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Abstract 
A proof theory for the specification language µCRL (micro CRL) is proposed. µCRL consists of 
process algebra extended with abstract data types. The proof theory is meant to formalize the 
interaction between processes and data. Furthermore it provideo the means to prove properties 
about these in a precise way. The proof theory has been designed such that automatic proof 
checking is feasible. 

A simple language is defined in which basic properties of processes and of data can be ex­
pressed. A proof sy~m is presented for this property language, comprising a rule for induction, 
the Recursive Specification Principle, and process algebra axioms. The proof theory is illustrated 
with small examples, and a case study about a bag. 
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1 Introduction 

In this paper we provide the simple, algebraic specification language µCRL with a proof 
theory. The acronym µCRL stands for micro Common Representation Language [GP90, 
GP91]. This language has been developed under the assumption that an extensive and 
mathematically precise study of the basic constructs of specification languages will yield 
fundamental insights that are essential to an analytical approach of much richer (and more 
complicated) specification languages such as SDL [CCI87], LOTOS [IS087], PSF [MV90] and 
CRL [Ss90]. 

The language µCRL offers a uniform framework for the specification of data and processes. 
Data is specified by equational specifications: one can declare sorts and functions working 
upon these sorts, and describe the meaning of these functions by equational axioms. Processes 
are described in the style of CCS [Mil89], CSP [Hoa85] or ACP [BK84b, BW90], where the 
particular process syntax has been taken from ACP. In section 2 we give a short overview of 
the syntax and semantics of µCRL. 
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2 1 INTRODUCTION 

The proof theory serves two purposes. First it allows to formalize the interaction between 
processes and data. Particularly, we can express how the correctness of a protocol depends on 
characteristics of data. Furthermore it reveals typical characteristics of the data/process re­
lationship. The conditional (or if-then-else) construct is characterised by two simple axioms, 
relating the standard sort of the Booleans to processes. The axioms for the communication 
merge reflect that actions may be parameterised with data. The data dependency of pro­
cesses is captured by an adaptation of the process algebra rule RSP (Recursive Specification 
Principle). The last place where data and processes meet is the generalised sum construct. 
It turns out to be a difficult construct with the flavour of universal quantification. 

A second purpose is to enable precise proofs of the correctness of concurrent systems and 
programs. It is well-known that even the slightest error in a program may have serious 
consequences. Generally advocated techniques such as formal specification and systematic 
testing reduce the number of mistakes, but they do in no way guarantee overall correctness. 
We present a proof system that allows for automatic proof checking. The reason for this is 
that even formal proofs are error prone. If proofs are automatically checked, one may expect 
a considerably higher degree of correctness. We believe that this is one of the few ways, if 
not the only one, to deliver error free programmed systems. 

In this paper we first define a language in which we can express simple properties of 
specifications. These properties consist of identities between data or process terms, linked 
together with propositional connectives ...,, V, /\,-+ and +-+ •. We define a proof system in a 
natural deduction format because this is close to intuitive reasoning. It contains so called 
'logical' axioms and rules, suitable to derive the fundamental properties induced by = and 
the propositional connectives. Next we introduce 'modules', i.e. sets of axioms and rules, 
expressing basic identities about data or processes. For instance, the module BOOL contains 
two axioms. One expressing that true and false are not equal and another saying that true 
and false represent the only Booleans. Another module about data contains an induction rule 
for many-sorted abstract data specifications. For processes we incorporate adapted versions 
of standard process algebra modules [BW90). 

We believe that µCRL and its proof theory do not have their counterparts in existing for­
malisms in this area. Among these formalisms we find Hoare logics [Apt81, Apt84), programs 
as predicate transformers [DS90), UNITY [CM88], I/O automata [LT89], process algebra 
[Hoa85, Mil89, BW90]. The first three approaches are basically about state transformations 
and do not concern observable behaviour. As these approaches are essentially about assigning 
values to variables, the corresponding proof systems also deal with data. 

I/O automata are suitable for modelling concurrent and distributed systems, the compo­
nents of which are (data parameterised) automata describing explicitly the interaction with 
their environment. Correctness is proved by assigning properties to the states, and using 
invariance techniques. Contrary to process algebras, I/O automata do not seem to be well­
suited for algebraic manipulation. 

Traditionally, process algebras do not concentrate on data. There is a large body of theory 
to prove preorders and equivalences based on observable behaviour. The language µCRL and 
the proof theory described here are also in this style, but incorporate an explicit notion of 
data. Two other extensions of process algebra with data are mobile processes [MPW89] and 
the language VPL [HI90]. Mobile processes incorporate data by describing it in a process like 
way. Data is modelled by pointer structures that can dynamically change. This approach 
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differs structurally from µCRL. The work of [HI90] is in the same vein as µCRL as far as 
the data in processes is concerned. It is not determined how data itself should be specified. 

Acknowledgements. We thank Jos Baeten, Jan Bergstra, Javier Blanco, Henri Korver, 
Karst Koymans and Piet Rodenburg for helpful comments. 
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This section provides a compact introduction to the language µCRL. For the formal definition 
of the syntax and semantics of µCRL we refer to [GP90]. 

2.1 The syntax of µCRL. 

First, we assume the existence of a set N of names that are used to denote sorts, variables, 
functions, processes and labels of actions. The names in N are words over an alphabet not 
containing 

1-, +, 11. lL' I, <I, t:>-, ·, 8, T, a, p, :E, .;, x' --+, :, =, ), (, }, {, ,, a space and a newline. 

The space and the newline serve as separators between names and are used for the layout of 
specifications. The other symbols have special functions. Moreover, N does not contain the 
reserved keywords sort, proc, var, act, func, comm, rew and from. 

Data types are specified as the standard abstract data types [EM85], using sorts, functions 
and axioms. Sorts are declared using the keyword sort and functions are declared using the 
keyword func. Axioms are declared using the keyword rew, referring to the possibility to 
use rewriting technology for evaluation of abstract data types. The variables that are used 
in the axioms must be declared directly before the axioms. Their scope only extends to the 
next single rew declaration. 
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As an example we define the Booleans. The Booleans must be included in each µCRL 
specification. 

sort Bool 
func T, F :-+ Bool 

The following example shows how natural numbers with a zero, a successor, addition and 
multiplication can be declared. 

Example 2.1.1. 

sort Nat 
func 0 :-+ Nat 

S: Nat-+ Nat 
add, times: Nat x Nat-+ Nat 

var x,y: Nat 
rew add(X:O) = x 

add(x, S(y)) = S( add(x, y)) 
times(x, 0) = 0 
times(x, S(y)) = add(x, times(x, y)) 

(End example.) 

Processes may contain actions representing elementary activities that can be performed. 
These actions must be explicitly declared using the keyword act. Actions may be parame­
terised by data. In the following lines an action declaration is displayed. 

act a, b, c 
a,d: Nat 

Here parameterless actions a, b, c and actions a, d depending on natural numbers are declared. 
Note that overloading is allowed, as long as this cannot lead to confusion (see [GP90] for 
details). In this case the actions a and a(n) (with n of sort Nat) are different actions. 

In µCRL parallel processes communicate via synchronisation of actions. A communication 
specification, declared using the keyword comm, prescribes which actions may synchronise 
on the level of the labels of actions. For instance, in 

comm in I out = com 

each action in(t1, ... , tk) can communicate with out(ti, ... , t~) to com(t1, ... , tk) provided k = m 
and ti and t~ denote the same data element for i = 1, ... , k. 

Processes are declared using the keyword proc. An example is 

proc counter(x: Nat)= p 
buffer= q 

In the first line a counter is declared. It is a process with one parameter x of sort Nat. The 
parameter x may be used in the process term p that specifies its behaviour. In the second 
line a parameterless process buffer is declared. Its behaviour is given by the process term q. 
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Definition 2.1.2 (Process terms). An expression p is called a process term iff p has the 
following syntax: 

p ::= (p+p) I (p·p) I (PllP) I (PtlP) I (pip) I (p<1t1>p) I E(d:D,p) I 
8({ni, ... ,nm},p) I r({n1, ... ,nm},p) I p({n1-+nL ... ,nm-+n~},p) I 
6 I T I n I n(ti, ... , tm)· 

where then, ni, n~ are names, the t, ti stand for data terms, dis a variable and D denotes a 
sort name. D 

Most operators stem from ACP [BW90). Only the conditional construct p<1t1>p is taken from 
[HHJ+s7] (see also [BB90]). In process terms we omit brackets according to the convention 
that · binds strongest, the conditional construct binds stronger than the parallel operators 
which in turn bind stronger than+. 

We give a short description of the behaviour represented by closed process terms. 
/ 

• The + denotes the alternative composition. The process p + q has the same behaviour 
as the argument that performs the first step. 

• The · represents the sequential composition operator. The process p · q behaves as p, 
and in case p terminates, it continues to behave as q . . 

• The merge (or parallel composition operator) II denotes the interleaving of its argu-
ments, except that actions from both arguments may communicate if explicitly allowed 
in a communication specification. 

• The left merge tL and the communication merge I are auxiliary operators, to be used 
for analytical purposes. The left merge is as the merge, except that the first step of 
p tL q must originate from p. The communication merge I is also as the merge, except 
that p I q has a communication action between p and q as its first step. 

• The conditional construct p <1 t I> q is an alternative way to write an if - then ~ else­
expression and is introduced by HOARE cs. [HHJ+87). The data term t is supposed to 
be of the standard sort of the Booleans (Bool). The process p <It I> q behaves as p if the 
data term t evaluates to true ( T) and it behaves as q if t evaluates to false ( F). 

• The sum operator is used to declare· a variable d of a specific sort D for use in a process 
term p. The scope of the variable d is exactly the process term mentioned in the sum 
operator. The behaviour associated to E(d: D,p) is a choice between the instantiations 
of the process term p with values of the sort of the variable d. 

• The encapsulation operator ( 8) and the hiding operator ( r) are used to rename the 
action labels n1, ... , nm to 6, resp. r. The renaming operator p renames action labels 
according to the scheme in its first argument. 

• The constants 8 and r describe two basic types of behaviour. The constant 8 describes 
the process that cannot do anything, in particular it cannot terminate. The constant 
r can be used to represent internal activity that cannot be observed. 
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e The terms n and n(ti, ... , tm) represent either process instantiations or actions: n refers 
to a declared process (or to an action) without parameters and n(t1 , .•• , tm) contains 
the arguments (i.e. the data terms) of the identifier. 

