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In this coniribution we survey receni research at CWI on step-by-step methods for solving initial-value
problems (IVPs) on parallel computers. More general surveys of parallel IVP solvers are given in [5] and
[24, 25]. The present paper is organized according to the following sections and subsections.
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1. Nonstiff problems

The methods surveyed in this section are explicit step-by-step methods for nonstiff first-order
IVPs:

(1.1) %‘ti= f(y), y(to) = yo.

We shall consider three techniques for constructing methods that are suitable for use on parallel
computers, viz. (i) block-by-block calculations, (ii) predictor-corrector iteration (PC iteration), and
(iii) Richardson extrapolation. In the terminology introduced by Gear, these techniques result into
parallel methods in which the parallelism is called parallelism across the method. Methods possessing
this form of parallelism can already profit from parallel architectures in the case of scalar IVPs.
Alternative parallel techniques based on parallelism across time and across space (including waveform
relaxation) are discussed in [1, 2, 3, 11] and [12] where further references can be found.

In order to demonstrate more clearly that the methods of this section do possess the property of
method parallelism, we shall describe the various methods for scalar IVPs. We remark that the
methods discussed below can also be applied (with appropriate changes) to second-order IVPs
without first derivatives. For example, an analysis of parallel Runge-Kutta-Nystrém PC methods can
be found in Sommeijer [34].

1.1. Explicit block methods
Let (1.1) be a scalar IVP and let us define the k-dimensional vector

(1.2)  Yn+1:= (Yn,cl, Yn,cp5 --- s Yn,ck)T, ck=1,

where yp ¢ denotes a numerical approximation to the exact solution value y(tn4c). A rather wide class
of explicit methods for solving the IVP (1.1) is given by the block method

(1.3)  Yn+1=AYn +hBf(Yn), yn+1:=ekl¥ns1, n=0,1,2, ..,
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where A and B are k-by-k matrices, ey is the kth unit vector, and where for any given vector v = (vj),
f(v) denotes the vector with entries f(v;). Given the initial vector Yo, (1.3) completely determines a
sequence of numerical approximations to the exact solution values at the step points tn, n 2 1. Thus,
in general, methods of the form (1.3) require k starting values.

Since the k components of the vectors Y41 can be computed in parallel (provided that k
processors are available), the computational time (wall-clock time) needed for one step of (1.3) is
roughly equal to the time required to evaluate one right-hand side function on a sequential computer.
In the following, we mean by ‘sequential costs per step’ the computational time required per step if k
processors are available, and an explicit method is said to have 6* sequential stages if the computation
time required for evaluating all right-hand sides in one step is about 6* times the computation time
required for evaluating one right-hand side evaluation. We always assume that we have k processors
at our disposal.

Many (explicit) methods from the literature, can be cast into the form (1.3). Table 1.1 lists
examples of explicit block methods together with the required number of starting values k, their order
p at the step points, the block vector ¢, the number of processors P needed to reduce the sequential
costs to just a single f-evaluation per step (i.e., 6* = 1), and the real and imaginary stability
boundaries Breal and Bimag (cf. [35]). If S denotes the (theoretical) speed-up factor if the computation
times on one and P processors are compared, then all methods of Table 1.1 have P = S. Notice that
the number of processors needed for implementing (1.3) is often less than k.

Table 1.1. Explicit stable block methods of the form (1.3).

References k p cT P=S Breal Bimag
2-step Adams-Bashforth 2 2 ©,1) 1 1.00 0.00
Miranker-Liniger [29] 2 2 (VR 2 0.59 0.60
vd Houwen-Sommeijer [17, method (4.1)] 2 3 (53,1) 2 0.64 0.65
3-step Adams-Bashforth 3 3 (-1,0,1) 1 0.55 0.72
vd Houwen-Sommeijer [17, method (4.7)] 3 4 (0,17/10,1) 2 0.53 0.05
4-step Adams-Bashforth 4 4 (-2,-1,0,1) 1 0.30 0.43
Miranker-Liniger [29] 4 4 (-1,0,2,1) 2 0.50 0.04

