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Abstract

Recently, the first author has proposed a new algorithm for solving the Diophan-
tine equation z3 + y® + 2® = k, where k is a given non-zero integer. In this paper we
present the detailed versions of this algorithm for some values of k given below, and
we describe how we have optimized and run the algorithm on a Cyber 205 vector com-
puter. A vectorized version of the Euclidean algorithm was written which is capable
of solving the equations w;z; = 1 mod n;, ¢ = 1,2, - - at vector speed. Moreover, the
basic double precision arithmetic operations (+,—,%,/) were vectorized.

The following cases were implemented and run: k£ = 3, 30, 2, 20, 39 and 42. For
k = 3 a range was searched which includes the cube |z|, |y|, |z| < 108; this consider-
ably extends an earlier search in the cube |z|, |y|, |z| < 28. No solutions were found
apart from the known ones (1,1,1) and (4,4, —5). For k = 30, which probably is,
with k = 3, the case which has attracted most attention in the literature, no solution
was found. It is the smallest case for which no solution is known and for which one
has not been able to find a proof that no solution exist. For k = 2 a parametric form
solution is known, but we also found one which does not belong to this parametric
form, viz., (1214928, 3480205, —3528875). For k = 20, several new large solutions
were found in addition to several known ones; this case served as a (partial) check
of the correctness of our program. Finally, for £ = 39 we found the first solution:
(134476,117367,—159380). Hence, this case can be dropped from the list of values
of k (k = 30,33,39,42,---) for which no solution is known (yet).
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1 Introduction

Recently ([3]), the first author has presented a new algorithm to find solutions of the
Diophantine equation ‘

Syt =k, M
in which k is a fixed positive integer, and the z,y, z can be any integers, positive, negative,
or zero. In order to find solutions with |z|,|y|, |2z| < N, this algorithm takes O(N log N)
steps, where the implied constant depends on k. In [3] this algorithm is given explicitly for
the case k = 3, and significant changes have to be made for other values of k, depending
mainly on the class number of Q(Vk).

For k = 3, the idea of the new algorithm is as follows. If £k = 3 mod 9 then z = y =
z = 1mod 3. If z, y and z all have the same sign then ¢ = y = z = 1. Otherwise, let
z and y have the same sign, and z the other, then we have |z + y| > |z| > 1. Now let
n := z + y and solve the equation 2*> = 3 mod n with z and n having different sign and
1 < |z| < |n|. In [3] it is derived by factoring in @Q(+/3) (which has class number equal
to 1) that (n,3) = 1 and that

n = a® 4 3b° + 9¢% — 9abe
for some integers a, b, ¢ such that
z = (3c® — ab)(b® — ac)™' mod n

(with z and n having different sign and (b* — ac,n) = 1). This gives a unique value of z.
We can then solve the equations =2 + y® + 2> = 3 and ¢ + y = n to find « and y. This
yields

gz +d n—d

2 YT
_ .3
withd=\/5andD=%[4(3 z)——nz].

n

Here, D should be the square of an integer to yield integral z and y. If we choose a = —1,
b=0andc=1,wegetn=8,z=-5,D=0and =y =4 ((1,1,1) and (4,4,—5) are
the only known solutions for k£ = 3).

In [5] and [2] solutions of (1) were computed by means of a straightforward algorithm
which for given z and k checks whether all the possible combinations of values of = and y
in a chosen range satisfy (1). The range chosen in [2] (which includes the one chosen in
[5]) was:

0<z<y< 2

0O<N<L2® N=2z—uz,
0 < |k| <999.

This algorithm takes O(N?) steps, but it finds solutions of (1) for a range of values of k.
The implied O-constant depends on that range.
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It is easily seen that equation (1) has no solution at all if K = +4 mod 9. There is no
known reason for excluding any other values of k£ although there are still a lot of values of
k for which no solution at all is known. Those below 100 (and # +4 mod 9) are:

k =30, 33, 39, 42, 52, 74, 75, and 84. (2)
For some values of k infinitely many solutions are known. For example, we have
(9%)° + (—9t* + 3t)% + (-9t + 1)* = 1,

and
(6t +1)% + (—6¢% + 1)% + (—6t%)* = 2.

These relations give a solution of (1) for each ¢ € ZZ. For k = 1 many solutions are known
which do not satisfy the above parametric form (e.g., (64,94, —103)). For more parametric
solutions, see [5], [6] and [4].

