) = add(add(x,y),z),
d. add(x, y) = add(y, x).

4.3 Modules for process equivalence 21

As observed above, we can take 0 1 ~ {O :-+ Nat, S: Nat -+ Nat} as a set of constructors of
sort Nat. Let fio = 0 and / 11 = S. We prove a and the final result d, and leave proofs of b
and c to the reader. In the following deductions the bars labelled with a (*) refer to lemma
4.1.6.3+4.

Ad a. Let 'l/J = add(O, x) = x, then / 10 = 0 and 111 = {[n/x)} with n a fresh variable of sort
Nat.

__ 'l/J_[n_/_z,..,..J _<1_> _ (*)
add(:i:,O) = :i: add(O,S(n)) = S(add(O,n}} S(add(O,n}} = S(n) (*)

.,P[O/:i:] .,P[S(n}/:i:J - - - __ __..;;___;_;_'----'---- [1]
AreI10 O'(.,P)-+ .,P[O/:i:] Aveiu O'(.,P) -+ .,P[S(n)/:i:]
~~~~~~~~~~~~~~~~~~~~~-~~~~- IND 

Ad d. Take</>= afid(x,y) = add(y,x). The induction takes place on the variable y, so 
lio = 0 and /11 = {[n/y)}. In the following deduction 'D1 abbreviates an easy deduction 
based on result a, and 'D2 abbreviates a simple deduction that uses the second axiom 
of E, the results band c, and the congruence properties of= proved in lemma 4.1.6. 

-ad-d-(0-,-z )-=-:i: (a) 
'D1 

4>[0/y] 
AveI10 O'(</>) -+ <f>[O/y] 

(End example.) 

. </>[n/y] {1) ( *) 
add(:i:,S(n)) = S(add(:i:,n}} S(add(z,n}} = S(add(n,:i:)) (*) 

add(:i:,S(n)) = S(add(n,:i:)) 
'D2 

</>[S(n)/y] [l] 
AveI11 O'(</>)-+ <f>[S(n)/y] 

4.3 Modules for process equivalence 

IND 

In this section we introduce the means to derive identities between process terms using the 
originating specification and standard process algebra axioms and rules. 

The module REC. Let for some given E it be the case that n = p is a process declaration 
. in E (i.e. the last keyword preceding n _: p is proc). Then we have an axiom 

REC 
n = p from E,0,0 

If n(x1 : 81, ... , Xk: Sk) = p is a process declaration in E, then we have an axiom 

REC 

Like in the case of FACT we adopt the convention not to denote the module REC before the 
turnstyle. 



22 4 PROOF SYSTEM 

Al x+y=y+x CFl ni ln2 = na if ni ln2 = na E Comm(E) 
A2 x + (y + z) = ( x + y) + z 
A3 x+x=x CF11 ni (ti, ... , tm) I n2(t1, ... , tm) = na(t1, ... , tm) 
A4 (x+y)·z=x·z+y·z if ni ln2 = na E Comm(E) 
A5 (x · y) · z = x · (y · z) 
A6 x+8=x CF2 alb= 8 
A7 8 ·X = 8 if Vn EN. label(a) I label(b) = n f/. Comm(E) 

CF21 -i(ti = tD--+ ni(ti, ... , tm) ln2(t~, ... , t~) = 8 
CMl x II y = x lL y + y lL x + x I y for some 1 ::; i ::; m 
CM2 allx=a·x 
CM3 a·xlly=a·,{xlly) CF2" ni(t1, ... , tm) ln2(t~, ... , t~,) = 8 if m '# m' 
CM4 (x+y) llz =xllz+yllz 
CM5 a·xlb=(alb)·x 
CM6 alb·x=(alb)·x Dl 8({ni, ... ,nm},a) =a if label(a) fl_ {n1, ... ,nm} 

CM7 a· x I b · y = (a I b) -(x II y) D2 8( {n1, ... , nm}, a)= 8 if label(a) E {n1, ... , nm} 
CM8 (x + y) lz = xlz:+ ylz D3 8(nl, x + y) = 8(nl, x) + 8(nl, y) 
CM9 xl(y+z) =xly+xlz D4 8(nl, x · y) = 8(nl, x) · 8(nl, y) 

Table 3: The axioms of ACP for a specification E, where a and b range over 8, T and the 
actions of E, the ni range over N and m, m' ~ l. 

The modules ACP, SC, HIDE and REN. In table 3 we present the system ACP, consisting 
of all process algebra axioms that are standard in that theory [BW90]. The axioms CF refer 
to any specification E, where the set Comm(E) is the commutative and associative closure of 
all communications declared in E (the well-formedness of E implies that Comm(E) is finite). 
In CF2, Dl and D2 we use a function label() that extracts the label of an atomic action, and 
is the identity for 8 and T. 

We present in table 4 some axioms for the merge operators, known as the Standard Concur­
rency laws (see [BW90]). These axioms are derivable for process terms that are constructed 
from atomic actions, 8 and T. 

For hiding (abstraction) we present the module HIDE in table 5, and for general renaming 
we have the module REN in table 6 available. In both modules the function label() is used 
again. 

Let E be a specification. For any equation fjJ from ACP, SC, HIDE and REN (possibly 
depending on E) we have an axiom 

name of fjJ 
fjJ from E, 0, VP 

where Vp is the set of variables occurring in f/J. 



4.3 Modules for process equivalence 

SCl ( x lL y) lL z = x lL (y II z) 
SC2 x u_o = x 
SC3 xly = ylx 

SC4 (xly)lz=xl(ylz) 
SC5 xl(ylLz) = (xly)lLz 

23 

Table 4: The axioms of SC. 

/ 

Til r({ni, ... ,nm},a)=a 
TI2 r({ni, ... ,nm},a)=r 

TI3 r(nl, x + y) = r(nl, x) + r(nl, y) 
TI4 r(nl, x · y) = r(nl, x) · r(nl, y) 

if label(a) ~ {ni, ... , nm} 
if label(a) E {n1, ... , nm} 

Table 5: The axioms of HIDE for a specification E, where a ranges over 6, r and the actions 
of E, the ni range over N and m ;::: 1. 

RNl p( {n1 -t nJ., ... , nm -t n~J, a)= a if label(a) ~ {n1, ... , nm} 
RN2 p( {n1 -t nJ., ... , nm -t n~}, ni):::: n~ if 1 ::5 i ::5 m 
RN2' p( {n1 -t nJ., ... , nm -t n~}, ni(t1, ... , tm' )) = nW1, ... , tm') if 1 ::5 i ::5 m 
RN3 p(nl, x + y) = p(nl, x) + p(nl, y) 
RN4 p(nl, x · y) = p(nl, x) · p(nl, y) 

Table 6: The axioms of REN for a specification E, where a ranges over 15, r and the actions 
of E, ni, n~ range over N, and m, m';::: 1. 



24 4 PROOF SYSTEM 

The module COND. We define for any specification E two axioms characterising the 
behaviour of the conditional [BB90, HHJ+87): 

Condl 
x<1T1>y = x from E,0,{x,y} 

and 

Cond2. 
x<1F1>y = y from E,0,{x,y} 

These two axioms form the module COND. The following lemma describes two basic prop­
erties that can be proved using the module COND. Both these results will be used later in 
the paper. 

Lemma 4.3.1. Let-,, Vd, Vp be such that (b: Bool) E Vd and {x,y,z} ~ Vp. Then 

1. BOOL + ACP +CONDI- x + x <1bi>8 = x from E, Vd, VP, 

2. BOOL + COND 1- (b = T-+ x = y) -+ (x <1b1> z = y <1b1> z) from E, Vd, Vp. 

Proof. In the following deductions the bars labelled with ( *) refer to lemma 4.1.6. As we 
can derive from the axiom B2, i.e. 

-i(b = T) -+ b = F from E, { (b: Bool) }, 0, 

the property formula 

T = b VF = b from E, Vd, Vp 

we can apply the rule VE to obtain 1: 

B2 
T=bVF=b 

x<lTr>y=x 

x <l T 1> 6 = f _ T = b <1> 

X<lb!> -X (*) 
x+x<lb1>6=x+x 

x+x<lb1>6=x 

A3 

x<lFr>y=y 

x <l F 1> o = ~ F = b <2> 
x <Jo 1> - 6 ( *) 

x+x<lb1>o=x+o 
x+x<lbr>o=x 

The following deduction proves 2, where 'D abbreviates an easy deduction: 

A6 

-i(b = T) (3) -i(b = T) - b = F 
x = y <2> b = F 

------(*) 
x <l b I> z = y <l b I> z [2] 'D 

b = T - x = y <1> x = y - x <lb 1> z = y <lb 1> z ( *) x <lb 1> z = y <lb 1> z [a] 
b=T-x<lb1>z=y<lb1>z -ib=T -x<lb1>z=y<lb1>z () 