1.2. Predictor-corrector iteration
Consider implicit block methods of the form

(1.4)  Yps+1 = AYp + hBf(Yy) + hCf(Yns1), n=0,1,2, ...,

where A, B and C are k-by-k matrices and Yy, is defined as before. A large number of methods,
including Runge-Kutta (RK) methods and linear multistep methods, can be rewritten in this form (in
fact, (1.4) fits into the class of the general linear methods introduced by Butcher, see [6]). If (1.4) is
equivalent with an RK method, then we shall call (1.4) a block method of RK type.

The most simple method for solving equation (1.4) is PC iteration (or: fixed-point iteration):

Y0 = YG-D - [YG-D - AY,, - hBf(Yy) - hCf(YU-1)y], j=1,2,..,m,
(1.5)
Yn+1:= Y(m), Yn+1 = ek Yn+1,

where Y(0) is an initial approximation to the exact solution of the corrector (1.4) to be provided by
some predictor formula (in order to avoid confusion, we denote from now on the exact solution of the
corrector (1.4) by Up+1). Assuming that the predictor formula is explicit, we obtain an explicit step-
by-step method for approximating the exact solution at the step points ty,1. Predictors of the form
(1.3) can be used, provided that the PC pair {(1.3), (1.4)} employ identical block point vectors c.
The k components of the vectors Y0) can be computed in parallel, so that the computational time
(wall-clock time) needed for one iteration of (1.5) roughly equals the time required to evaluate one
right-hand side function on a sequential computer. Hence, given the initial prediction Y (9, the
sequential costs of (1.5) per integration step are m+1 sequential right-hand side evaluations
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originating from the evaluation of f(Yy) and f(YG-D), j=1,2,.., m To these m+1 sequential
corrector stages one should add the sequential predictor stages required by the predictor. If (1.3)is
used as predictor, then no additional stages are required because f(Yn) is both predictor and corrector
stage. Hence, the PC pair {(1.3), (1.4)} has 6* = m+1.

A rigorous convergence analysis of a general class of PC iteration methods, including the
iteration (1.5), may be found in Burrage [5] and in Jackson & Ngrsett [25]. However, a first
indication of the rate of convergence of PC methods can be obtained by considering the recursion

(1.6) YO - Ups1 =hC [((YGD) - f(Uns1)] = Z [YOD - Upaa], Z:=hAC,

where A denotes an approximation to the derivative 0f/dy at yp (we remark that in the case of systems
of ODEs, A should be understood to run through the spectrum of the Jacobian 9f/dy). This recursion
shows that each iteration reduces the iteration error by a factor of O(h). Therefore, one usually
chooses PC pairs in which the order of the predictor is not much less than that of the corrector so that
the order of the corrector is attained within a few iterations. Table 1.2 is the analogue of Table 1.1 for
PC methods with a single iteration (PECE methods with 6* = 2).

Table 1.2. Stable PECE methods of the form (1.5).

References k p cl P=S PBreal Pimag
2-step Adams-Bashforth-Moulton 2 3 0,1 1 240 1.20
vd Houwen-Sommeijer [17, method {(4.3),(4.6)}] 2 4 (A+1N5)) 2 0.12 0.11
3-step Adams-Bashforth-Moulton 3 4 (-1,0,1) 1 193 1.18
Donelson-Hansen [10, Table 2] 3 6 (1/3,2/3,1) 3

vd Houwen-Sommeijer [17, method {(4.12),(4.13)}] 3 6 04,1) 2 177 0.58
Chu-Hamilton [8, method {(2.7),(2.9)}] 4 3 (1/4,123/4,1) 2 498
Shampine-Watts-Worland [33, 38] 4 4 (12012,1) 2 0.88 1.16
Chu-Hamilton [8, method {(2.11),(2.13)}] 4 4 (@1/41123/4,1) 2 334

4-step Adams-Bashforth-Moulton 4 5 (-2,-1,0,1) 1 1.41 0.92
Donelson-Hansen [10, Table 2] 4 8 (144,123/4,1) 4

vd Houwen-Sommeijer [17, method {(4.14),(4.15)}] 4 8 (-1,0,5/2,1) 2 030 0.14

This table shows that, for a given number of starting values, increasing the order of accuracy
reduces the size of the stability regions.