It is possible to implement the new algorithm on an arbitrary vector computer. In par-
ticular, the Euclidean algorithm for the computation of (6> —ac)~! mod n can be vectorized
using standard Fortran. In this paper we present the results of optimizing and running
this algorithm on a Cyber 205 vector computer, for £ = 3, 30, 2, 20, 39 and 42. The
cases k = 3 and k = 30 probably are the most intensively studied ones (cf. [2], [5] and [7]).
For k = 2 the above parametric solution is known, but we wanted to check whether other
solutions exist. For k = 20 the density of adélic points is rather high, and relatively many
integer points are known. This case was used as a (partial) check of the correctness of our
program. The smallest value of k¥ > 30 for which no solution is known is ¥ = 33. However,
the fundamental unit of Q(+/33) is enormous, and in this case the algorithm becomes very
inefficient. Therefore, we selected the next two cases k = 39 and k = 42.

In Section 2 we give a precise description of the algorithms for the various chosen values
of k. Section 3 presents some details of how we have implemented the algorithms on the
Cyber 205 vector computer and the results obtained. In particular, we describe how we
have vectorized the computation of (6> — ac)™! mod n (Section 3.1). The double precision
arithmetic operations which were necessary because of the size of the numbers we wanted
to handle, were vectorized along the lines of [8]. The results of our computations are listed
in Section 3.2. No (new) solutions were found for k = 3, 30 and 42. For k = 2 the first
solution was found which is not of the parametric form given above. For k = 20 eight new
solutions were found and, finally, for £ = 39 we found one solution so this case can be
removed from the list of values of k for which no solution is known.



2 The algorithms for £ =2, 3, 20, 30, 39 and 42

For k = 3 the algorithm is derived and presented in [3]. The other cases can be derived
in a similar way, but with significant changes caused by the facts that prime factors of k
may occur in n (= 2 + y), and that Q(v/k) may not have unique factorization. We first
present the algorithms for all the values of k listed above, except for k = 20: this case is
given separately.

For k # 20, the algorithms are organized in such a way that all the solutions of (1) are
found for which

1< |2z| < |z +y| < |e|K3, (3)

where |e|™! > 1 is the fundamental unit of @Q(+/k). This includes the cube |z|, |y],|z| <
1le| K3.
2

The algorithm for k£ =2, 3, 30, 39, 42

Let 6 := v/k; for the combination of values of r, a, b and c, given in Table 1:

1. Let a, b, c run over the integers in the ranges
lal, 6]bl, 6%|c| < Kr*?,
for suitably chosen K (depending on the available computing resources).

2. Let n := (a® + kb® + k*c® — 3kabc)/r, w := b2 — ac and v := kc? — ab (7, a, b and ¢
are such that n is integral).

3a. (k =2, 3, 39, 42) Use the Euclidean algorithm to find @ := w™! mod n (provided
that w and n are coprime; if not, reject this quadruple (r,a, b, c)).

3b. (k = 30) Take n’ = n if r /b, and n' = n/r if r|b; use the Euclidean algorithm to find

W := w™! mod n' (provided that w and n' are coprime; if not, reject this quadruple
(rya,b,c)).

4. Compute z = v-w mod n with z in the range 1 < |z| < |n| and having opposite sign
to n.

5. Compute D = %[4(”—“;‘1) —n?]. If D is not the square of an integer, reject this
quadruple (7, a,b,c).

6. Find the solution (z,y,2) = ('ﬂ%@, '—‘TJZQ,z).
The algorithm for k£ = 20

1. Let a, b, c run over the integers in the ranges
la], V208], 50|c| < K,

for suitably chosen K (depending on the available computing resources).
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2a.

2b.

2c.

4a.

4bl.
4b2.

5. and 6.

k r restrictions ona, b, c
2 1 a+2b+4c=1o0r2mod6
and either 2fa
or 2|a,4fa,b=1mod 4
or 4la, b+ 2¢c =1 mod 4

3 1 a=2mod3
30 1 a=2mod3
2 =4 mod 6
5 a=10mod 15
39 1 a=2mod3
2 a=1mod3,a+b+c=0mod?2
3 a=0,b=2mod3
6 a=0,b=1mod3,a+b+c=0mod?2
9 a=0,6=0,c=2mod3
18 a=0,b=0,c=1mod3,a+b+c=0mod?2
42 1 a=1mod3
3 a=0,b=2mod3
9 a=0,6=0,c=1mod3

Table 1: Values of k, 7, a, b, and ¢

2fa,3fa— (b+c):

n' := a® + 200 4 50c® — 30abe, w := 2b% — ac, v :=10c? — 2ab.
2/b,3fc—(a+b):

n' := 2a® + 56 + 100¢® — 30abe, w := b? — ac, v := 20¢? — 2ab.
2fc,3fa+b+c:

n':=4a® + 106° + 25¢® — 30abc, w :=b% — ac, v := 5¢% — 2ab.