A complete µCRL-specification consists of an interleaving of sort, function, axiom, action, 
communication and process declarations. We provide no modular structuring mechanism. 
Structuring and organising a specification is up to the specifier. As an example we give a 
specification of a data transfer process TR. Data elements of sort Dare transferred from in 
to out. 

sort Bool 
func T, F :-+ Bool 
sort D 
func dl, d2, d3 :-+ D 
act in, out : D 
proc TR =/E(d: D, in(x) · out(x) · TR) 

2.2 Static, algebraic and operational semantics. 

This section explains how the semantics of µCRL is organised. First we shortly describe the 
'static' semantics of a specification, i.e. the circumstances under which it is correctly defined. 
This is the case if all objects that are used are declared exactly once and are used such that the 
sorts are correct. Furthermore it must be the case that action labels and process names cannot 
be mixed up and that constant and variable names cannot be confused. Finally, it should 
be the case that communications are specified in a functional way and that the rewrite rules 
satisfy the (usual) condition that the variables used at the right-hand side of an equality sign 
must also occur at the left-hand side. Because all these properties can be statically decided, 
a specification that is internally consistent is called SSC (Statically Semantically Correct). 

We say that a µCRL-specification is well-formed if it is SSC, it has no empty sorts (which 
can easily be checked), the communication function is associative and the Booleans are de­
fined. In [GP90] the concepts 'SSC' and 'well-formed' are defined in a precise manner. 

For any well-formed specification E its algebraic semantics is defined as follows. If E is the 
signature of the data part of E, i.e. all function symbols that are declared in E, then any 
minimal E-algebra that satisfies the axioms in E and that contains exactly two elements of 
sort Bool is considered as a model of E. We call this latter property boolean preserving, and 
requiring this property guarantees that 'the conditional construct behaves as expected. 

Based on this algebraic semantics a structured operational semantics for processes specified 
by a well-formed specification E has been defined in the standard way [GP90, GV89]. The 
idea is that, given some model A of E, any closed process term yields a labelled transition 
system of which the labels can be instantiated with (a preferred representation of) closed data 
terms. The notation p tt AQ then expresses that the transition systems associated with the 
process terms p and q are bisimilar [Par81]. This relation is a congruence w.r.t. the operators 
of µCRL, and it is the basic equality relation on process terms that we consider. However, 
we leave it open to consider other (coarser) congruences, provided these are representation 
insensitive, i.e. the equivalence of process terms is invariant under the actual representation 
of data terms. 
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3 Syntax and semantics of property formulas 

In this section we introduce 'property formulas' with which we can express properties that a 
specification may have. We provide their syntax and semantics and we introduce variables 
and substitutions. In the sequel of this paper we adopt the following conventions: 

1. We will only consider µCRL-specifications that are well-formed, and further call these 
simply 'specifications'. 

2. Concerning the names declared in a specification E: a name n is a function from E if 
E contains a function declaration of the form n : S1 x ... x Sm -l> S, where Si, S are 
names of sorts declared in E. If m = 0 we call n a constant. A name n is an action 
from E if it is declared as such, it is a process if E contains a process declaration n = p. 

3.1 Variables and substitutions 

In order to express general properties that a specification may have we introduce variables. 
We further introduce substitutions to extract the precise instances we are interested in. As 
properties always refer to a particular specification and as we are dealing with names in a 
very precise and restrictive way, we define both these concepts relative to the signature of a 
specification. 

Definition 3.1.1 (Data and process variables). Let E be a specification. A finite set Vd 
containing elements of the form (d : D} with d some name is called a set of data variables 
over E iff 

• the name D is declared as a sort in E, 

• d is not a constant, or an unparameterised action or process from E, 

• for each sort name D' ';:/: D of E it holds that (d: D'} f/. Vd. 

If we are not interested in the sort of d, we just say that dis 'a variable from Vd'· 
Given a set Vd of data variables over E, a finite set VP of names is called a set of process 

variables over E and Vd iff non of its elements occur as a variable in Vd. D 

We generally use triples E, Vd, Vp, meaning that Eis a (well-formed) specification, Vd is a set 
of data variables over E, and VP is a set of process variables over E and Vd. Given E, Vd, VP, 
we define many sorted terms that may contain variables. We distinguish two kinds of such 
terms: data terms and process terms. 

Definition 3.1.2 (Data terms and process terms). A data term over E, Vd, VP is either a 
constant from E, a variable from Vd, or an application of a function from E to data terms 
over E, Vd, Vp of the appropriate sort. A data term is called closed iff it does not contain any 
variables from Vd. Note that for data terms the actual contents of Vd is not relevant. 

A process term over E, Vd, VP is defined inductively over the syntax given in definition 2.1.2: 

• po q with o E { +,·,II, !l, I, <3t1>} and t a data term over E, Vd, Vp of sort Bool, is a 
process term over E, Vd, VP if both p and q are, 
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• E(d: D,p) is a process term over E, Vd, Vp if p is a process term over 

E, (Vd \ {(d: n} In a name}) U {(d: D}}, Vp \ {d}, 

• C( {ni, ... , nm},p) with C E {8, T} is a process term over E, Vd, VP if p is, and the ni are 
labels of actions from E, 

• p({n1 - n1, ... ,nm - n~},p) is a process term over E, Vd, VP if p is, and the ni are 
labels of actions from E such that if ni is an action from E then so is ni, and if 
ni : S1 x ... x Sk is an action declaration in Ethen so is ni : S1 x ... x Sk, 

• {J and T are process terms over E, vd, Vp, 

• n is a process term over E, Vd, Vp if n is an action or a process from E or if n E Vp, 

• n(t1, ... , tm) is a process term over E, Vd, Vp if either E contains an action declaration of 
the form n : S~x ... x Sm or a process declaration of the form n( x1 : S1, ... , Xm : Sm) = q 
and any ti is a data term over E, Vd, Vp of sort Si. 

A process term is called closed iff it does not contain any variables from Vd or VP. D 

Let p be a process term over E, Vd, VP. We say that an occurrence of a name x is free in p iff 
x is a variable from Ver-or VP and this occurrence of x is not in the scope of E(x: D, -). 

Next we introduce 'substitutions'. We distinguish data substitutions and process substi­
tutions. This simplifies the definition of substitutions on process terms containing the sum 
operator E. 

Definition 3.1.3. A data substitution er over E, Vd, VP is a mapping from the elements of Vd 
to the data terms over E, Vd, Vp that preserves sorts. We say that er is ground iff its range only 
contains closed data terms. Data substitutions are extended to the data terms over E, Vd, VP 
in the usual way: 

er( d) ";;! er( (d : D}) if (d : D} E Vd, 

er ( c) ";;! c if c is a constant from E, 

er(f(ti, ... , tm)) ";;! J(er(t1), ... , er(tm)). 

D 

Definition 3.1.4. A process substitution a over E, Vd, VP is a mapping er : VP__, P, where 'P 
is the set of process terms over E, Vd, VP. We say that er is ground iff its range only contains 
closed process terms. Process substitutions are extended to the data terms over E, Vd, VP by 

er(t) ";;! t 

for any data term t over E, vd, VP. D 

We also extend both data and process substitutions to process terms. This allows a uniform 
definition of proof rules. We define this extension simultaneously: 
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Definition 3.1.5 (Substitutions on process terms). Let P be the set of process terms over 
E, Vd, VP and let u be either a data substitution or a process substitution over E, Vd, VP. We 
extend u to P as follows (the only non-trivial cases are the sum operator :E and process 
variables): 

• u(p o q) c1.,;f u(p) o u(q) for o E { +,·,II, lL, I}, 
u(p ~ t r> q) c1.,;f u(p) ~ u(t) r> u(q), 

u( C( nl, p)) c1.,;f C( nl, u(p)) for C E { 8, r, p} and nl being the first argument of C, 

u(8) c1.,;f 8 and a(r) c1.,;f r, 

u(n(ti, ... , tm)) c1.,;f n(a(t1), ... , u(tm)). 

e For a process term :E(d: D,p) E P let e be some name not in Vd or Vp such that p is a 
process term over 

/ 
E, (Vd \ {(d: n} In a name}) U {(d: D}, (e: D}}, VP\ {d}. 

So p[e /cl] (notation is explained after this definition) is a term over E, Vd U { ( e : D}}, VP. 
We define 

u(:E(d: D,p)' c1.,;f :E(e: D,a'(p[e/d])) 

where 

- if u is a data substitution, u' is the data substitution over E, Vd U { (e : D} }, VP 
defined by 

'(( S}) de/ { e if x = e, 
O" x : = u( (x : S}) otherwise, 

- in the case that u is a process substitution, u' is the process substitution over 
E, Vd U { (e: D}}, Vp equal to u. 

e For a name n E P we define 

u(n) c1.,;f { u(n) if O" is~ pro~ess substitution and n E VP, 
n otherwise. 

D 

If u is a substitution over E, Vd, VP that maps variables x1, ... ,xm to terms ti, ... , tm, respec­
tively, and that is the identity for any other variable, we use the abbreviation 

u[t1, ... ,tm/x1, ... ,xm] c1.,;f u(u) 

for any term u over E, vd, Vp. Furthermore, given E, vd, Vp we sometimes write p(xi, .. ., Xm) 

for a process term p that possibly contains the data variables x1, ... , Xm from Vd. In this case 
we write p(t1, ... , tm) for p[ti, ... , tm/x1, ... ,xmJ, the simultaneous substitution of ti for Xi· 
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3.2 Syntax of property formulas 

In this section we define 'property formulas' to express properties of specifications. A property 

formula consists of two parts. The first part is the property, which is either an identity 

between terms, or an application of the operators :F ("Falsum"), •, V, /\, ->, ~ known from 

propositional logic (see eg. [Dal83]) between such identities. The second part of a property 

formula contains the names of the specification and variable sets. 

Definition 3.2.1. A property over E, Vd, VP is defined inductively in the following way: 

• :Fis a property over E, Vd, Vp, 

e t = u is a property over E, Vd, VP iff 

- either t and u are data terms over E, Vd, VP that are of the same sort, 

- or t and u are process terms over E, Vd, VP, 

e •(<P) is a proferty over E, Vd, VP iff <Pisa property over E, Vd, Vp, 

o (<Po'l/J) with o E {v, /\,->,~}is a property over E, Vd, Vp iff both <P and 'If; are properties 

over E, Vd, VP. 

D 

Example 3.2.2. Let Ebe the specification defined in example 2.1.1. Then 

(times(x,x) = x -> (x = 0 V x = S(O))) 

is a property over E, { (x: Nat)}, 0. (End example.) 