A possible approach for improving the stability region starts with correctors with a large
stability region which is then sufficiently often iterated to obtain more or less the corrector solution. In
order to achieve that (1.6) converges rapidly to the corrector solution, some norm of the iteration
matrix Z should be small. Taking the spectral radius of Z, i.e. p(Z) = hiA|p(C), as a measure for the
rate of convergence, we are led to find correctors with small p(C) possessing large stability regions.
For example, in [27] we find the block 6-method of order k:

(1.7)  Yp+1 = Yo + (1 - ©)hBf(Yy) + 6hBf(Yp41), T := (1/4k,2k,...,1), 0<6<1,

where B has all its eigenvalues at 1, and whose linear stability region is identical with that of the
conventional 6-method. Since p(C) = 0, convergence is improved if 6 is decreased. A second
example is the iteration of highly stable RK-type block methods (see Section 1.2.1).

A generalization of the PC iteration (1.5) is based on the widely-used technique of
preconditioning (or: smoothing) of the residual term in (1.5), that is, the premultiplication of the term
in square brackets by a k-by-k preconditioning matrix P (possibly depending on j). This leads to
(1.6") Y®-Upy1 =Z[YGD-Upy1]l, Z:=1-P+hAPC.

Let us choose P such that P = I + hPCQ, where Q is a k-by-k matrix with bounded elements. Then

Z =hPCQAI-Q), P:=(I-hCQ)1,
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so that each iteration reduces the magnitude of the iteration error by h. Ideally, the matrix € should be
chosen such that p(Z) is minimized on the spectrum of df/dy. A perhaps more practical approach is to
compute the dominant value of A during the iteration in one step and to choose Q in the next step such
that its eigenvalues coincide with this dominant A-value. Another possibility allows P (and therefore
Q and Z) to depend on j and sets Q; = ojI, with wj scalar. Then we can write p(HZj) in the factorized
form

p(I1Z;) = Pm)I hm p(C™T (1 - wjhC) 1), Pm(d) := IIA - ).

In first approximation (i.e., for w;h small), this leads to a minimax problem for the polynomial Pry())
which can be solved in terms of shifted Chebyshev polynomials and which leads to explicit
expressions for the parameters ®; (see Manteuffel [28]). Notice that the introduction of P; hardly
increases the computational costs of the iteration scheme.

1.2.1. Runge-Kutta correctors. Of particular interest is the case where the corrector (1.4) is a block
method of RK type. We shall call such RK-based PC methods PIRK methods (Parallel Iterated RK
methods). The idea of PC iteration of implicit RK methods (IRK methods) to exploit parallelism goes
back to Ngrsett and Simonsen [31] and Jackson and Ngrsett [23] and was elaborated in [22], [26],
[24, 25] and [14].

Here, we shall restrict our considerations to PIRK methods without preconditioning and we
shall use the 'last-step-value predictor’

(1.8) YO =ye.

For s-stage RK correctors this PIRK method is itself an (explicit) RK method with s* = ms+1 stages,
but with only 6* = m+1 sequential stages. It can be proved (see Jackson and Negrsett [23, 24, 25])
that the (global) order of yp4+; equals p* := min{p,m+1}. Thus, we have the theorem:

Theorem 1.1. Let (1.4) define an s-stage RK method of order p. Then the PIRK method
{(1.5),(1.8)} represents an (ms+1)-stage explicit RK method of order p* := min{p,m+1} requiring
o* = m+1 sequential stages. []

The observation that explicit RK methods of order p* require at least p* sequential stages per
step point (see Iserles and Ngrsett [22]) justifies the following definition:

Definition 1.1. An explicit RK method is said to be optimal on k processors if its order equals the
number of sequential stages per step point on k processors. []

In Ngrsett and Simonsen [31] the question was posed whether it is possible to find optimal RK
methods of any order p*. Setting m = p-1, it follows from Theorem 1.1 that this question can be
answered in the affirmative: any pth-order RK method of the form (1.4) generates an optimal RK
method of the form {(1.5),(1.8)}.