~~~~~~~~~~~~~~~~~~~~~~ * 
x <l I> z = y <l I> z [1]

(b = r- x = y)- (x<lb!>z = y<lbr>z)
0

VE, [1, 2)

4.3 Modules for process equivalence 25

E(d:D,x)=x SUMl

SUM2

SUM3

SUM4

SUMS

SUM6

SUM7

SUMS

SUM9

SUMlO

E(d: D, u(x)) = E(e: D, u(x)[e/d)) provided e not free in u(x)
E(d: D,u(x)) = E(d: D,u(x)) +u(x)
E(d: D, u(x) + u(y)) = E(d: D, u(x)) + E(d: D, u(y))
E(d: D,u(x) · y) = E(d: D,u(x)) · y
E(d: D,u(x) ILY) = E(d: D,u(x)) ILY
E(d: D,u(x) ly) = E(d: D,u(x)) ly
E(d: D,8(nl,u(x))) = 8(nl,E(d: D,u(x)))
E(d: D, r(nl, u(x))) = r(nl, E(d: D, u(x)))
E(d: D,p(nl,u(x))) = p(nl,E(d: D,u(x)))

'D
SUMll u(t) = u(y) from E, Vc:t, Vp

E{d: D,u(x)) = E{d: D,u(y)) from E, Vc:t, vp
provided d not free in
the assumptions of 'D

Table 7: The axioms and congruence rule of SUM for E, Vc:t, vp, where E contains a sort
name D, (d: D) E Vc:t, vp contains x, and for SUM4-7 and SUMll also y, and u is a process
substitution over E, Vc:t, Vp.

The module SUM. For the sum operator we present the module SUM in table 7. Recall
that substitutions are defined in such a way that they never introduce new bindings of vari­
ables. In order to describe the general properties of the sum operator, the axioms of SUM are
formulated using process substitutions within the scope of the E {in fact the process terms
u(x) and u(y) are used as syntactic variables for process terms). Another consequence of
the way we defined substitutions is that the congruence property for the sum operator does
not follow from the general replacement rule REPL. This property is separately captured by
the rule SUMll (in the special case that d occurs not free in u(x) and u(y), SUMll can be
derived with REPL and SUM2). For any of the equations </> in the module SUM we have an
axiom

name of</>
</> from E, Vc:t, Vp

where Vc:t and Vp are chosen minimal.
The sum operator typically describes the alternative composition of all data instances of a

process term. This is expressed in the following lemma.

Lemma 4.3.2. Let E, Vc:t, VP be such that the sort D and an equality function eq over D
occur in E. Let furthermore { (d : D), (e : D)} ~ Vc:t, and M ;;2 {BOOL, COND, SUM} be
such that M f- eq(d, e) = T--+ d = e from E, Vc:t, Vp. Then for any process term p(d) over
E, Vc:t, Vp it holds that

M f- E(d: D,p(d)) = E(d: D, 8 <1 eq(d, e) t> p(d)) + p(e) from E, Vc:t, VP.