In properties we omit brackets according to the convention that = binds stronger than any 

of the logical operators •, V, A,___.,~, that -, binds stronger than any of the logical binary 

operators, and that V, /\bind stronger than___.,~. 
For notational convenience we extend the domain of substitutions to properties. 

Definition 3.2.3 (Substitutions on properties). Let a be either a data substitution or a 

process substitution over E, Ycl, VP. We extend a to the properties over E, Vd, VP as follows: 

a(:F) ~ :F, 

O"(t = u) ~ a(t) = a(u), 

a(•<P) ~ •(a( <P) ), 

a(<Po'l/J) ~ a(<P) o a('lf;) where o E {v, /\, ___., ~ }. 

D 

Now a 'property formula' simply consist of a property that has as an attribute the originating 

specification and variable sets: 

Definition 3.2.4. A property-formula is an expression of the form 
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</> from E, Vd, Vp 

where</> is a property over E, yd, Vp. A property formula</> from E, Vd, VP is called closed iff 
</>contains neither variables from Vd, nor process variables from Vp. D 

Note that if</> from E, Vd, VP is a property formula and u is a (process or data) substitution 
over E, Vd, Vp, then u(</>) from E, Vd, Vp is also a property formula. 

We have introduced more logical symbols than strictly necessary for expressing the prop­
erties we are interested in. We regard the symbols --+ and F as basic, and use the other 
symbols as abbreviations: 

Definition 3.2.5. The logical symbols -., V, A,+-+ are defined as follows: 

D 

3.3 Semantics of property formulas 

In this section we define whenever a property-formula </>from E, Vd, VP is valid in A, ;;:::.A, 

notation 

A, ~A I=</> from E, Vd, Vp 

(see for A and ;;::,A the definition below). We use the notation 

A, ~A ~ </> from E, Vd, Vp 

if it is not the case that A, ;;::,A I=</> from E, Vd, Vp. 

Definition 3.3.1 (Interpretation of property formulas). Let E be a specification and A be a 
minimal, boolean preserving algebra that is a model of E (see [GP90]). Let furthermore ~A 
be a congruence relation on the closed process terms over E such that ~A ~ ':::::?"A and such 
that ~A is representation insensitive. 

We define the validity of property formulas in two steps: 

1. The validity of a closed property formula </>from E, Vd, Vp in A, ~A is defined by 
induction on the syntax of the property </>: 

A, ~A ~ F from E, Vd, Vp, 

A, ~A I= t = u from E, Vd, Vp for data terms t and u iff A I= t = u, 

A, ~A I= p = q from E, vd, Vp for process terms p and q iff p ~A q, 

A, ~A I=</>--+ 'I/; from E, Vd, Vp iff 

A, ~A ~ </> from E, Vd, Vp or A, ~A I= 'I/; from E, Vd, Vp· 
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2. A property formula</> from E, Vd, Vp is valid in A, :::::A iff 

for any ground process substitution u over E, Vd, Vp and any ground data substitution 
u' over E, Vd, VP. 

0 

Note that in clause 2 of this definition it holds that u'(u(</>)) = u(u'(<P)) because u is a ground 
process substitution. 

4 Proof system 

We give a proof system in a 'natural deduction' format in which we can derive property 
formulas. Natural deduction provides rules that agree well with informal reasoning, and is 
well-known as a formal system of logic. Furthermore the correspondence with proof systems 
suitable for automatic reasoning is also widely studied [GTL89]. Our set-up is based on 
[TD88]; other references on natural deduction are eg. [Dal83, Sza69]. 

Deductions can be constructed according to three types of rules: 
~ 

1. 'Logical' rules, defining the relations between property formulas that depend on the 
meaning of the logical symbols, the equality relation and substitution. 

2. Rules by which identities between data terms depending on the particular contents of 
a µCRL specification can be derived. 

3. Rules by which identities between process terms depending on the particular contents 
of a µCRL specification can be derived. 

In the next section we introduce the logical rules of our proof system, and present a formal 
definition of deductions. 

4.1 Logical deductions 

A deduction can be seen as a tree of which each node is labelled with a property formula 
(and possibly the name of a rule which has been applied to obtain the property formula). 
The leaves of the tree are the assumptions (also called hypotheses) of the deduction. We use 
symbols V, possibly subscripted, for arbitrary deductions. We write 

v 
'l/J from E, Vd, VP 

to indicate that 'D has conclusion 

'l/J from E, Vd, VP 

(so the occurrence 'l/J from E, Vd, VP is part of 'D itself). We use the notation 
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for a possibly empty set of occurrences of a property formula <P from E, Vd, Vp in a deduction, 
thus 

is a deduction 1J with a set [<P from E, Vd, Vp] of assumptions in 1J. As a rule we assume that 

[<P from E, Vd, Vp] 

refers to all assumptions of the form <P from E, Vd, Vp in 1J. 

We define logical deductions in a recursive way (recall that -.<jJ abbreviates <P - :F). 

Definition 4.1.1 (Logical deductions). 
/ 

e The single-node tree with as label a property formula </J from E, Vd, Vp is a deduction 
from the open assumption <P from E, Vd, Vp. There are no cancelled assumptions. 

e Let 1J1, 1J2 be deductions. A new deduction can be constructed according to the rules 
in table 1. These rules are subject to the following restrictions: 

1. In applications of the introduction rule -I and the rule RAA (Reductio Ad Ab­
surdum) all open assumptions of the form indicated by [ ... ] are cancelled. 

2. In applications of -1>!, RAA, the reflexivity rule REFL, the variable rule VAR and 
the substitution rule SUB the conclusion should be a property formula. 

3. In applications of SUB the variable x may not be free in any (uncancelled) hy­
pothesis of 1J1 . 

4. Each application of VAR is restricted to one of the following two cases: 

(a) Vd ~ VJ or VJ ~ Vd, and Vp = V~, 
(b) Vp ~ V~ or V~ ~ Vp, and Vd =VJ. 

D 

The reflexivity rule REFL has an empty premiss, and is therefore cal.led an 'axiom'. The rule 
VAR is a structural rule that allows (restricted) replacement of variable sets. In the next 
section we introduce axioms that specify the minimal variable sets involved. With VAR we 
can obtain variable sets that are suitable for further derivations. 

In most deductions the form of the property formulas itself already determines which rule 
is being applied. Therefore we often omit the names of the rules in deductions. A method 
that helps to grasp the structure of a given deduction is to number the occurrences of as­
sumptions which are being cancelled, and to repeat the number near the node where the 
cancellation takes place. Assumptions which are cancelled simultaneously may be given the 
same number. However, the numbering of discharged assumptions is redundant: by definition 
any assumption is cancelled at the earliest opportunity. We provide some examples of typical 
deductions. 
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[tf> from E, Vd, Vp) 
V1 

'l/J from E, Vd, Vp 
tf>-+ 'l/J from E, Vd, lip 

[..,q, from E, Vd, lip) 
V1 

V1 V2 
</> from E, Vd, Vp tf> -+ 'l/J from E, Vd, Vp 

'l/J from E, Vd, Vp 

:F from E, Vd, Vp 
tf> from E, Vd, Vp 

RAA REFL 
t = t from E, Vd, Vp 

V1 / V2 
tf>[t/x] from E, Vd, lip t = u from E, Vd, Vp 

tf>[u/x] from E, Vd, lip 

V1 

SUB tf> from E, Vd, Vp 
tf>(t/x] from E, Vd, Vp 

REPL 

V1 
</> from E, Vd, Vp 
tf> from E, VJ, V~ 

Table 1: Rules for logical deductions 

VAR 

Example 4.1.2. Let tf> from E, Vd, lip and 'l/J from E, Vd, Vp be two property formulas. We 
derive 

-+I, [1] 
tf>-+ ('l/J-+ tf>) from E, Vd, Vp 

Here the (1) in '-+I, [1)' indicates that the assumption tf> from E, Vd, Vp (l) is cancelled. (End 
example.) 

Example 4.1.3. We here show how to derive the congruence properties of the equality 
relation = over data terms. Let t, u, v be data terms of sort D, and t = u from E, Vd, Vp 
and v = t from E, Vd, Vp be property formulas. Let furthermore x be a name not occurring 

in Vd or Vp and VJ~ Vd U {(x: D)}. 
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Reflexivity. Immediate by the axiom REFL. 

Symmetry. In the application of the replacement rule REPL we take </> = x = t, so that 
</>[t/x] = t = t and </>[u/x] = u = t (as x occurs not in t or u). 

u = t from E, VJ, Vp 
~~~~~~~ VAR 
u = t from E, Vet, Vp 

VAR 

REPL 

Transitivity. Take</>= v = x in the application of REPL with the substitution [t/x]: 

v = u from E, VJ, Vp 
~~~~~----'"--~ VAR 

/ v = u from E, Vet, Vp 

VAR 

REPL 

Substitutivity. Let w be some (process or data) term over E, Vet, Vp and let [t/z], [u/z] be 
data substitutions over E, Vet, Vp. Take</>= w[t/z] = w[x/z], and apply REPL with the 
substitution [t/x]: 

t = u from E, Vet, Vp 
REFL 

w[t/ z] = w[t/ z] from E, "Yd, Vp t = u from E, VJ, Vp 
w[t/ z] = w[u/ z] from E, VJ, Vp 

VAR 
w[t/ z] = w[u/ z] from E, Vet, Vp 

VAR 

REPL 

In a similar way it can also be proved that = is a congruence relation over process terms. 
(End example.) 

Definition 4.1.4 (Derivability). Let r be a set of property formulas. We write 

r 1- </> from E, Vet, Vp 

iff there is a deduction with all uncancelled assumptions in r, and with</> from E, Vet, Vp as 
conclusion. In this case we say that there is a proof of</> from E, Vet, Vp from r. If r = 0 we 
just write I-</> from E, Vet, Vp and say that</> from E, Vd, Vp is logically valid. D 

We state without proof: 

Theorem 4.1.5.(Deduction Theorem.) We have the following standard theorem concerning 
the derivability of property formulas: 

r U { </> from E, Vd, Vp} I- 'ljJ from E, Vd, Vp {::::::} r I- </>-+ 'ljJ from E, Vet, Vp. 

0 

We adopt the following two conventions. If in a derivation only property formulas over fixed 
E, Vd, Vp are considered, we often leave out the additions' from E, Vd, Vp'· 
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Furthermore, once 

... ' 

is proved, the deduction step 

</>1 from E, V,i, Vi , .. . , </>n from E, Vdn, VPn 

</> from E, Vd, Vp 

(possibly labelled with some identifier of the proof) may be used in other deductions. 