The next question is to find the least number of processors needed to implement an optimal
explicit RK method of given order p. For example, the Sth-order, 6-stage RK method of Butcher
mentioned in [31] is an example of such a ‘minimal processor’ method: it can be implemented on two
processors requiring only 5 sequential stages. So far, the question of least number of necessary
processors is not yet answered. However, we can immediately deduce a lower bound for the number
of processors needed to implement optimal RK methods of the form {(1.5),(1.8)}: it is well known
that, within the class of RK methods, those of Gauss-Legendre type require least number of stages to
obtain a given order; to be more precise, s-stage Gauss-Legendre methods have order p = 2s. Hence,
we have the theorem [14]:

Theorem 1.2. The PIRK method {(1.5),(1.8)} with m = p-1 and generated by the pth-order Gauss-
Legendre method with s = p/2 stages (p even) or by the pth-order Radau IIA method with s = (p+1)/2
stages (p odd), is an explicit Runge-Kutta method of order p* = p with s* = ps-s+1 stages, which is
optimal on | (p*+1)/2 | processors. []



1.2. Richardson extrapolation

Many times it has been remarked that extrapolation methods possess a high degree of
parallelism and offer an extremely simple technique for generating high-order methods (cf., e.g.
Deuflhard [9]). Here, we describe the use of extrapolation for the construction of optimal RK
methods.

It will be assumed that we are given a method of order p for integrating (1.1) from ty until
t; := to+H with stepsize h. The numerical approx1mat10n to the exact solution value y(to+H) will be
denoted by y(to+H,h). The method producing this approximation will be called the generating method
and y(to+H,h) will be called the generatmg funcnon Let the generating function possesses an
asymptotic expansion in powers of hd, where q=2 if the method providing the values y(t0+H h)isa
symmetric method and g=1 otherwise. Using the harmonic Romberg sequence {1, 2, 3, ...}, the first
step of the corresponding r-point extrapolation method is defined by (see e.g. [13])

r .
(1.9) y1—201y(t0+H 0) 2c1_1 zciT!=o,j=p,p+q,...,p+(r-2)q.
i=1 i=1

Evidently, y; approximates y(t) at the point t; = to+H. Having computed y;, we can perform a
second step by using y; as the new initial value at t;, etc.. The quantities hg and H are called the
internal and basic stepsizes, respectively. If H is fixed (for example, H is the whole integration
interval), then (1.9) is said to define a global extrapolation process. If H is a function of hg (for
example, H = hp), then (1.9) is said to define a local extrapolation process.

It is clear that the computation of the various terms in the formula (1.9) for y; can be performed
in parallel. Assuming that the computational effort for computing y(to+H,hg/i) is proportional to i, we
are led to compute y(to+H,ho/r) on the first processor, y(to+H,hp) and y(t0+H hg/(r-1)) on the second
processor, etc. In this way the number of processors is minimized and given by | (r+2)/2 .