26 4 PROOF SYSTEM

Proof. First note that it is very plausible that an 'equality function' eq satisfies the property

eq(d, e) = T -+ d = e. The proof uses the straightforward identity

c5 <1 eq(d, e) 1> p(d) + p(e) = p(d) + p(e) from E, Vd, VP, (1)

of which we leave the derivation (in which the property of the function eq is necessary) to the

reader. We derive the identity that proves the lemma in a 'linear style' (more on this style

in section 5):

E(d: D,p(d)) SUJ13 E(d: D,p(d)) + p(e)
SUMl

SU_¥4

E(d: D,p(d)) + E(d: D,p(e))

E(d: D,p(d) + p(e))

Hence, using SUMll and (1) it follows that

E(d: D,p(d)) / = E(d: D, c5 <1 eq(d, e) 1> p(d) + p(e))

SUJ14 E(d: D, c5 <1 eq(d, e) 1> p(d)) + E(d: D,p(e))
SUMI E(d: D, c5 <1 eq(d, e) 1> p(d)) + p(e)

0

If in lemma 4.3.2 the sort D is finitely representable, i.e. there are closed data terms t1, ... , tn
of sort D such that

n

V d = ti from E, Vd, Vp
i=l

is derivable, then it follows that

E(d: D,p(d)) = p(t1) + ... + p(tn) from E, Vd, Vp

is also derivable.

The module RSP. In order to derive identities between infinite processes we introduce (an

extended version of) the Recursive Specification Principle (RSP, see eg. [BW90]).

The idea of RSP is that if two (different) process terms both satisfy some 'process-equation',

then those process terms are considered equal. In general we use a system of such equations,

each of which must contain at its left-hand side a (possibly parameterised) fresh identifier and

at its right-hand side a 'process term' that may contain the new identifiers. These identifiers

may be parameterised with data. We introduce a mechanism that defines substitution of

parameterised process terms in a system of process-equations. The soundness of RSP depends

on the guardedness of the system of process-equations used. In the following we make all

these notions precise, and introduce the rule RSP.
Let E, Vd, VP be given and let n1, ... , nm be m different names. We call a system G of m

equations G1, ... , Gm a system of process-equations over E, Vd, VP iff

4.3 Modules for process equivalence 27

1. Each equation Gi has at its left-hand side an expression of the form

(2)

where any Xij is a data variable from Vd, or of the form ni.

2. Let G~ be as Gi, except that any left-hand side of the form (2) is replaced by
ni(Xi1 : Sil, ... , Xim; : SimJ where Sij is the sort of Xij· Then the following extension of
E must be a well-formed specification.

E
proc G~

G' m

This guarante~ that any right-hand side of Gi is a proper process term over this
extension of E that possibly contains data variables from {(xii : Sij) I 1 ::::; j ::::; mi}
(setting mi = 0 in case G i is not of the form (2)).

Next we introduce a substitution mechanism for a system G = Gi, ... , Gm of process-equations
over E, Vd, Vp. Abbreviating the (possible) variables of ni by Xi and writing<> for the empty
sequence of variables, we define

as the equation obtained by substituting AXi . p(xi) for the ni-occurrences in Gi, and then
repeatedly performing ,B-conversion on the respective arguments of the identifier ni. For any
identifier without arguments only the substitution of p is performed. In example 4.3.4 this
substitution mechanism is illustrated.

The rule RSP is restricted to (syntactically) guarded systems of process-equations:

Definition 4.3.3 (Guardedness ofG). Let G be a system of process-equations over E, Vd, Vp
and let N be the left-hand side of one of the equations of G. We say that N is guarded in r,
where r is a subterm of one of the right-hand sides of G, iff

• r = q1 o q2 with o E {+,II, I, <1t1> }, and N is guarded in qi and q2,

o r =qi o q2 with o E {·, ~}and N is guarded in qi,

o r = I:(x: S, q1) and N is guarded in qi,

o r = C(nl,q1) with C E {8,T,p} and nl being a list of names (or in the case of pa
renaming scheme), and N is guarded in q1,

e r = /5 or r = T,

o r = n' for a name n' and N ;t n',

® r = n' (u1, ... , Um') and N ;t n' (Xii, ... , Xim;).

28 4 PROOF SYSTEM

If N is not guarded in r we say that N appears unguarded in r.
The Identifier Dependency Graph of G, notation IDG(G), is constructed as follows:

e each left-hand side of the equations of G is a node,

e if N is a node of IDG(G) and N = r E G, then there is an edge N-+ N' for any node

N' that appears unguarded in r.

We call G guarded iff IDG(G) is well founded, i.e. does not contain an infinite path. D

Given a guarded system Gi, ... ,Gm of m process-equations over E, Vd, VP, we define the fol­

lowing rule RSP:

Gi[AXj . Pi(xi)/niJ.f=1 from E, Vd, Vp Gi[Axj. qj(Xj)/nj].f=1 from E, Vd, VP
-------~----------------~-------- 1 ::=; i:::; m

Pk(xk) = qk(xk) from E, Vd, VP (1 ~ k ~ m)

where /

e for 1 ~ i ~ m the Pi(xi) and qi(xi) are process terms over E, Vd, Vp,

e the notation [...].f=1 abbreviates them given, consecutive substitutions.

In the next section we argue why G has to be guarded. We now give a typical example of an

application of RSP.

Example 4.3.4. Consider the following guarded µCRL-specification:

E==. sort Bool
func T, F :--+ Bool
sort s
func c :--+ s

f,g: s--+ s
act a
proc p(x: S) = a· p(f(x)) +a

q(x:S) = a·q(g(x))+a

We want to prove

RSP I- p(x) = q(y) from E, { (x: S}, (y: S} }, 0.

Therefore we define a system G as follows:

G ~ n(x,y) = a·n(f(x),g(y))+a

so that G is guarded. To illustrate the substitution mechanism we first perform the substi­

tution G[> .. x, y. p(x)/n] step by step:

1. Substitution [.Xx, y . p(x)/n] (underlined) and denoting arguments in ,8-conversion for­

mat (doubly underlined):

.Xx,y.p(x) ~ u=a· >.x,y.p(x) f(x) g(y) +a.