The following lemma provides some standard results. 

Lemma 4.1.6. Let E, Vd, Vp be given. It holds that 

1. I- </> - ( 1/J - </>) ' 5. {</> - 1/J, 1/J - x} 1- </> - x, 
2. {t = u} I- u7 t, 
3. { v = t, t = u} I- v = u, 

6. { </> - 1/J} I- •1/J - •<P, 
7. { </> - 1/J, •</> - 1/J} I- 1/J 

4. {t = u} I- w[t/z] = w[u/z], 

where in 4 it is assumed that w is a (process or data) term over E, Vd, VP and [t/ z], [u/ z] are 
substitutions over E, Vd, Vp. 

Proof. Result 1 is proved in example 4.1.2, and 2,3 and 4 are proved in 4.1.3. The results 5 

and 6 are standard in propositional logic (derivations can be found in [Dal83]) and we give a 
proof of 7: 

</> - 1/J (by 6) 

•1/J - •</> •</> - 1/J (by 5) •1/J (1) 
_.E 

F 
1/J RAA, [1] 

D 

Given the abbreviations for the connectives V and I\ in definition 3.2.5, we can derive the 
following deduction rules. · 

Definition 4.1. 7 (The other connectives). Let 'Di, 'D2 be deductions. A new deduction 

containing the connectives V and /\ may be constructed according to the rules in table 2. 
These rules are subject to the following restrictions: 

1. In the introduction rules Vlr and and VI1 the conclusion should be a property formula. 

2. In the elimination rule VE all open assumptions</> from E, Vd, VP and 1/J from E, Vd, Vp 
are cancelled. 

D 
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'D1 
</> from E, Vd, Vp 

</> V 'I/; from E, Vd, Vp 

/ 

[</> from E, Vd, Vp] 
V2 

X from E, Vd, Vp 

'D1 'D2 
</> from E, Vd, Vp 'I/; from E, Vd, VP 

</>A 'I/; from E, Vd, Vp 
/\I 

Vi 
</>A 'I/; from E, Vd, Vp 

</> from E, Vd, Vp 

['I/; from E, Vd, Vp] 
'Da 

x from E, Vd, Vp 

'D1 
</>A 'I/; from E, Vd, Vp 

'I/; from E, Vd, Vp 

Table 2: Rules for the other logical connectives 

17 

VE 
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Whenever convenient, we prove results with the help of these derivable rules. As an example 

we show the derivability of the rule VE, where the double bar indicates the abbreviation of 

V: 

<P (i) 

1J2 
x .,x (2) 

-+E 
Vi 

:F <P v 'l/J 

-i<l 
RAA, [1] -i</J --+ 'l/J 

-+E 
'l/J 

:F 
RAA, [2] 

x 
For readability we further introduce the notations 

V <Pi from E, V~ Vp and 
iEI 

f\ <Pi from E, Vd, Vp 
iEI 

'l/J (3) 

'Da 
x .,x (2) 

- -+E 

-+E 

for iterated finite disjunctions and conjunctions, respectively. We adopt the convention that 

and 

4.2 Modules for data equivalence 

As µCRL is based on ACP [BW90] we follow its methodology and consider 'building blocks' 

of axioms and rules that describe a feature of concurrency in a certain semantical setting. 

We call such building blocks modules. If Mi, ... , Mn are modules, then the notation 

Mi+ ... + Mn+ r I- <P from E, Vd, Vp 

expresses that with the axioms and rules from Mi, ... , Mn we can derive <P from E, Vd, VP 
with all uncancelled assumptions in the set r of property formulas. 

In this section we introduce three modules that permit us to derive identities between data 

terms that depend on the contents of a specification. 

The module BOOL. Concerning the standard sort Bool we define two axioms, corre­

sponding with the demand that any model of a specification E is boolean preserving: 

Bl 
-i(T = F) from E, 0, 0 

which states that the Booleans T and F are considered different in our proof system, and the 

axiom 
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B2 
-,(b = T) - b = F from E, {(b: Bool)}, 0 

which expresses that there are at most two Boolean values, represented by T and F. The 
two axioms Bl and B2 form the module BOOL. The following lemma states that the reverse 
implication in B2 is derivable. 

Lemma 4.2.1. For any specification E it holds that 

BOOL I- b = F - ..,(b = T) from E, { (b : Bool) }, 0. 

Proof. In the following deduction, which proves the lemma, we again leave out all the 
additions from ... and only display the properties. However, note that we need an application 
of the rule VAR that changes the variable set 0 from the axiom Bl to the variable set 
{ (b: Bool)}. 

b = F (l) b = T (2) 

T=F 
REPL 

-,(b = T) RAA, (2] 

b = F - -,(b = T) 

..,(T = F) Bl, VAR 
->E. 

->I, [1] 

D 

The module FACT. The basic identities on data terms are those declared in a specification 
E. Assume t = u occurs as an axiom in E, i.e. t = u is preceded by the keyword rew. Then 
we have an axiom 

FACT 
t = u from E, Vd,0 

where Vd is the set of data variables occurring in t and u. Note that the module consisting of 
all the FACTs from Eis implicitly present in the E occurring in property formulas. Therefore 
we generally do not mention FACT before the turnstyle, although it may have been used. 

The module IND(C). It is required that any model for the data part is minimal. In the 
proof theory this can be captured via induction. Therefore we introduce an induction rule. In 
example 4.2.3, based on example 2.1.1, we illustrate this rule by deriving the commutativity 
of addition on natural numbers. We start with a preparatory definition. 

Definition 4.2.2 (Constructors). Let Ebe a specification, S the name of a sort occurring in 
E, and Ca subset of the function declarations occurring in E. We say that C is a constructor 
set of the sort S iff all functions in C have target sort S, and any closed data term of sort S 
can be proved equal to a data term that is obtained from applications of the functions in C 
and terms not of sort S only. D 

In general it is not possible to prove that a given set is a constructor set within our framework. 
Reasons for this are that we can neither express 'existential' properties of data terms, nor that 
a term is obtained from application of a constructor function. Therefore such a proof must be 
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given on a meta-level. In example 4.2.3, we can prove that 0 =-Nat and S: Nat - Nat form 
a constructor set of the sort Nat by using the axioms given there and structural induction 
on the complexity of closed terms. 

Assume that for given E, Vd, Vp we have that 

. { (x1 : S1}, .. , (xm: Sm}}~ Vd. 

Let for 1 $ i $ m: 

de/ · · i · . 
Ci = {/i;: ~3 x ... x s1;; - Si I 1 $ J $ ki, ki > O, lii ~ O} 

be a constructor set of the sort Si of cardinality ki. We introduce the following induction 
rule IND(Ci, ... ,Cm) that is parameterised by the constructor sets 01, ... ,Cm. The induction 
takes place on the variables x 1, ... , Xm· 

'[)ij 

f\ a(c/>) - c/>[/i;(zt~···i zff;)/xi] from E, Vd u {(z:/: S:/} I 1 $ n $ li;}, Vp 
uElij 1::; i::; m 

</>from E, Vd, VP o ::;; ::; ki 

where for each 1 $ i $ m and 1 $ j $ ki the index set Iii is a set of data substitutions over 

E, Vd u {(z:/: S:/} I 1 $ n $ li;}, Vp satisfying for 1 $ k $ m: 

a E Iii ~ o-is the identity, except that it maps Xk to some Yk, where 

Yk E {xi, ... ,xm} U {z:/ I 1 $ n $ li;}, 

Yi "i!j. Xi, 

if 1 $ k < k' $ m, then Yk "i!j. Yk'. 

Note that in IND(C1, •.. ,Cm) all the variables xi, ... ,xm,zfi, ... ,zt are pairwise different for ., 
all appropriate i, j. In section 4.4 we give an argument for its soundness. 

Example 4.2.3. Let Ebe the specification from example 2.1.1: 

sort Nat 
func 0 :- Nat 

S: Nat - Nat 
add, times: Nat x Nat - Nat 

var x,y: Nat 
rew add(x, 0) = x 

add(x, S(y)) = S( add(x, y)) 
times(x, 0) = 0 
times(x, S(y)) = add(x, times(x, y)) 

We prove that the function add is commutative, i.e. add(x, y) = add(y,x) from E, Vd, 0, 

where Vd d,;f { (x : Nat}, (y : Nat}, (z : Nat}}. The proof is in four steps: 

a. add(O, x) = x, 
b. add(S(O), x) = S(x), 
c. add(x, add(y,z)) = add(add(x,y),z), 
d. add(x, y) = add(y, x). 
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As observed above, we can take 0 1 ~ {O :-+ Nat, S: Nat -+ Nat} as a set of constructors of 
sort Nat. Let fio = 0 and / 11 = S. We prove a and the final result d, and leave proofs of b 
and c to the reader. In the following deductions the bars labelled with a ( *) refer to lemma 
4.1.6.3+4. 

Ad a. Let 'l/J = add(O, x) = x, then / 10 = 0 and 111 = {[n/x)} with n a fresh variable of sort 
Nat. 