The following theorem holds for the extrapolated method (1.9) (see e.g. [13a]):

Theorem 1.3. Let the generating method providing the values y(to+H,hg/i) be of order p, then the
extrapolation method defined by (1.9) has order p* = p+(r-1)q. []

Let us consider the case where the function y(tp+H,h) is defined by the Midpoint rule:
(1.10) Y3 =yo+hf(yp), Yj=Yj2+2hf(Yj.1),j=2,3,...,m, m=H/h, y(to+H, h)=Yp,
and let us apply local Richardson extrapolation with H = 2h(. Then the following theorem holds [15]:

Theorem 1.4. The Richardson-Midpoint method {(1.9), (1.10)} with H = 2hgis an explicit Runge-
Kutta method of order p* = 2r with s* = r2+1 stages per step of length H, which is optimal on
| (p*+4)/4 | processors. []

A comparison with Theorem 1.2 reveals that for p* > 5 the Richardson-Midpoint method
requires less processors to be optimal than the Gauss-Legendre based PIRK methods. For example,
an optimal RK method of order 10 requires only 3 processors when using Richardson extrapolation
of (1.10) and 5 processors when using PC iteration of the 10th-order Gauss-Legendre method.

2.  Stiff problems

In this section we shall consider parallel step-by-step methods that are suitable for integrating
stiff first-order IVPs. Such methods are necessarily implicit. However, all methods discussed below
require the solution of systems whose dimension does not exceed the dimension of the IVP. The
methods are respectively based on (i) diagonally-implicit block-by-block calculations, (ii) diagonally-
implicit iteration of (1.4), and on (iii) local Richardson extrapolation of the implicit Euler method and

of the trapezoidal rule. For similar methods for integrating special second-order IVPs, we refer to
[20, 21].



2.1. Diagonally-implicit block methods

We shall call the method a diagonally implicit block method (DIB method) if C = D, where D is
a diagonal matrix. On parallel processors, DIB methods require the same sequential costs as required
by the celebrated backward differentiation formulas (BDFs).

The particular family of DIB methods of RK type is identical with the family of 'strictly-
diagonal' IRK methods studied by Jackson and Ngrsett [24]. They proved that this family contains
only methods of order at most two (for linear problems, the order can be raised to s+1, s being the
number of stages of the IRK method). However, in the class of general DIB methods we can find
methods of higher order and with (linear) stability regions that are considerably larger than those of
the higher-order BDFs. In order to characterize the stability region we use the stability definition:

Definition 2.1. A method is said to be A(o,f3,7)-stable if
(@) its region of stability contains the infinite wedge {z: - o <7 - arg(z) < o}, 0 < a < 7/2,and
all points in the nonpositive halfplane with Izl > 8

(i) yis the maximum value of the spectral radius of M(z) := (I - zC)-1(A + zB) when z runs
through the region of instability lying in the nonpositive halfplane. []

The following table compares the values o, B,y and 8 := p(M(-c=)) of the BDFs and of a few
DIB methods derived in [36]: '

Table 3.1. Values of o, B, Y and 8 for the BDFs and for DIB methods.

Method cT Orderp « B Y )
BDF3 (-1,0,1) 3 884° 194 1.046 0
DIB3 (21/10, 1) 3 o 0 0 0.94
BDF4 (2,-1,0,1) 4 732° 472 0.191 0
DIB4 (5,13/4,1) 4 x° 0 0 0.92
DIB4 (3,5,1) 4 o° 0 0 0.37
BDFs (-3,-2,-1,0,1) 5 51.8° 994 1.379 0
DIBs (-2.747,-2.122, 1) 5 >89.9° 0.16 1.0000026 0.993
DIBs (1.6153,4.7871, 1) 5 >89.9° 0.30 1.000069 0.89

Iserles and Ngrsett [22] and Jackson and Ngrsett [24] have generalized DIB methods by
replacing the entries of C by (possibly rectangular) matrices and by requiring the matrices appearing
on the diagonal to be (square) diagonal matrices. For RK type methods they derived a number of
order results and derived examples of parallel methods with good stability properties.