4.4 Soundness 29

2. Apply ,8-conversion two times:

p(x) =a· p(f(x)) +a.

The reader may check that the substitution G[Ax, y. q(y)/n] yields the process-equation

q(y) = a·q(g(y))+a.

We derive:

RSP

(End example.)
/

4.4 Soundness

In this section we argue that the proof system presented here is sound, i.e. that all properties
derivable by the axioms and rules introduced thus far are valid in any appropriate semantical
setting (see definition 3.3.1). We can express this as

M I- </> from E, vd, Vp ===> A, :::::A F </> from E, vd, Vp

for M = BOOL+FACT+IND(C)+REC+ACP+SC+HIDE+REN+COND+SUM+RSP.
We first present the modules IND(C) and RSP in an axiomatic style to establish their valid­

ity apart from the soundness of the rules for natural deduction. This is more comprehensible,
and it is closer to the literature. We rephrase IND(C) as

IND(C):: -m-,.,-. --------------­

f\ (f\ (/\ O'(tf>)->tf>[fi;(z~i, ... ,z;f)/xi]))->tf>from E,VdUVz,Vp
i=l j=l uEI;;

where Vz is the union of all the sets { (z~ : S~} I 1 $ n $ lij }, and we rephrase RSP in a
similar way:

RSP=-m-------~----------------­

f\Gi[> .. x;. p;(x;)/n;]j=1 /\ Gi[Ax;. q;(x;)/n;]j=1 -> p1c(xk) = q1c(x1c) from E, Vd, Vp
i=l

for 1 $ k $ m. Note that these formulations are indeed logically equivalent. For the
module SUM we define SUM- by omitting the rule SUMll (the congruence rule for the sum
operator).

Let in the rest of this section E be a specification, A be a model of E and :::::A :2 tj- A be
a congruence of process terms that is representation insensitive. Let furthermore M contain
all the modules presented thus far, where IND and RSP are replaced by their axiomatic
counterparts, and SUM is replaced by SUM-. We now argue that all axioms in M are valid.

30 4 PROOF SYSTEM

As for the modules for data equivalence we have that the validity of BOOL follows from the
fact that A is boolean preserving and the validity of FACT follows immediately by definition
3.3.1. We give a short argument for the validity of the axiom IND(C): Let

m ki

P = /\ (/\ (/\ u(</>) - </>[/ij (z~i, ... , zff) / Xi]))
i=l j=l uEli;

and assume that A, ~A I= P from E, Vd U Vz, Vp and (for simplicity) that </> contains no
process variables. Further assume that any data variable occurring in </> is among data
variables xi, ... , xz (the induction takes place on the variables xi, ... , Xm for some m $ l).
It is sufficient to show that A, ~A I= </>[t1, ... , tz/xi, ... , xz] for arbitrary closed data terms ti
(the notation here expresses the simultaneous substitution of ti for Xi)· By C consisting of
constructor sets and A being a minimal algebra we may assume that t1, ... , tm only contain
constructor elements. We apply structural induction on the total complexity of the terms
t1, ... , tm.

1. None of ti, ... , 4n consist of a constructor function applied to terms of one of the sorts
of x1, ... xm. In this case each of the index sets Iii is empty, so all these conjunctions
are satisfied, and hence

m ki

A, ~A I= /\ (/\ </>[fij(z~i, ... , zff)/xi])
i=l j=l

by assumption. As ti, ... , tm are applications of one of the constructor functions, it
follows that </>[ti, ... , tzf x1, ... , xz] is valid in A, ~A •

2. It is not the case that 1 holds. Consider some ti of the form fii(si, ... , sz;;) such that
Iii is not empty. By assumption we have that

A, ~A I= p(/\ u(</>) - </>[/ij(z?, ... , zff)/xi]) (3)
uEl;;

where p is the data substitution that maps z:/ to Sn for n = 1 ... lij and Xk to tk for
k = 1 ... l. Since all the conjuncts p(u(</>)) (there is at least one such a conjunct) yield a
strictly lower total complexity than t1, ... , tm, we have by the induction hypothesis that
all these are valid. By (3) it then follows that </>[ti, ... , tzf x1, ... , xz] is valid in A, ~A .

With respect to the validity of the axioms in the modules ACP, SC, HIDE and REN for
process equivalence we refer to the standard literature [BW90, Gla90]. The validity of the
modules SUM- and COND follows trivially. For an idea of a soundness proof for RSP see
also [BW90]. That the guardedness of the system G in RSP is a necessary condition can
be easily seen from the case in which G is a system containing equations of the form n = n
or n(x1, ... , xm) = n(x1, ... , Xm): in this case we can prove any two processes terms identical
with our formulation of RSP.

We conclude with a general argument for the soundness of our proof system. We write
A, ~A F f for f a set of property formulas if A, ~A F 8 for each 8 E r, SO A, ~A F 0 by
default. As to deal with cancellation of open assumptions, we split the argument into three
steps.

4.4 Soundness

Step 1. We first prove a result concerning applications of the rule VAR:

cp from E, Vci, V~ f- cp from E, Vd, VP by using only VAR =>

(A, ~A F cp from E, Vci, v~ => A, ~A I= cp from E, vd, Vp)·

31

This follows easy by structural induction on c/J. In particular this implies that any substitution
instance of one of the axioms of M (over proper variable sets) is valid in A, ~A •

Step 2. Any deduction with conclusion cp from E, Vd, VP can be converted into a corre­
sponding deduction over uniform Vci 2 Vd and V~ 2 VP with conclusion cp from E, Vci, V~.
This can be done by using related open assumptions and 'derived' axioms over Vci, V~ (see

step 1). We use the notation M(Vci, V~) for the latter. We call such deductions uniform. So
uniform deductions do not contain applications of the rule VAR.