__ 'l/J_[n_/_z,..,..J _<1_> _ ( *) 
add(:i:,O) = :i: add(O,S(n)) = S(add(O,n}} S(add(O,n}} = S(n) (*) 

.,P[O/:i:] .,P[S(n}/:i:J - - - __ __..;;___;_;_'----'---- [1] 
AreI10 O'(.,P)-+ .,P[O/:i:] Aveiu O'(.,P) -+ .,P[S(n)/:i:] 
~~~~~~~~~~~~~~~~~~~~~-~~~~- IND 

Ad d. Take</>= afid(x,y) = add(y,x). The induction takes place on the variable y, so 
lio = 0 and /11 = {[n/y)}. In the following deduction 'D1 abbreviates an easy deduction 
based on result a, and 'D2 abbreviates a simple deduction that uses the second axiom 
of E, the results band c, and the congruence properties of= proved in lemma 4.1.6. 

-ad-d-(0-,-z )-=-:i: (a) 
'D1 

4>[0/y] 
AveI10 O'(</>) -+ <f>[O/y] 

(End example.) 

. </>[n/y] {1) ( *) 
add(:i:,S(n)) = S(add(:i:,n}} S(add(z,n}} = S(add(n,:i:)) (*) 

add(:i:,S(n)) = S(add(n,:i:)) 
'D2 

</>[S(n)/y] [l] 
AveI11 O'(</>)-+ <f>[S(n)/y] 

4.3 Modules for process equivalence 

IND 

In this section we introduce the means to derive identities between process terms using the 
originating specification and standard process algebra axioms and rules. 

The module REC. Let for some given E it be the case that n = p is a process declaration 
. in E (i.e. the last keyword preceding n _: p is proc). Then we have an axiom 

REC 
n = p from E,0,0 

If n(x1 : 81, ... , Xk: Sk) = p is a process declaration in E, then we have an axiom 

REC 

Like in the case of FACT we adopt the convention not to denote the module REC before the 
turnstyle. 
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Al x+y=y+x CFl ni ln2 = na if ni ln2 = na E Comm(E) 
A2 x + (y + z) = ( x + y) + z 
A3 x+x=x CF11 ni (ti, ... , tm) I n2(t1, ... , tm) = na(t1, ... , tm) 
A4 (x+y)·z=x·z+y·z if ni ln2 = na E Comm(E) 
A5 (x · y) · z = x · (y · z) 
A6 x+8=x CF2 alb= 8 
A7 8 ·X = 8 if Vn EN. label(a) I label(b) = n f/. Comm(E) 

CF21 -i(ti = tD--+ ni(ti, ... , tm) ln2(t~, ... , t~) = 8 
CMl x II y = x lL y + y lL x + x I y for some 1 ::; i ::; m 
CM2 allx=a·x 
CM3 a·xlly=a·,{xlly) CF2" ni(t1, ... , tm) ln2(t~, ... , t~,) = 8 if m '# m' 
CM4 (x+y) llz =xllz+yllz 
CM5 a·xlb=(alb)·x 
CM6 alb·x=(alb)·x Dl 8({ni, ... ,nm},a) =a if label(a) fl_ {n1, ... ,nm} 

CM7 a· x I b · y = (a I b) -(x II y) D2 8( {n1, ... , nm}, a)= 8 if label(a) E {n1, ... , nm} 
CM8 (x + y) lz = xlz:+ ylz D3 8(nl, x + y) = 8(nl, x) + 8(nl, y) 
CM9 xl(y+z) =xly+xlz D4 8(nl, x · y) = 8(nl, x) · 8(nl, y) 

Table 3: The axioms of ACP for a specification E, where a and b range over 8, T and the 
actions of E, the ni range over N and m, m' ~ l. 

The modules ACP, SC, HIDE and REN. In table 3 we present the system ACP, consisting 
of all process algebra axioms that are standard in that theory [BW90]. The axioms CF refer 
to any specification E, where the set Comm(E) is the commutative and associative closure of 
all communications declared in E (the well-formedness of E implies that Comm(E) is finite). 
In CF2, Dl and D2 we use a function label() that extracts the label of an atomic action, and 
is the identity for 8 and T. 

We present in table 4 some axioms for the merge operators, known as the Standard Concur­
rency laws (see [BW90]). These axioms are derivable for process terms that are constructed 
from atomic actions, 8 and T. 

For hiding (abstraction) we present the module HIDE in table 5, and for general renaming 
we have the module REN in table 6 available. In both modules the function label() is used 
again. 

Let E be a specification. For any equation fjJ from ACP, SC, HIDE and REN (possibly 
depending on E) we have an axiom 

name of fjJ 
fjJ from E, 0, VP 

where Vp is the set of variables occurring in f/J. 
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SCl ( x lL y) lL z = x lL (y II z) 
SC2 x u_o = x 
SC3 xly = ylx 

SC4 (xly)lz=xl(ylz) 
SC5 xl(ylLz) = (xly)lLz 

23 

Table 4: The axioms of SC. 

/ 

Til r({ni, ... ,nm},a)=a 
TI2 r({ni, ... ,nm},a)=r 

TI3 r(nl, x + y) = r(nl, x) + r(nl, y) 
TI4 r(nl, x · y) = r(nl, x) · r(nl, y) 

if label(a) ~ {ni, ... , nm} 
if label(a) E {n1, ... , nm} 

Table 5: The axioms of HIDE for a specification E, where a ranges over 6, r and the actions 
of E, the ni range over N and m ;::: 1. 

RNl p( {n1 -t nJ., ... , nm -t n~J, a)= a if label(a) ~ {n1, ... , nm} 
RN2 p( {n1 -t nJ., ... , nm -t n~}, ni):::: n~ if 1 ::5 i ::5 m 
RN2' p( {n1 -t nJ., ... , nm -t n~}, ni(t1, ... , tm' )) = nW1, ... , tm') if 1 ::5 i ::5 m 
RN3 p(nl, x + y) = p(nl, x) + p(nl, y) 
RN4 p(nl, x · y) = p(nl, x) · p(nl, y) 

Table 6: The axioms of REN for a specification E, where a ranges over 15, r and the actions 
of E, ni, n~ range over N, and m, m';::: 1. 
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The module COND. We define for any specification E two axioms characterising the 
behaviour of the conditional [BB90, HHJ+87): 

Condl 
x<1T1>y = x from E,0,{x,y} 

and 

Cond2. 
x<1F1>y = y from E,0,{x,y} 

These two axioms form the module COND. The following lemma describes two basic prop­
erties that can be proved using the module COND. Both these results will be used later in 
the paper. 

Lemma 4.3.1. Let-,, Vd, Vp be such that (b: Bool) E Vd and {x,y,z} ~ Vp. Then 

1. BOOL + ACP +CONDI- x + x <1bi>8 = x from E, Vd, VP, 

2. BOOL + COND 1- (b = T-+ x = y) -+ (x <1b1> z = y <1b1> z) from E, Vd, Vp. 

Proof. In the following deductions the bars labelled with ( *) refer to lemma 4.1.6. As we 
can derive from the axiom B2, i.e. 

-i(b = T) -+ b = F from E, { (b: Bool) }, 0, 

the property formula 

T = b VF = b from E, Vd, Vp 

we can apply the rule VE to obtain 1: 

B2 
T=bVF=b 

x<lTr>y=x 

x <l T 1> 6 = f _ T = b <1> 

X<lb!> -X (*) 
x+x<lb1>6=x+x 

x+x<lb1>6=x 

A3 

x<lFr>y=y 

x <l F 1> o = ~ F = b <2> 
x <Jo 1> - 6 ( *) 

x+x<lb1>o=x+o 
x+x<lbr>o=x 

The following deduction proves 2, where 'D abbreviates an easy deduction: 

A6 

-i(b = T) (3) -i(b = T) - b = F 
x = y <2> b = F 

------(*) 
x <l b I> z = y <l b I> z [2] 'D 

b = T - x = y <1> x = y - x <lb 1> z = y <lb 1> z ( *) x <lb 1> z = y <lb 1> z [a] 
b=T-x<lb1>z=y<lb1>z -ib=T -x<lb1>z=y<lb1>z () 

~~~~~~~~~~~~~~~~~~~~~~ * 
x <l I> z = y <l I> z [1] 

(b = r- x = y)- (x<lb!>z = y<lbr>z) 
0 

VE, [1, 2) 
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E(d:D,x)=x SUMl 

SUM2 

SUM3 

SUM4 

SUMS 

SUM6 

SUM7 

SUMS 

SUM9 

SUMlO 

E(d: D, u(x)) = E(e: D, u(x)[e/d)) provided e not free in u(x) 
E(d: D,u(x)) = E(d: D,u(x)) +u(x) 
E(d: D, u(x) + u(y)) = E(d: D, u(x)) + E(d: D, u(y)) 
E(d: D,u(x) · y) = E(d: D,u(x)) · y 
E(d: D,u(x) ILY) = E(d: D,u(x)) ILY 
E(d: D,u(x) ly) = E(d: D,u(x)) ly 
E(d: D,8(nl,u(x))) = 8(nl,E(d: D,u(x))) 
E(d: D, r(nl, u(x))) = r(nl, E(d: D, u(x))) 
E(d: D,p(nl,u(x))) = p(nl,E(d: D,u(x))) 

'D 
SUMll u(t) = u(y) from E, Vc:t, Vp 

E{d: D,u(x)) = E{d: D,u(y)) from E, Vc:t, vp 
provided d not free in 
the assumptions of 'D 

Table 7: The axioms and congruence rule of SUM for E, Vc:t, vp, where E contains a sort 
name D, (d: D) E Vc:t, vp contains x, and for SUM4-7 and SUMll also y, and u is a process 
substitution over E, Vc:t, Vp. 

The module SUM. For the sum operator we present the module SUM in table 7. Recall 
that substitutions are defined in such a way that they never introduce new bindings of vari­
ables. In order to describe the general properties of the sum operator, the axioms of SUM are 
formulated using process substitutions within the scope of the E {in fact the process terms 
u(x) and u(y) are used as syntactic variables for process terms). Another consequence of 
the way we defined substitutions is that the congruence property for the sum operator does 
not follow from the general replacement rule REPL. This property is separately captured by 
the rule SUMll (in the special case that d occurs not free in u(x) and u(y), SUMll can be 
derived with REPL and SUM2). For any of the equations </> in the module SUM we have an 
axiom 

name of</> 
</> from E, Vc:t, Vp 

where Vc:t and Vp are chosen minimal. 
The sum operator typically describes the alternative composition of all data instances of a 

process term. This is expressed in the following lemma. 

Lemma 4.3.2. Let E, Vc:t, VP be such that the sort D and an equality function eq over D 
occur in E. Let furthermore { (d : D), (e : D)} ~ Vc:t, and M ;;2 {BOOL, COND, SUM} be 
such that M f- eq(d, e) = T--+ d = e from E, Vc:t, Vp. Then for any process term p(d) over 
E, Vc:t, Vp it holds that 

M f- E(d: D,p(d)) = E(d: D, 8 <1 eq(d, e) t> p(d)) + p(e) from E, Vc:t, VP. 
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Proof. First note that it is very plausible that an 'equality function' eq satisfies the property 

eq( d, e) = T -+ d = e. The proof uses the straightforward identity 

c5 <1 eq(d, e) 1> p(d) + p(e) = p(d) + p(e) from E, Vd, VP, (1) 

of which we leave the derivation (in which the property of the function eq is necessary) to the 

reader. We derive the identity that proves the lemma in a 'linear style' (more on this style 

in section 5): 

E(d: D,p(d)) SUJ13 E(d: D,p(d)) + p(e) 
SUMl 

SU_¥4 

E(d: D,p(d)) + E(d: D,p(e)) 

E(d: D,p(d) + p(e)) 

Hence, using SUMll and (1) it follows that 

E(d: D,p(d)) / = E(d: D, c5 <1 eq(d, e) 1> p(d) + p(e)) 

SUJ14 E(d: D, c5 <1 eq(d, e) 1> p(d)) + E(d: D,p(e)) 
SUMI E(d: D, c5 <1 eq(d, e) 1> p(d)) + p(e) 

0 

If in lemma 4.3.2 the sort D is finitely representable, i.e. there are closed data terms t1, ... , tn 
of sort D such that 

n 

V d = ti from E, Vd, Vp 
i=l 

is derivable, then it follows that 

E(d: D,p(d)) = p(t1) + ... + p(tn) from E, Vd, Vp 

is also derivable. 