2.2. Diagonally-implicit iteration
In this section, the PC iteration (1.5) is replaced by the diagonally-implicit iteration scheme

Y0 - hDf(Y®) = YG-D - hDf(YG-D) - [YG-D - AY,, - hBf(Yy) - hCE(YG-D))],j=1,2, ..., m,
(2.1)
Yni1:= Y(m), Yn+1 = exTYn+1,

where D is a diagonal matrix with positive entries. Evidently, by virtue of the diagonal structure of D,
the method (2.1) is highly parallel, because in each iteration the k components of the iterate YO can be
computed concurrently. It will be assumed that the (components of the) iterates are computed by one
or more iterations in a modified Newton process. This Newton iteration process will be called inner
iteration and the iteration process (2.1) with iteration index j will be called outer iteration. As in the
case of PC iteration, predictors of the form (1.3) can be used, provided that their block points equal
those of the corrector. However, as the iteration scheme is itself implicit, one may also consider
implicit predictors. We shall say that the method has ¢* sequential (diagonally-implicit) stages per
step if in that step o* sequential implicit relations are to be solved.
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As in the case of PC iteration, one may again apply residual conditioning by inserting a matrix P
in front of the residual term (in square brackets) occurnng in (2.1). An alternative modification of
(2.1) was suggested by Butcher [7 % In the notatlon used here, this modification inserts a k-by-k
matrix Q in front of those vectors YU) and YU-1) that appear outside the residual term. A combination
of preconditioning and the Butcher modification seems to be an efficient approach for accelerating the
convergence of diagonal iteration. The corresponding iteration scheme reads

YO = QIX®, j=1,2,..,m
2.1) X0 - hDEXD) = XG-1) - hDAXGD) - P[Q-IXG-D) - AYy, - hBE(Y,) - hCR(Q-1XG-D)],
Yoi1 :=Y®), ypu1:=exTYpqr

Notice that in the case of PC iteration (i.e., D = O), the Butcher modification reduces to
preconditioning of the residual by Q-1P. The analogue of the error recursion (1.6") is given by

YO - Upy1 = Z [YGD - Ups1l, Z:=Q-1[I-hDAJ-1[Q-P +h(PC - DQ)A].
The choice Q - P = h(DQ - PC)Q is of particular interest and leads to

Z = Q1hAD( - hAD)1 (D-IPC- Q) I - A-1Q), P:=(Q-hDQQ)(-hCQ)l,
where the matrices D, Q and Q are still free. Assuming that the diagonal entries of D are positive, we
find

dihAl
NZI<Eh,A), {h,A):=1QUIDIPC-QIIT-AIQI —
1 + dlhAl

where d is the maximal diagonal entry of D.

2.2.1. Runge-Kutta correctors. So far, we only investigated diagonal iteration of the form (2.1) using
correctors of RK type. In order to be compatible with the notation used in earlier papers on this topic,
we shall change to the familiar notation adopted for RK methods, that is, the corrector (1.4) and the
step point formula in (1.3) are written in the form

Y = yne + hAf(Y), yn+1=yn+hbT£(Y),
and the method (2.1) assumes the form
(2.2) YO -hDf(YD) = ype + h(A - D)f(YG-D), j=1,2,..,m
(2.3)  yn+1 =yn +hbTHY™).

For stiff problems, the righthand side evaluations in the step point formula (2.3) may give rise
to instabilities and, consequently, the overall accuracy may be reduced considerably (cf. [32]).
However, one may replace (2.3) by the step point formula (cf. [13b]

24) yn+1=yn+ bTA'l(Y(m) - e}’n),

which does not contain righthand side evaluations anymore. This formula is much more stable and is
highly recommendable. The methods using (2.3) and (2.4) will be called PDIRK methods (Parallel
Diagonal-implicitly Iterated RK methods) of Type I and Type I, respectively. We remark that for
stiffly accurate correctors, that is bTA-1 = e;T (e5 denoting the sth unit vector and s being the number
of stages of the corrector), formula (2.4) reduces to the 'last component' formula yp41 = esT Y(M),

In [19], RK correctors were iterated using predictors of the form

2.5) YO - hBf(YO) := yne + hCf(ype),



where either B = O or B = D and where C is an arbitrary full matrix. For given m, this PDIRK
method belongs to the class of DIRK methods. However, when implemented on a parallel system,
the method is effectively an SDIRK method because each processor has to compute just one LU
decomposition for the inner iteration process.