Step 3. Let Vd, Vp be fixed. We now only consider property formulas over E, Vd, Vp and
further omit this att;ribute. We write

M(Vd, Vp),r f- uniform c/J

iff there is a uniform deduction with all uncancelled hypotheses in r.
Now the proof system f-uniform can be proved sound in the standard way (cf. [Dal83]). To

be precise: let DS be the set of ground data substitutions over E, Vd, Vp and PS be the set
of ground process substitutions over E, Vd, Vp. Then

M (Vd, Vp) + r I-uniform c/J => Vu' E DS Vu E PS

(A, ~A f= u'(u(r)) =>A, ~A f= u'(u(cp)) from E, Vd, Vp)·

This can be proved by induction on the length of derivations. As an example we show this
for application of the rule SUMll.

Example 4.4.1. Assume

r
'D

p=q

E(d: D,p) = E(d: D,q)
SUMll

(sod occurs not free in any hypothesis in r). Now suppose

A, ~A f= o-'(u(f))

for some u E PS and u' EDS. We must show that

A, ~A f= u'(u(E(d: D,p))) = u'(u(E(d: D, q))).

This is the case if

(4)

(5)

(6)

with u" as u' and the fresh variable e is mapped to itself. Note that e is the only variable
that can occur free in u"(u(p[e/d])) and e711 (u(q[e/d])). Now 6 holds by definition iff for any
ground data term t of sort D it holds that

32 5 EXAMPLES

A, ~A f= a"(a(p[e/d]))[t/e] = a"(a(q[e/d]))[t/e]

which is by definition of a" and a the case iff

A, ~A f= a'(a(p)[t/d]) = a'(a(q)[t/d]).

Fix such a substitution [t/d]. As dis not free in r, it follows from 4 that

A, ~A F= a'(a(f)[t/d]).

Because a' o [t/d] EDS, it follows by induction that 7 holds, and hence also 5.

(End example.)

So taking r = 0 it follows that

/

M(Vd, Vp) I-uniform</> ==> A, ~A Ff/>.

(7)

Combination of this result with steps 1, 2 and the logical equivalence of M and M \ {SUMl 1}

finally yields ·

5 Examples

In this section we provide some examples of proofs in µCRL. As formal proofs (i.e. deductions)

of non-trivial facts are often hard to read, and may take in our case a larger space than

available on one page, we will not give these. Instead we only write down the essential steps

of a proof, trusting that the suggestion of a formal proof is sufficiently clear.

Furthermore we will often use the symbol = (possibly superscripted with some names) to

represent proofs in a linear style: in a context where E, Vd, Vp are fixed, we write

t=u

if this identity can be obtained by applications of reflexivity, symmetry or substitutivity

(see lemma 4.1.6.1+2+4), or via the rule SUB (so no variables that occur free in an open

assumption are instantiated). Moreover, based on the transitivity of =, proved in lemma

4.1.6.3, we write

to represent a proof with conclusion t1 = tn. Sometimes, when it is clear how to prove

t1 = t2 = ... = tn, we only write down ti = tn. For convenience we generally write names of

axioms or identities above the =.

5.1 Another application of RSP

5.1 Another application of RSP

Consider the following guarded specification:

E=. sort Boo!
func T,F :-Bool

..., : Bool - Bool
rew -i(T) = F

-i(F) = T

sort Nat
func 0 :- Nat

s: Nat - Nat
even : Nat .- Bool

va.r x: Nat
rew 7-ven(O) = T

even(s(x)) = -i(even(x))

act a: Nat
proc p(x: Nat)= a(even(x)) · p(s(x))

q(b: Bool) = a(b) · q(-i(b))

33

With RSP we can show that p(x) = q(even(x)) from E, {(x : Nat)}, 0. To that end we
define

G a:g n(x) = a(even(x)) · n(s(x))

so that E(G) is guarded. Because G[.h. p(x)/n] =. p(x) = a(even(x)) · p(s(x)) it is obvious
that

G[Ax. p(x)/n] from E, { (x: Nat)}, 0

is derivable by the axiom REC. In order to apply RSP we have to derive

G[Ax. q(even(x))/n] = q(even(x)) .= a(even(x)) · q(even(s(x))).

This can be done as follows:

------ REC
q(b) = a(b) · q(-i(b))

(VAR, SUB)

q(even(x)) = a(even(x)) · q(•(even(x)))

------- FACT
even(s(x)) = -i(even(x)) 4.1.3

-i(even(x)) = even(s(x))

q(even(x)) = a(even(x)) · q(even(s(x)))

Now RSP gives that p(x) = q(even(x)) from E, { (x: Nat)}, 0.

REPL

34 5 EXAMPLES

5.2 Proving some properties of bags

We give a specification of a process that behaves like a bag and prove some properties about

it. The process Bag can input data and it can output data that have been put in the bag

before. The bag itself is described as a data type Bag. It has the usual operations such

as 0, in, rem, test and con for the empty bag and the input, remove, test and concatenate

operators. The process uses the actions r and s to read and send data from and to the

environment. The specification BAG is defined in table 8, where we added names to its

axioms for easy reference. In this specification it is left open how the data are specified. We

only assume the presence of an equality function eq, which is partly specified. The other

functions in BAG are specified in a straightforward way. Note that it is not hard to check

that

C ";;! {0 :-+ Bag, in : D x Bag -+ Bag}

is a set of constructors of sort Bag, and that BAG is a guarded specification.
/

Lemma 5.2.1. Let Vd = { (d: D}, (b: Bag}, (c: Bag}}. We have the following useful facts

about bags:

1. IND(C) f- con(in(d,b),c) = con(b,in(d,c)) from BAG, Vd,0,

2. IND(C) f- con(b,c~= con(c,b) from BAG,Vd,0,

3. BOOL + IND(C) f-

rem(d, con(b, c)) <J test(d, b) I> 6 = con(rem(d, b), c) <J test(d, b) I> 6 from BAG, Vd, 0,

4. ACP + BOOL + COND +IND(C) f-

x <J test(d, con(b, c)) 1> 8 = x <J test(d, b) 1> 6 + x <J test(d, c) 1> 8 from BAG, Vd, {x }.