The module RSP. In order to derive identities between infinite processes we introduce (an 

extended version of) the Recursive Specification Principle (RSP, see eg. [BW90]). 

The idea of RSP is that if two (different) process terms both satisfy some 'process-equation', 

then those process terms are considered equal. In general we use a system of such equations, 

each of which must contain at its left-hand side a (possibly parameterised) fresh identifier and 

at its right-hand side a 'process term' that may contain the new identifiers. These identifiers 

may be parameterised with data. We introduce a mechanism that defines substitution of 

parameterised process terms in a system of process-equations. The soundness of RSP depends 

on the guardedness of the system of process-equations used. In the following we make all 

these notions precise, and introduce the rule RSP. 
Let E, Vd, VP be given and let n1, ... , nm be m different names. We call a system G of m 

equations G1, ... , Gm a system of process-equations over E, Vd, VP iff 
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1. Each equation Gi has at its left-hand side an expression of the form 

(2) 

where any Xij is a data variable from Vd, or of the form ni. 

2. Let G~ be as Gi, except that any left-hand side of the form (2) is replaced by 
ni(Xi1 : Sil, ... , Xim; : SimJ where Sij is the sort of Xij· Then the following extension of 
E must be a well-formed specification. 

E 
proc G~ 

G' m 

This guarante~ that any right-hand side of Gi is a proper process term over this 
extension of E that possibly contains data variables from {(xii : Sij) I 1 ::::; j ::::; mi} 
(setting mi = 0 in case G i is not of the form ( 2)). 

Next we introduce a substitution mechanism for a system G = Gi, ... , Gm of process-equations 
over E, Vd, Vp. Abbreviating the (possible) variables of ni by Xi and writing<> for the empty 
sequence of variables, we define 

as the equation obtained by substituting AXi . p(xi) for the ni-occurrences in Gi, and then 
repeatedly performing ,B-conversion on the respective arguments of the identifier ni. For any 
identifier without arguments only the substitution of p is performed. In example 4.3.4 this 
substitution mechanism is illustrated. 

The rule RSP is restricted to (syntactically) guarded systems of process-equations: 

Definition 4.3.3 (Guardedness ofG). Let G be a system of process-equations over E, Vd, Vp 
and let N be the left-hand side of one of the equations of G. We say that N is guarded in r, 
where r is a subterm of one of the right-hand sides of G, iff 

• r = q1 o q2 with o E {+,II, I, <1t1> }, and N is guarded in qi and q2, 

o r =qi o q2 with o E {·, ~}and N is guarded in qi, 

o r = I:(x: S, q1) and N is guarded in qi, 

o r = C(nl,q1) with C E {8,T,p} and nl being a list of names (or in the case of pa 
renaming scheme), and N is guarded in q1, 

e r = /5 or r = T, 

o r = n' for a name n' and N ;t n', 

® r = n' ( u1, ... , Um') and N ;t n' (Xii, ... , Xim;). 
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If N is not guarded in r we say that N appears unguarded in r. 
The Identifier Dependency Graph of G, notation IDG(G), is constructed as follows: 

e each left-hand side of the equations of G is a node, 

e if N is a node of IDG(G) and N = r E G, then there is an edge N-+ N' for any node 

N' that appears unguarded in r. 

We call G guarded iff IDG(G) is well founded, i.e. does not contain an infinite path. D 

Given a guarded system Gi, ... ,Gm of m process-equations over E, Vd, VP, we define the fol­

lowing rule RSP: 

Gi[AXj . Pi(xi)/niJ.f=1 from E, Vd, Vp Gi[Axj. qj(Xj)/nj].f=1 from E, Vd, VP 
-------~----------------~-------- 1 ::=; i:::; m 

Pk(xk) = qk(xk) from E, Vd, VP (1 ~ k ~ m) 

where / 

e for 1 ~ i ~ m the Pi(xi) and qi(xi) are process terms over E, Vd, Vp, 

e the notation [ ... ].f=1 abbreviates them given, consecutive substitutions. 

In the next section we argue why G has to be guarded. We now give a typical example of an 

application of RSP. 

Example 4.3.4. Consider the following guarded µCRL-specification: 

E==. sort Bool 
func T, F :--+ Bool 
sort s 
func c :--+ s 

f,g: s--+ s 
act a 
proc p(x: S) = a· p(f(x)) +a 

q(x:S) = a·q(g(x))+a 

We want to prove 

RSP I- p(x) = q(y) from E, { (x: S}, (y: S} }, 0. 

Therefore we define a system G as follows: 

G ~ n(x,y) = a·n(f(x),g(y))+a 

so that G is guarded. To illustrate the substitution mechanism we first perform the substi­

tution G[> .. x, y. p(x)/n] step by step: 

1. Substitution [.Xx, y . p(x)/n] (underlined) and denoting arguments in ,8-conversion for­

mat (doubly underlined): 

.Xx,y.p(x) ~ u=a· >.x,y.p(x) f(x) g(y) +a. 
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2. Apply ,8-conversion two times: 

p(x) =a· p(f(x)) +a. 

The reader may check that the substitution G[Ax, y. q(y)/n] yields the process-equation 

q(y) = a·q(g(y))+a. 

We derive: 

RSP 

(End example.) 
/ 

4.4 Soundness 

In this section we argue that the proof system presented here is sound, i.e. that all properties 
derivable by the axioms and rules introduced thus far are valid in any appropriate semantical 
setting (see definition 3.3.1). We can express this as 

M I- </> from E, vd, Vp ===> A, :::::A F </> from E, vd, Vp 

for M = BOOL+FACT+IND(C)+REC+ACP+SC+HIDE+REN+COND+SUM+RSP. 
We first present the modules IND( C) and RSP in an axiomatic style to establish their valid­

ity apart from the soundness of the rules for natural deduction. This is more comprehensible, 
and it is closer to the literature. We rephrase IND( C) as 

IND(C):: -m-,.,-. --------------­

f\ (f\ ( /\ O'(tf>)->tf>[fi;(z~i, ... ,z;f)/xi]))->tf>from E,VdUVz,Vp 
i=l j=l uEI;; 

where Vz is the union of all the sets { (z~ : S~} I 1 $ n $ lij }, and we rephrase RSP in a 
similar way: 

RSP=-m-------~----------------­

f\Gi[> .. x;. p;(x;)/n;]j=1 /\ Gi[Ax;. q;(x;)/n;]j=1 -> p1c(xk) = q1c(x1c) from E, Vd, Vp 
i=l 

for 1 $ k $ m. Note that these formulations are indeed logically equivalent. For the 
module SUM we define SUM- by omitting the rule SUMll (the congruence rule for the sum 
operator). 

Let in the rest of this section E be a specification, A be a model of E and :::::A :2 tj- A be 
a congruence of process terms that is representation insensitive. Let furthermore M contain 
all the modules presented thus far, where IND and RSP are replaced by their axiomatic 
counterparts, and SUM is replaced by SUM-. We now argue that all axioms in M are valid. 
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As for the modules for data equivalence we have that the validity of BOOL follows from the 
fact that A is boolean preserving and the validity of FACT follows immediately by definition 
3.3.1. We give a short argument for the validity of the axiom IND(C): Let 

m ki 

P = /\ ( /\ ( /\ u( </>) - </>[/ij (z~i, ... , zff) / Xi])) 
i=l j=l uEli; 

and assume that A, ~A I= P from E, Vd U Vz, Vp and (for simplicity) that </> contains no 
process variables. Further assume that any data variable occurring in </> is among data 
variables xi, ... , xz (the induction takes place on the variables xi, ... , Xm for some m $ l). 
It is sufficient to show that A, ~A I= </>[t1, ... , tz/xi, ... , xz] for arbitrary closed data terms ti 
(the notation here expresses the simultaneous substitution of ti for Xi)· By C consisting of 
constructor sets and A being a minimal algebra we may assume that t1, ... , tm only contain 
constructor elements. We apply structural induction on the total complexity of the terms 
t1, ... , tm. 

1. None of ti, ... , 4n consist of a constructor function applied to terms of one of the sorts 
of x1, ... xm. In this case each of the index sets Iii is empty, so all these conjunctions 
are satisfied, and hence 

m ki 

A, ~A I= /\ (/\ </>[fij(z~i, ... , zff)/xi]) 
i=l j=l 

by assumption. As ti, ... , tm are applications of one of the constructor functions, it 
follows that </>[ti, ... , tzf x1, ... , xz] is valid in A, ~A • 

2. It is not the case that 1 holds. Consider some ti of the form fii(si, ... , sz;;) such that 
Iii is not empty. By assumption we have that 

A, ~A I= p( /\ u(</>) - </>[/ij(z?, ... , zff)/xi]) (3) 
uEl;; 

where p is the data substitution that maps z:/ to Sn for n = 1 ... lij and Xk to tk for 
k = 1 ... l. Since all the conjuncts p(u(</>)) (there is at least one such a conjunct) yield a 
strictly lower total complexity than t1, ... , tm, we have by the induction hypothesis that 
all these are valid. By (3) it then follows that </>[ti, ... , tzf x1, ... , xz] is valid in A, ~A . 

With respect to the validity of the axioms in the modules ACP, SC, HIDE and REN for 
process equivalence we refer to the standard literature [BW90, Gla90]. The validity of the 
modules SUM- and COND follows trivially. For an idea of a soundness proof for RSP see 
also [BW90]. That the guardedness of the system G in RSP is a necessary condition can 
be easily seen from the case in which G is a system containing equations of the form n = n 
or n(x1, ... , xm) = n(x1, ... , Xm): in this case we can prove any two processes terms identical 
with our formulation of RSP. 