- Use the Euclidean algorithm to find % := w™' mod n' (provided that (w,n') = 1; if

not, reject the triple (a,b, c)).

Compute
z = v - W mod n'; (4)

n:=n', 1< |z| < |n|, n, z of opposite sign.

n:=4n', 1 < |z| < |n|, n, z of opposite sign; there will be four solutions of (4); we
require further that z + » = 2 mod 6.

Similar to steps 5. and 6. of the previous algorithm.



3 Implementation on the Cyber 205

We have implemented the algorithms of Section 2 in terms of long vectors, in order to
reach optimal performance on the Cyber 205 vector computer.

A vector version of the Euclidean algorithm (needed in Step 3) was formulated which
has input vectors 7 and @ with components n; and w; respectively, and which computes a
vector % with components u; such that w;u; = 1 mod n;. This is described in Section 3.1.

In Step 4 the product v-w becomes too large for the normal integer capacity of the Cyber
205. Therefore, we have written a special vectorized version of the modular multiplication,
which returns an integer result vector.

The integers involved in Steps 5 and 6 may become so large that in general they do
not fit in the normal integer capacity of the Cyber 205 (which is 48 bits). Therefore, we
have written special routines for double precision arithmetic operations on the Cyber 205
(for vector addition, subtraction, multiplication and division, and conversion from integer
to double precision and vice-versa). These routines are based on ideas of Schlichting for
double precision BLAS (Basic Linear Algebra Subroutines) on the Cyber 205 [8], to which
we refer for details. It should be noticed that Schlichting had to use the standard Fortran
convention for storage of double precision floating point numbers, i.e., the upper and lower
part of a double precision number are stored in consecutive array locations. This has the
disadvantage of strides two in vector operations on the double precision numbers. In order
to avoid this in our implementation, we have stored the upper and lower parts in two
separate arrays.

In Section 3.2 we present the results of running our algorithms.

3.1 Solving the equation wz =1 mod n in step 3

For given w and n, the scalar equation wz = 1 mod n, where gcd(w,n) =land 1 < w < =,
can be solved as follows. We consider the regular continued fraction (abbreviated: c.f.)
expansion of the rational number w/n. If ¢/d is the penultimate convergent of this c.f.,
then we have wd — nc = %1, so that wd = +1 mod n. Here, the proper sign depends
on the parity of the number of convergents of the c.f of w/n. So we need to compute
the denominators of the convergents of the c.f. of w/n. In order to compute the c.f. of
w/n we just follow the Euclidean algorithm for computing gcd(w,n), and we update the
denominator of the convergent at each step (with the denominators from the previous two
steps). The algorithm looks as follows.

Scalar algorithm to compute v = w™! mod n

sign =1
do=0
dli=1
a=w
b=n



10 q = [b/a]
r=b — gxa
if r = 0 then
¢ now a contains gecd(w,n)
cif a = 1 return signxd1 else 0 into u

if a = 1 then
u = signxdl
else
u=20
endif
return
endif
h = qxdl + d0
d0 =d1
dl=h
b=a
a=r
sign = —sign
goto 10

For the vectorization of this algorithm, we have to keep in mind the following basic
principle. We want to do the same operations on all vector elements. To that end we
construct vectors for n and w (in the remainder of this section all vectors are printed in
boldface) and some temporaries, and keep an index vector ind up to date to administrate

for which components a solution has been found. This index-vector is initialized (before
the label 10 — line) as follows:

do 5 i=1, len
5 ind(i) =i

All the scalar variables of the algorithm, except ‘sign’, are turned now into vectors of
length ‘len’, and each scalar operation in this algorithm becomes a vector operation. Of
course, the number of steps to be taken before the algorithm terminates is generally not
the same for the different components (this number of steps roughly varied between 10 and
30 for the numbers we treated in our jobs).