Proof.
Ad 1. We prove this by induction on the variable b, so we must prove 1 for both b = 0 and

b = in(e, b') over Vd U { (e : D}, (b' : Bag}}.
Suppose b = 0. Then

con(in(d, 0), c) B1:?7 in(d, con(0, c)) B~G6 in(d, c) B~G6 con(0, in(d, c)).

Suppose b = in(e, b') and assume that

Then

con(in(d, b'), c) = con(b', in(d, c)).

con(in(d, in(e, b')), c) B.~ .. m in(d, con(in(e, b'), c)) B~G7 in(d, in(e, con(b', c))

BAG3 in(e, in(d, con(b', c)) B~G7 in(e, con(in(d, b'), c))

~ in(e, con(b', in(d, c))) B~G7 con(in(e, b'), in(d, c)).

By IND(C) we conclude that 1 holds.

(8)

5.2 Proving some properties of bags

sort Bool
func T, F =- Bool

if : Bool x Bool x Bool - Bool
var b1, b2 : Bool
rew if (T, bi,~) = b1

if(F, b1, b2) = b2

sort D
func

eq : D x D - Bool

d:IY
rew

eq(d,d) = T

sort Bag
func 0 :- Bag

if: Bool x Bag x Bag - Bag
test: D x Bag - Bool
in, rem: D x Bag-Bag
con : Bag x Bag - Bag

var d,e: D
b,c: Bag

rew if(T, b, c) = b
if (F, b, c) = c
test(d, 0) = F
test(d, in(e, b)) = if(eq(d, e), T, test(d, b))
in(d, in(e, b)) = in(e, in(d, b))
rem(d, 0) = 0
rem(d, in(e, b)) = if(eq(d, e), b, in(e, rem(d, b)))
con(0, b) = b
con(in(d, b), c) = in(d, con(b, c))

act r,s: D
proc Bag(x: Bag)= E(d: D, r(d) · Bag(in(d, x))) +

E(d: D, s(d) · Bag(rem(d, x)) <l test(d, x) 1> 8)

Table 8: The specification BAG

IFl
IF2

EQ

IF3
IF4

BAGl
BAG2
BAG3
BAG4
BAGS
BAG6
BAG7

35

36 5 EXAMPLES

Ad 2. We prove statement 2 of the lemma again by induction on b.

Suppose b = 0. We first prove con(©, c) = con(c, 0) by induction on c.

Suppose c = 0. Then con(©, 0) = con(0, 0).
Suppose c = in(d, c') and assume

con(©, c') = con(c', 0). (9)

Then con(©, in(d, c')) B~6 in(d, c') ~ in(d, con(c', 0)) 8~7 con(in(d, c'), 0). By

IND(C) it follows that con(0, c) = con(c, 0).

Suppose b = in(d, b') and assume

Then

con(b', c) = con(c, b').

/

con(in(d, b'), c) BJ!97

5.2.1.1 =
in(d, con(b', c)) (~) in(d, con(c, b')) B1:,G7 con(in(d, c), b')

con(c, in(d, b')).

By IND(C) it follows that 2 holds.

Ad 3. We prove this by induction on the variable b.
0 0 BAGl .

Suppose b = . Then test(d,) = F. Hence we can derive 3.
Suppose b = in(e, b'). Assume that

rem(d, con(b', c)) <I test(d, b') 1> 6 = con(rem(d, b'), c) <I test(d, b') 1> 6.

Further assume that test(d, in(e, b')) = T (otherwise we are done). We have that

rem(d, con(in(e, b'), c)) BAG7 rem(d, in(e, con(b', c)))
BAG5

if (eq(d, e), con(b', c), in(e, rem(d, con(b', c)))).

(10)

(11)

(12)

Suppose eq(d, e) = T. Then (12) 1~3 con(b', c) IF3,~AGS con(rem(d, in(e, b')), c). So we con­

clude via -+I that in this case 3 holds.

Now suppose eq(d, e) =F. So

(12) 1~4 in(e, rem(d, con(b', c))) (13)

As eq(d, e) = F it holds that test(d, in(e, b')) BA~,IF2 test(d, b') which is equal to T by

assumption. By (11) we conclude that (13) = in(e, con(rem(d, b'), c)). Hence also in this

case 3 holds. By IND(C) it follows that 3 holds in general.

5.2 Proving some properties of bags

Ad 4. This proof is again carried out by induction on b.
Suppose b = 0. Then

x <J test(d, con(0, c)) I> 8 BAG~6,Al
8 + x <J test(d, c) I> 8

= x <J FI> 8 + x <J test(d, c) I> 8
Cond2

x <l test(d, 0) I> 8 + x <J test(d, c) I> 8.

Now suppose b = in(e, b'). Assume that

x <J test(d, con(b', c)) I> 8 = x <J test(d, b') 1> 8 + x <1 test(d, c) I> 8

This implies that

x <J test(d, con(in(e, b'), c)) I> 8 BAG7 x <J test(d, in(e, con(b', c))) I> 8

37

(14)

BAG2 x <J if(eq(d, e), T, test(d, con(b', c))) I> 8 (15)

Assume eq(d, e) = T /. Then

(15) IFl T I; Condl
X<l l>u = X

lemma 4.~1.2,Condl X <l TI> 0 + X <l test (d, C) I> 0

IFl,~AG2 x <J test(d, in(e, b')) I> 8 + x <J test(d, c) I> 8.

Now assume eq(d, e) =F.

(15) IF2
= x <J test(d, con(b', c)) I> 8

x <J test(d, b') I> 8 + x <J test(d, c) 1> 8
IF2,~AG2

x <J test(d, in(e, b')) I> 8 + x <J test(d, c) I> 8.

Using B2 we conclude that 4 holds for b = in(e, b'). By IND(C) it follows that 4 holds in
general. D

There is the following relation between the parallel operator and the concatenation operator
con on the data type Bag.

Theorem 5.2.2. Two bags in parallel behave as one bag with the contents concatenated.
Let Vd = { (b: Bag}, (c: Bag)}. Then

ACP + BOOL + COND +IND(C) + RSP + SUM 1-

Bag (b) II Bag(c) = Bag(con(b, c)) from BAG, vd, 0.