We conclude with a general argument for the soundness of our proof system. We write 
A, ~A F f for f a set of property formulas if A, ~A F 8 for each 8 E r, SO A, ~A F 0 by 
default. As to deal with cancellation of open assumptions, we split the argument into three 
steps. 
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Step 1. We first prove a result concerning applications of the rule VAR: 

cp from E, Vci, V~ f- cp from E, Vd, VP by using only VAR => 

(A, ~A F cp from E, Vci, v~ => A, ~A I= cp from E, vd, Vp)· 
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This follows easy by structural induction on c/J. In particular this implies that any substitution 
instance of one of the axioms of M (over proper variable sets) is valid in A, ~A • 

Step 2. Any deduction with conclusion cp from E, Vd, VP can be converted into a corre­
sponding deduction over uniform Vci 2 Vd and V~ 2 VP with conclusion cp from E, Vci, V~. 
This can be done by using related open assumptions and 'derived' axioms over Vci, V~ (see 

step 1). We use the notation M(Vci, V~) for the latter. We call such deductions uniform. So 
uniform deductions do not contain applications of the rule VAR. 

Step 3. Let Vd, Vp be fixed. We now only consider property formulas over E, Vd, Vp and 
further omit this att;ribute. We write 

M(Vd, Vp),r f- uniform c/J 

iff there is a uniform deduction with all uncancelled hypotheses in r. 
Now the proof system f-uniform can be proved sound in the standard way (cf. [Dal83]). To 

be precise: let DS be the set of ground data substitutions over E, Vd, Vp and PS be the set 
of ground process substitutions over E, Vd, Vp. Then 

M (Vd, Vp) + r I-uniform c/J => Vu' E DS Vu E PS 

(A, ~A f= u'(u(r)) =>A, ~A f= u'(u(cp)) from E, Vd, Vp)· 

This can be proved by induction on the length of derivations. As an example we show this 
for application of the rule SUMll. 

Example 4.4.1. Assume 

r 
'D 

p=q 

E(d: D,p) = E(d: D,q) 
SUMll 

(sod occurs not free in any hypothesis in r). Now suppose 

A, ~A f= o-'(u(f)) 

for some u E PS and u' EDS. We must show that 

A, ~A f= u'(u(E(d: D,p))) = u'(u(E(d: D, q))). 

This is the case if 

(4) 

(5) 

(6) 

with u" as u' and the fresh variable e is mapped to itself. Note that e is the only variable 
that can occur free in u"(u(p[e/d])) and e711 (u(q[e/d])). Now 6 holds by definition iff for any 
ground data term t of sort D it holds that 
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A, ~A f= a"(a(p[e/d]))[t/e] = a"(a(q[e/d]))[t/e] 

which is by definition of a" and a the case iff 

A, ~A f= a'(a(p)[t/d]) = a'(a(q)[t/d]). 

Fix such a substitution [t/d]. As dis not free in r, it follows from 4 that 

A, ~A F= a'(a(f)[t/d]). 

Because a' o [t/d] EDS, it follows by induction that 7 holds, and hence also 5. 

(End example.) 

So taking r = 0 it follows that 

/ 

M(Vd, Vp) I-uniform</> ==> A, ~A Ff/>. 

(7) 

Combination of this result with steps 1, 2 and the logical equivalence of M and M \ {SUMl 1} 

finally yields · 

5 Examples 

In this section we provide some examples of proofs in µCRL. As formal proofs (i.e. deductions) 

of non-trivial facts are often hard to read, and may take in our case a larger space than 

available on one page, we will not give these. Instead we only write down the essential steps 

of a proof, trusting that the suggestion of a formal proof is sufficiently clear. 

Furthermore we will often use the symbol = (possibly superscripted with some names) to 

represent proofs in a linear style: in a context where E, Vd, Vp are fixed, we write 

t=u 

if this identity can be obtained by applications of reflexivity, symmetry or substitutivity 

(see lemma 4.1.6.1+2+4), or via the rule SUB (so no variables that occur free in an open 

assumption are instantiated). Moreover, based on the transitivity of =, proved in lemma 

4.1.6.3, we write 

to represent a proof with conclusion t1 = tn. Sometimes, when it is clear how to prove 

t1 = t2 = ... = tn, we only write down ti = tn. For convenience we generally write names of 

axioms or identities above the =. 
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5.1 Another application of RSP 

Consider the following guarded specification: 

E=. sort Boo! 
func T,F :-Bool 

..., : Bool - Bool 
rew -i(T) = F 

-i(F) = T 

sort Nat 
func 0 :- Nat 

s: Nat - Nat 
even : Nat .- Bool 

va.r x: Nat 
rew 7-ven(O) = T 

even(s(x)) = -i(even(x)) 

act a: Nat 
proc p(x: Nat)= a(even(x)) · p(s(x)) 

q(b: Bool) = a(b) · q(-i(b)) 
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With RSP we can show that p(x) = q(even(x)) from E, {(x : Nat)}, 0. To that end we 
define 

G a:g n(x) = a(even(x)) · n(s(x)) 

so that E(G) is guarded. Because G[.h. p(x)/n] =. p(x) = a(even(x)) · p(s(x)) it is obvious 
that 

G[Ax. p(x)/n] from E, { (x: Nat)}, 0 

is derivable by the axiom REC. In order to apply RSP we have to derive 

G[Ax. q(even(x))/n] = q(even(x)) .= a(even(x)) · q(even(s(x))). 

This can be done as follows: 

------ REC 
q(b) = a(b) · q(-i(b)) 

(VAR, SUB) 

q(even(x)) = a(even(x)) · q(•(even(x))) 

------- FACT 
even(s(x)) = -i(even(x)) 4.1.3 

-i(even(x)) = even(s(x)) 

q(even(x)) = a(even(x)) · q(even(s(x))) 

Now RSP gives that p(x) = q(even(x)) from E, { (x: Nat)}, 0. 

REPL 
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5.2 Proving some properties of bags 

We give a specification of a process that behaves like a bag and prove some properties about 

it. The process Bag can input data and it can output data that have been put in the bag 

before. The bag itself is described as a data type Bag. It has the usual operations such 

as 0, in, rem, test and con for the empty bag and the input, remove, test and concatenate 

operators. The process uses the actions r and s to read and send data from and to the 

environment. The specification BAG is defined in table 8, where we added names to its 

axioms for easy reference. In this specification it is left open how the data are specified. We 

only assume the presence of an equality function eq, which is partly specified. The other 

functions in BAG are specified in a straightforward way. Note that it is not hard to check 

that 

C ";;! {0 :-+ Bag, in : D x Bag -+ Bag} 

is a set of constructors of sort Bag, and that BAG is a guarded specification. 
/ 

Lemma 5.2.1. Let Vd = { (d: D}, (b: Bag}, (c: Bag}}. We have the following useful facts 

about bags: 

1. IND(C) f- con(in(d,b),c) = con(b,in(d,c)) from BAG, Vd,0, 

2. IND(C) f- con(b,c~= con(c,b) from BAG,Vd,0, 

3. BOOL + IND( C) f-

rem( d, con(b, c)) <J test(d, b) I> 6 = con(rem(d, b), c) <J test(d, b) I> 6 from BAG, Vd, 0, 

4. ACP + BOOL + COND +IND( C) f-

x <J test(d, con(b, c)) 1> 8 = x <J test(d, b) 1> 6 + x <J test(d, c) 1> 8 from BAG, Vd, {x }. 

Proof. 
Ad 1. We prove this by induction on the variable b, so we must prove 1 for both b = 0 and 

b = in(e, b') over Vd U { (e : D}, (b' : Bag}}. 
Suppose b = 0. Then 

con(in(d, 0), c) B1:?7 in(d, con(0, c)) B~G6 in(d, c) B~G6 con(0, in(d, c)). 

Suppose b = in(e, b') and assume that 

Then 

con(in(d, b'), c) = con(b', in(d, c)). 

con(in(d, in(e, b')), c) B.~ .. m in(d, con(in(e, b'), c)) B~G7 in(d, in(e, con(b', c)) 

BAG3 in( e, in(d, con(b', c)) B~G7 in( e, con(in(d, b'), c)) 

~ in(e, con(b', in(d, c))) B~G7 con(in(e, b'), in(d, c)). 

By IND( C) we conclude that 1 holds. 

(8) 
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sort Bool 
func T, F =- Bool 

if : Bool x Bool x Bool - Bool 
var b1, b2 : Bool 
rew if (T, bi,~) = b1 

if(F, b1, b2) = b2 

sort D 
func 

eq : D x D - Bool 

d:IY 
rew 

eq(d,d) = T 

sort Bag 
func 0 :- Bag 

if: Bool x Bag x Bag - Bag 
test: D x Bag - Bool 
in, rem: D x Bag-Bag 
con : Bag x Bag - Bag 

var d,e: D 
b,c: Bag 

rew if(T, b, c) = b 
if (F, b, c) = c 
test(d, 0) = F 
test(d, in(e, b)) = if(eq(d, e), T, test(d, b)) 
in(d, in(e, b)) = in(e, in(d, b)) 
rem(d, 0) = 0 
rem(d, in(e, b)) = if(eq(d, e), b, in(e, rem(d, b))) 
con(0, b) = b 
con(in(d, b), c) = in(d, con(b, c)) 

act r,s: D 
proc Bag(x: Bag)= E(d: D, r(d) · Bag(in(d, x))) + 

E(d: D, s(d) · Bag(rem(d, x)) <l test(d, x) 1> 8) 

Table 8: The specification BAG 

IFl 
IF2 

EQ 

IF3 
IF4 

BAGl 
BAG2 
BAG3 
BAG4 
BAGS 
BAG6 
BAG7 

35 
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Ad 2. We prove statement 2 of the lemma again by induction on b. 

Suppose b = 0. We first prove con(©, c) = con(c, 0) by induction on c. 

Suppose c = 0. Then con(©, 0) = con(0, 0). 
Suppose c = in(d, c') and assume 

con(©, c') = con(c', 0). (9) 

Then con(©, in(d, c')) B~6 in(d, c') ~ in(d, con(c', 0)) 8~7 con(in(d, c'), 0). By 

IND(C) it follows that con(0, c) = con(c, 0). 

Suppose b = in(d, b') and assume 

Then 

con(b', c) = con(c, b'). 

/ 

con(in(d, b'), c) BJ!97 

5.2.1.1 = 
in(d, con(b', c)) (~) in(d, con(c, b')) B1:,G7 con(in(d, c), b') 

con(c, in(d, b')). 

By IND( C) it follows that 2 holds. 

Ad 3. We prove this by induction on the variable b. 
0 0 BAGl . 