After the execution of the line: ‘r=b—qxa’, a bit vector called mask of length len is
filled, each component of which becomes ‘0’ if the corresponding component of r is zero,
and ‘1’ otherwise. With the aid of mask, the computed inverses are transported from d1
into u in two steps, viz., a compress step and a scatter step. These replace the ‘if r = 0
then’ — part of the above scalar algorithm. (For simplicity, we assume here that all the
gcd’s of the components of the input vectors n and w are 1, i.e., those components of a
are 1, for which the corresponding components of mask are zero. In our program this
complication is handled by the use of a second bit vector.)



e First (compress step), those components of ind are stored into an auxiliary vector
called order for which the corresponding elements of mask are ‘0’. This operation
can be done very efficiently on the Cyber 205 with a so-called compress instruction.
A similar compress operation (also governed by mask) is carried out on d1, where
the output vector is an auxiliary vector called t. If sign = —1 then t is replaced by —t.

e Next (scatter step), the elements of t are scattered into u where the location in u of
each component of t is determined by the corresponding component of order. Like
the compress instruction, a scatter instruction is available on the Cyber 205 to do
this very efliciently.

The Cyber 205 has a clock cycle period of 20 nanoseconds (= 20 x 107® sec.). Adding
two long vectors takes 1/p clock cycles per element on a p-pipe Cyber 205. Compressing a
vector is done at the same speed, so compressing a vector of length len takes approximately
lenx10~® seconds on the 2-pipe Cyber 205 we used (we worked with len = 10,000). Scat-
tering a vector of length len’ into some target vector takes approximately len’x3 x 108
seconds, and this time is independent of the length of the target vector.

In order now to let the algorithm continue only with those components for which the
inverses have not yet been found, a compress operation is carried out on the vectors ind,
q, T, a, d0, and d1, where all those components are removed for which the corresponding
components of mask are ‘0’. The length len is adapted accordingly. If after this compress
operation len = 0, we are finished. Otherwise, the six update lines ‘h=qxd1+d0’... ‘sign
= —sign’ are executed and the program jumps back to label 10. It should be noted that
most of the vector movement in these six lines can be done efficiently by operating on
pointers to the vectors (on the Cyber 205, these are called vector descriptors) rather than
on the vectors themselves.

3.2 Results

We have run our program for solving (1) for the values of k mentioned in Section 2, for vari-
ous values of K. The results are listed in Table 2. Table 2 also gives, for k = 2, 3, 30, 39, 42,
the size of the largest (z,y,z)-cube which is contained in the range of searched (a,b,c)-
values. This number equals the bound }|e|K® (truncated to three decimal places) which is
given below (3) in Section 2. The fundamental units € were taken from [1, Table 2 on page
270]. Unfortunately, the case k = 20 is slightly different and we have not attempted to
derive such an upper bound in this case. However, when we inspect the size of the solutions
found for k = 20, it seems that the largest cube covered in this case is comparable with
the largest cubes covered in the cases k = 2 and k = 3. We only present the new solu-
tions found and not those which were given already in [5] and [2] (with one exception: the
smallest solution we list for k¥ = 20 was not explicitly given in [2], but in an accompanying
table which was deposited in the UMT-file of Mathematics of Computation).



The total amount of CPU-time spent on the Cyber 205 for the computation of Table 2
was about 30 hours. To give an impression of the speed of our program: the job for k = 30,
r =1, K = 2000, consumed 3934 seconds CPU-time on the Cyber 205, 65% of which was
spent on the solution of the equation wz = 1 mod n’ (step 3b of the algorithm given in
Section 2). The total number of triples (a,b,c) treated in this job was about 7.12 x 108.

All new solutions were found several times, for different combinations of a, b, and
c. Of course, this corresponds to using different associates in Q(\’/IE) For example, the
solution for k = 20: (z,y,2) = (136912,264145, —275877) was found three times, viz., for
(a,b,c) = (—47,8,18), (53,—129,81), and (443,170,121). For k = 2, the solution (z,y, 2)
= (1214928, 3480205, —3528875) was found for (a,b,c) = (165,—12,16) and for five other
triples (a, b, c).

k(6= Vk) K =z|,]yl, |2 < z Y z

2 -1 1000 1.29 x 108 1214928 3480205 —3528875
3 6% — 2 1500 1.35 x 108 none

20 —%92 +6+1 1000 3049 8427 —8558

99637 607191 —608084

136912 264145 —275877

—305081 —523091 555618

—378203 —555737 608880

—2006066 —3431087 3645939

—3633722 —9161277 9348001

15670213 40439559 —41209136

—89598233 —374850480 376549093
30 —36024+90+1 2000 1.64 x 10° none

39 26% — 23 1000 3.15 x 10° 134476 117367 —159380
42 126072 —420+1 1000 1.57 x 10% none

Table 2: New solutions of (1)
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