Proof. The main step in the proof is an application of RSP. First we define the system G
as follows:

def () G = n b,c = :E(d: D, r(d) · n(in(d, b), c))+
:E(d: D, r(d) · n(b, in(d, c)))+
:E(d: D, s(d) · n(rem(d, b), c) <l test(d, b) I> 8)+
:E(d: D, s(d) · n(b, rem(d, c)) <l test(d, c) 1> 8).

38 5· EXAMPLES

Observe that G is guarded.
We prove G[.Xb, c. Bag(b) II Bag(c)/n] from BAG, vd u { (d: D} }, 0 and

G[>,b, c. Bag(con(b, c))/n] from BAG, Vdu{ (d: D} }, 0. Then by RSP and VAR the theorem

follows in a straightforward way.
First we show G[.Xb, c. Bag(b) II Bag(c)/n]. This a straightforward expansion.

Bag(b) II Bag(c)
exp~sion

~(d: D, r(d) · (Bag(in(d, b)) II Bag(c)))+
~(d: D, r(d) · (Bag(b) II Bag(in(d, c))))+
~(d: D, s(d). (Bag(rem(d, b)) II Bag(c)) <l test(d, b) I> o)+
~(d: D, s(d) · (Bag(b) II Bag(rem(d, c))) <l test(d, c) I> t.5).

Now we show G[.Xb,c. Bag(con(b,c))/n]. Lemma 5.2.1 turns out to be handy.

Bag(con(b, c)) exp~sion ~(d: D, r(d) · Bag(in(d, con(b, c))))+

~(d: D, s(d) · Bag(rem(d, con(b, c))) <l test(d, con(b, c)) I> t.5)

/ Q) ~(d: D,r(d) · Bag(con(in(d,b),c)))+
~(d: D, r(d) ·Bag(con(b, in(d, c))))+
E(d: D, s(d) · Bag(rem(d, con(b, c))) <l test(d, b) I> 6)+
E(d : D, s(d) · Bag(rem(d, con(c, b))) <l test(d, c) l> t.5)

0 E(d: D,r(d) · Bag(con(in(d,b),c)))+
E(d: D, r(d) · Bag(con(b, irt(d, c))))+
E(d: D, s(d) · Bag(con(rem(d, b), c)) <l test(d, b) t> o)+
E(d: D, s(d) · Bag(con(b, rem(d, c))) <l test(d, c) t> t.5)

where (1) follows from A3, lemma 5.2.1.1+2+4 and SUMll, and (2) from lemma 5.2.1.3,

lemma 4.3.1.1 and SUMll. D

Corollary 5.2.3. Let Vd ={(a: Bag}, (b: Bag}, (c: Bag)}. Then

ACP + BOOL + COND +IND(C) + RSP + SUM I-

(Bag(a) II Bag(b)) II Bag(c) =Bag(a) II (Bag(b) II Bag(c)) from BAG, vd, 0.

Proof. By associativity of the concatenation operator con (easy) and theorem 5.2.2. D

This corollary is of interest as it is a non-closed instance of

(x II y) II z = x II (y II z),

an identity that is not derivable from ACP (but follows from ACP +SC).

We conclude with the following theorem, stating that the process specified by Bag(0)

satisfies a standard definition (see [BK84a, BW90], though there the sort D has to be finite).

Theorem 5.2.4. The process Bag(©) from BAG satisfies

M 1- Bag(0) = E(d: D, r(d) · (Bag(0) II s(d))) from BAG, 0, 0

provided M ;;2 {ACP,BOOL,COND,IND(C),RSP,SUM} is such that we can derive M 1-

eq(d,e) = T- d = e from BAG, {(d: D), (e: D)},0.

5.2 Proving some properties of bags 39

Proof. Let Vd = { (d : D), (e : D), (b : Bag)}. We first establish an intermediate result in
three steps:

1. test(e, b) = T ~ rem(e, in(d, b)) = in(d, rem(e, b)) from BAG, Vd, 0.
This can be proved by induction on the variable b (cf. the proof of lemma 5.2.1.3).

2. s(d) · Bag(b) + 6 <I eq(e, d) 1> (s(e) · Bag(rem(e, in(d, b))) <1 test(e, in(d, b)) I> 6) =
s(d) · Bag(b) + s(e) · Bag(in(d, rem(e, b))) <J test(e, b) 1> 6 from BAG, Vd, 0.
This can be proved by case distinction of the four possible values of eq(e, d) and
test(e, b). In case both these are true, we need the property of the equality function eq,
as we must derive that s(d) · Bag(b) = s(d) · Bag(b) + s(e) · Bag(in(d, rem(e, b))). In
the case that eq(e, d) = F and test(e, b) = T we need 1 above.

3. s(d) · Bag(b) + E(e: D, 6 <1eq(e,d)1> (s(e) · Bag(rem(e, in(d, b))) <1test(e, in(d, b)) 1>6)) =

s(d) · Bag(b) + ~e: D, s(e) · Bag(in(d, rem(e, b))) <1 test(e, b) 1> 6) from BAG, Vd, 0.
This follows from 2 by SUM.

With result 3 and RSP we can show that Bag(b) II s(d) = Bag(in(d, b)) from BAG, Vd, 0.
This identity plays a crucial role in the proof of the theorem. Let the system G be defined
as follows:

de/ (~ G = n d, b) = E(e: D, r(e) · n(d, in(e, b)))) +
E(e: D, s(e) · n(d, rem(e, b)) <1 test(e, b) I> 6) +
s(d) · Bag(b)

so that G is a guarded system. We can derive G[.Ad, b. Bag(b) II s(d)/n] by a straightforward
expansion. We give a derivation of G[.Ad, b. Bag(in(d, b))/n]:

Bag(in(d, b)) exp~sion

4.3.2 =

EQ,BAQ2+3+5

result3

E(e: D, r(e) · Bag(in(e, in(d, b)))) +
E(e: D, s(e) · Bag(rem(e, in(d, b))) <J test(e, in(d, b)) 1> 6)
E(e: D, r(e) · Bag(in(e, in(d, b)))) +
E(e: D, 6 <J eq(e, d)1>