Suppose b = . Then test(d, ) = F. Hence we can derive 3. 
Suppose b = in(e, b'). Assume that 

rem( d, con(b', c)) <I test( d, b') 1> 6 = con( rem( d, b'), c) <I test( d, b') 1> 6. 

Further assume that test(d, in(e, b')) = T (otherwise we are done). We have that 

rem(d, con(in(e, b'), c)) BAG7 rem(d, in(e, con(b', c))) 
BAG5 

if ( eq(d, e ), con(b', c), in( e, rem(d, con(b', c))) ). 

(10) 

(11) 

(12) 

Suppose eq(d, e) = T. Then (12) 1~3 con(b', c) IF3,~AGS con(rem(d, in(e, b')), c). So we con­

clude via -+I that in this case 3 holds. 

Now suppose eq(d, e) =F. So 

(12) 1~4 in(e, rem(d, con(b', c))) (13) 

As eq(d, e) = F it holds that test(d, in(e, b')) BA~,IF2 test(d, b') which is equal to T by 

assumption. By (11) we conclude that (13) = in(e, con(rem(d, b'), c)). Hence also in this 

case 3 holds. By IND( C) it follows that 3 holds in general. 
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Ad 4. This proof is again carried out by induction on b. 
Suppose b = 0. Then 

x <J test( d, con(0, c)) I> 8 BAG~6,Al 
8 + x <J test(d, c) I> 8 

= x <J FI> 8 + x <J test(d, c) I> 8 
Cond2 

x <l test(d, 0) I> 8 + x <J test(d, c) I> 8. 

Now suppose b = in(e, b'). Assume that 

x <J test(d, con(b', c)) I> 8 = x <J test(d, b') 1> 8 + x <1 test(d, c) I> 8 

This implies that 

x <J test( d, con( in( e, b'), c)) I> 8 BAG7 x <J test( d, in( e, con(b', c))) I> 8 
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(14) 

BAG2 x <J if(eq(d, e), T, test(d, con(b', c))) I> 8 (15) 

Assume eq( d, e) = T /. Then 

(15) IFl T I; Condl 
X<l l>u = X 

lemma 4.~1.2,Condl X <l TI> 0 + X <l test ( d, C) I> 0 

IFl,~AG2 x <J test(d, in(e, b')) I> 8 + x <J test(d, c) I> 8. 

Now assume eq(d, e) =F. 

(15) IF2 
= x <J test(d, con(b', c)) I> 8 

x <J test(d, b') I> 8 + x <J test(d, c) 1> 8 
IF2,~AG2 

x <J test(d, in(e, b')) I> 8 + x <J test(d, c) I> 8. 

Using B2 we conclude that 4 holds for b = in(e, b'). By IND(C) it follows that 4 holds in 
general. D 

There is the following relation between the parallel operator and the concatenation operator 
con on the data type Bag. 

Theorem 5.2.2. Two bags in parallel behave as one bag with the contents concatenated. 
Let Vd = { (b: Bag}, (c: Bag)}. Then 

ACP + BOOL + COND +IND( C) + RSP + SUM 1-

Bag (b) II Bag(c) = Bag(con(b, c)) from BAG, vd, 0. 

Proof. The main step in the proof is an application of RSP. First we define the system G 
as follows: 

def ( ) G = n b,c = :E(d: D, r(d) · n(in(d, b), c))+ 
:E(d: D, r(d) · n(b, in(d, c)))+ 
:E(d: D, s(d) · n(rem(d, b), c) <l test(d, b) I> 8)+ 
:E(d: D, s(d) · n(b, rem(d, c)) <l test(d, c) 1> 8). 



38 5· EXAMPLES 

Observe that G is guarded. 
We prove G[.Xb, c. Bag(b) II Bag(c)/n] from BAG, vd u { (d: D} }, 0 and 

G[>,b, c. Bag(con(b, c))/n] from BAG, Vdu{ (d: D} }, 0. Then by RSP and VAR the theorem 

follows in a straightforward way. 
First we show G[.Xb, c. Bag(b) II Bag(c)/n]. This a straightforward expansion. 

Bag(b) II Bag(c) 
exp~sion 

~(d: D, r(d) · (Bag(in(d, b)) II Bag(c)))+ 
~(d: D, r(d) · (Bag(b) II Bag(in(d, c))))+ 
~(d: D, s(d). (Bag(rem(d, b)) II Bag(c)) <l test(d, b) I> o)+ 
~(d: D, s(d) · (Bag(b) II Bag(rem(d, c))) <l test(d, c) I> t.5). 

Now we show G[.Xb,c. Bag(con(b,c))/n]. Lemma 5.2.1 turns out to be handy. 

Bag(con(b, c)) exp~sion ~(d: D, r(d) · Bag(in(d, con(b, c))))+ 

~(d: D, s(d) · Bag(rem(d, con(b, c))) <l test(d, con(b, c)) I> t.5) 

/ Q) ~(d: D,r(d) · Bag(con(in(d,b),c)))+ 
~(d: D, r(d) ·Bag( con(b, in(d, c))))+ 
E(d: D, s(d) · Bag(rem(d, con(b, c))) <l test(d, b) I> 6)+ 
E( d : D, s( d) · Bag( rem( d, con( c, b))) <l test( d, c) l> t.5) 

0 E(d: D,r(d) · Bag(con(in(d,b),c)))+ 
E(d: D, r(d) · Bag( con(b, irt(d, c))))+ 
E(d: D, s(d) · Bag( con(rem(d, b ), c)) <l test(d, b) t> o)+ 
E(d: D, s(d) · Bag( con(b, rem(d, c) )) <l test(d, c) t> t.5) 

where (1) follows from A3, lemma 5.2.1.1+2+4 and SUMll, and (2) from lemma 5.2.1.3, 

lemma 4.3.1.1 and SUMll. D 

Corollary 5.2.3. Let Vd ={(a: Bag}, (b: Bag}, (c: Bag)}. Then 

ACP + BOOL + COND +IND( C) + RSP + SUM I-

(Bag( a) II Bag(b)) II Bag(c) =Bag( a) II (Bag(b) II Bag(c)) from BAG, vd, 0. 

Proof. By associativity of the concatenation operator con (easy) and theorem 5.2.2. D 

This corollary is of interest as it is a non-closed instance of 

(x II y) II z = x II (y II z), 

an identity that is not derivable from ACP (but follows from ACP +SC). 

We conclude with the following theorem, stating that the process specified by Bag(0) 

satisfies a standard definition (see [BK84a, BW90], though there the sort D has to be finite). 

Theorem 5.2.4. The process Bag(©) from BAG satisfies 

M 1- Bag(0) = E(d: D, r(d) · (Bag(0) II s(d))) from BAG, 0, 0 

provided M ;;2 {ACP,BOOL,COND,IND(C),RSP,SUM} is such that we can derive M 1-

eq(d,e) = T- d = e from BAG, {(d: D), (e: D)},0. 
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Proof. Let Vd = { (d : D), (e : D), (b : Bag)}. We first establish an intermediate result in 
three steps: 

1. test(e, b) = T ~ rem(e, in(d, b)) = in(d, rem(e, b)) from BAG, Vd, 0. 
This can be proved by induction on the variable b (cf. the proof of lemma 5.2.1.3). 

2. s(d) · Bag(b) + 6 <I eq(e, d) 1> (s(e) · Bag(rem(e, in(d, b))) <1 test(e, in(d, b)) I> 6) = 
s(d) · Bag(b) + s(e) · Bag(in(d, rem(e, b))) <J test(e, b) 1> 6 from BAG, Vd, 0. 
This can be proved by case distinction of the four possible values of eq( e, d) and 
test(e, b). In case both these are true, we need the property of the equality function eq, 
as we must derive that s(d) · Bag(b) = s(d) · Bag(b) + s(e) · Bag(in(d, rem(e, b))). In 
the case that eq(e, d) = F and test(e, b) = T we need 1 above. 

3. s(d) · Bag(b) + E(e: D, 6 <1eq(e,d)1> (s(e) · Bag(rem(e, in(d, b))) <1test(e, in(d, b)) 1>6)) = 

s(d) · Bag(b) + ~e: D, s(e) · Bag(in(d, rem(e, b))) <1 test(e, b) 1> 6) from BAG, Vd, 0. 
This follows from 2 by SUM. 

With result 3 and RSP we can show that Bag(b) II s(d) = Bag(in(d, b)) from BAG, Vd, 0. 
This identity plays a crucial role in the proof of the theorem. Let the system G be defined 
as follows: 

de/ ( ~ G = n d, b) = E(e: D, r(e) · n(d, in(e, b)))) + 
E(e: D, s(e) · n(d, rem(e, b)) <1 test(e, b) I> 6) + 
s(d) · Bag(b) 

so that G is a guarded system. We can derive G[.Ad, b. Bag(b) II s(d)/n] by a straightforward 
expansion. We give a derivation of G[.Ad, b. Bag(in(d, b))/n]: 

Bag(in(d, b)) exp~sion 

4.3.2 = 

EQ,BAQ2+3+5 

result3 

E(e: D, r(e) · Bag(in(e, in(d, b)))) + 
E(e: D, s(e) · Bag(rem(e, in(d, b))) <J test(e, in(d, b)) 1> 6) 
E(e: D, r(e) · Bag(in(e, in(d, b)))) + 
E(e: D, 6 <J eq(e, d)1> 

(s(e) · Bag(rem(e, in(d, b))) <J test(e, in(d, b)) I> 6)) + 
s(d) · Bag(rem(d, in(d, b))) <1 test(d, in(d, b)) I> 6 

E(e: D, r(e) · Bag(in(d, in(e, b)))) + 
E(e: D, 6 <1 eq(e, d)t> 

(s(e) · Bag(rem(e, in(d, b))) <I test(e, in(d, b)) I> 6)) + 
s(d) · Bag(b) 
E(e: D, r(e) · Bag(in(d, in(e, b)))) + 
E(e: D, s(e) · Bag(in(d, rem(e, b))) <I test(e, b) I> 6) + 
s(d) · Bag(b) 

By RSP it follows that Bag(b) II s(d) = Bag(in(d, b)), and hence 

r(d) · (Bag(0) II s(d)) = r(d) · Bag(in(d, 0)) from BAG, Vi, 0. 
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By SUMll and VAR it then follows that 

E(d: D, r(d) · (Bag(0) 11 s(d))) = E(d: D, r(d) · Bag(in(d, 0))) from BAG, 0, 0 

and as E(d: D, r(d) · Bag(in(d, 0))) = Bag(0) from BAG, 0, 0 this concludes the proof. D 
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