(s(e) · Bag(rem(e, in(d, b))) <J test(e, in(d, b)) I> 6)) +
s(d) · Bag(rem(d, in(d, b))) <1 test(d, in(d, b)) I> 6

E(e: D, r(e) · Bag(in(d, in(e, b)))) +
E(e: D, 6 <1 eq(e, d)t>

(s(e) · Bag(rem(e, in(d, b))) <I test(e, in(d, b)) I> 6)) +
s(d) · Bag(b)
E(e: D, r(e) · Bag(in(d, in(e, b)))) +
E(e: D, s(e) · Bag(in(d, rem(e, b))) <I test(e, b) I> 6) +
s(d) · Bag(b)

By RSP it follows that Bag(b) II s(d) = Bag(in(d, b)), and hence

r(d) · (Bag(0) II s(d)) = r(d) · Bag(in(d, 0)) from BAG, Vi, 0.

40 REFERENCES

By SUMll and VAR it then follows that

E(d: D, r(d) · (Bag(0) 11 s(d))) = E(d: D, r(d) · Bag(in(d, 0))) from BAG, 0, 0

and as E(d: D, r(d) · Bag(in(d, 0))) = Bag(0) from BAG, 0, 0 this concludes the proof. D

References

[Apt81]

[Apt84]

[BB90]

[BK84a]

[BK84bj

[BW90]

[CCI87]

[CM88]

[Dal83]

[DS90]

[EM85]

[Gla90]

[GP90]

[GP91]

K.R. Apt. Ten years of Hoare's logic, a survey, part I. A CM Transactions on

Programming Languages and Systems, 3(4):431-483, 1981.

K.R. Apt. Ten years of Hoare's logic, a survey, part II: Nondeterminism. Theo­

retical Computer Science, 28:83-109, 1984.

J.C.M. Baeten and J.A. Bergstra. Process algebra with signals and conditions.

Report P9008, University of Amsterdam, Amsterdam, 1990. To appear in Pro­

ceedings NiVfO AS! Summer School, Marktoberdorf 1990, LNCS.

J.A. Bergstra and J.W. Klop. The algebra of recursively defined processes and
the algebra of regular processes. In J. Paredaens, editor, Proceedings nth !GALP,

Antwerp, volume 172 of Lecture Notes in Computer Science, pages 82-95. Springer­

Verlag, 1984.

J .A. Bergstra and J .W. Klop. Process algebra for synchronous communication.

Information and Computation, 60(1/3):109-137, 1984.

J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theo­

retical Computer Science 18. Cambridge University Press, 1990.

CCITT Working Party X/l. Recommendation Z.100 (SDL), 1987.

KM. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, 1988.

D. van Dalen. Logic and Structure. Springer-Verlag, 1983.

E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics,

volume 14 of Texts and Monographs in Computer Science. Springer-Verlag, 1990.

H. Ehrig and B. Mahr. Fundamentals of algebraic specifications I, volume 6 of

EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1985.

R.J. van Glabbeek. Comparative Concurrency Semantics and Refinement of Ac­

tions. PhD thesis, Free University, Amsterdam, 1990.

J.F. Groote and A. Ponse. The syntax and semantics of µCRL. Report CS-R9076,

CWI, Amsterdam, 1990.

J .F. Groote and A. Ponse. µCRL: A base for analysing processes with data. In

E. Best and G. Rozenberg, editors, Proceedings 3rd Workshop on Concurrency

and Compositionality, Goslar, GMD-Studien Nr. 191, pages 125-130. Universitat

Hildesheim, 1991.

REFERENCES 41

[GTL89] J-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge Tracts in
Theoretical Computer Science 7. Cambridge University Press, 1989.

[GV89] J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisimu­
lation as a congruence (extended abstract). In G. Ausiello, M. Dezani-Ciancaglini,
and S. Ronchi Della Rocca, editors, Proceedings 15th !GALP, Stresa, volume 372
of Lecture Notes in Computer Science, pages 423-438. Springer-Verlag, 1989. Full
version to appear in Information and Computation.

[HHJ+87] C.A.R. Hoare, l.J. Hayes, He Jifeng, C.C. Morgan, A.W. Roscoe, J.W. Sanders,
I.H. Sorensen, J.M. Spivey, and B.A. Sufrin. Laws of programming. Communica­
tions of the ACM, 30(8):672-686, August 1987.

[HI90] M. Hennessy and A. Ing6lfsd6ttir. A theory of communicating processes with
value-passing. In M.S. Paterson, editor, Proceedings 17th !GALP, Warwick, volume
443 of Lecture Notes in Computer Science, pages 209-219. Springer-Verlag, 1990.

/
(Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International,

Englewood Cliffs, 1985.

[IS087) ISO. Information processing systems - open systems interconnection - LOTOS
- a formal description technique based on the temporal ordering of observational
behaviour IS07TC97 /SC21/N DIS8807, 1987.

[LT89] N.A. Lynch and M.R. Tuttle. An introduction to input/output automata. CW!
Quarterly, 2(3):219-246, September 1989.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall International, Engle­
wood Cliffs, 1989.

[MPW89] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part I+ II.
Technical Report ECS-LFCS-89-85 + ECS-LFCS-89-86, Laboratory for Founda­
tions of Computer Science, Computer Science Department, Edinburgh University,
1989. To appear in Information and Computation.

[MV90] S. Mauw and G.J. Veltink. A process specification formalism. Fundamenta Infor­
maticae, XIIl:85-139, 1990.

[Par81] D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, 5th GI Conference, volume 104 of Lecture Notes in Computer Science, pages
167-183. Springer-Verlag, 1981.

[Ss90] SPECS-semantics. Definition of MR and CRL Version 2.1, 1990.

[Sza69] M.E. Szabo. The Collected Papers of Gerhard Gentzen. North-Holland, 1969.

[TD88] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics, An Introduction
(vol I). North-Holland, 1988.

/