Given the underlying corrector, there remains the choice of the matrix D, the number of
iterations m, and the matrices B and C in the predictor formula. If we do not want to solve the
corrector until convergence, but instead want an efficient method after a fixed number of iterations,
then the stability of the resulting method is crucial. Restricting ourselves to Radau IIA correctors, we
find for such 'fixed-number-of-iterations' methods the stability results listed in Table 2.1 (here, p and
p* denote the order of the corrector and the PDIRK method, respectively).

Table 2.1. Stability results for PDIRK methods

Predictor (2.5) Type Corrector p*=p O*=m+1 Stability
B=D=diag(Ae-Ce), BAe=A2¢ I  RadaullA P p-2 finite stability region

II Radau TA 3 2 A-stable
Radau ITA 5 4 - A(o)-stable, o =89.997°
Radau ITA 7 6 A(o)-stable, o = 89.95°

B=D=diag(Ae), C=0 I Radau ITA 3 2 Strongly A-stable

Radau ITA 5 4 Strongly A-stable
Radau ITA 7 6 Strongly A(a)-stable, o = 83.3°

II Radau ITA 3 3 L(o)-stable, o = 89.75°
Radau ITA 5 5 L(o)-stable, o = 89.12°
Radau ITIA 7 7 L(o)-stable, o = 89.02°

Next we consider fixed-number-of-iterations PDIRK methods where B = D = dI with d a free
parameter. For such methods, the following theorem can be proved:

Theorem 2.1. For any corrector there exist values of d such that the methods listed in Table 2.2 are L-
stable. []

Table 2.2. L-stable PDIRK methods

Predictor (2.5) Type P*=p o*=m+1
B=D=dl=diag(Ae-Ce) 1I 1<p<6,p=8 P

B=D=dl, C=0 I 1<p<6,p=38 P

B=D=dI, C=0 I 1<p<8p=10 p+l

A further possibility is to define PDIRK methods which leave the whole matrix D as a set of
free parameters. We could try to exploit the increased freedom for improving the order of accuracy for
a given value of m while preserving A- or L-stability (for example, we still miss an L-stable method
of order 7 requiring 7 sequential stages). However, there is a drawback associated with all DIRK
methods, and therefore also with any PDIRK method using the predictor (2.5) and a fixed number of
iterations. This is caused by the phenomenon of order reduction (cf., e.g. [13b]). Order reduction
reduces the observed order of RK methods to their stage order (or their stage order plus one). Most
DIRK methods are particularly sensitive to order reduction because their stage order is only one or
two. Thus, instead of keeping the number of iterations fixed, it may be more efficient to iterate until
the corrector solution is approximated sufficiently close, so that the stage order of the PDIRK method
may be considered to be equal to that of the corrector (recall that s-stage Gauss-Legendre, Lobatto
IITA and Radau ITA methods all have stage order s). In this approach, the matrix D should be chosen
such that the rate of convergence is improved, rather than increasing the order of accuracy for a given
value of m. In [16] fast converging PDIRK methods have been constructed by minimizing the
spectral radius of the matrix D-1A - I. These 'minimal-spectral-radius' methods were tested on a
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number of stiff problems and turn out to be much more efficient than the fixed-number-of-iterations
methods discussed above. Reference [18] (which will be submitted to the proceedings of this
conference) summarizes the main results derived in [16] and presents an error analysis of minimal-
spectral-radius PDIRK methods.

2.3. Richardson extrapolation

Similar to the construction of parallel, nonstiff methods by Richardson extrapolation (see
Section 1.3), we can construct parallel, stiff methods, just by choosing a stiff method for defining the
function y(to+H,h) (see [15]). For example, consider the generating method defined by the backward
Euler method

2.6) Yo=yo, Yj=Yj1+ hf(Yj),j =1,2,...,mjm=H/M, y(o+H,h)=7Yy,
and let us apply local Richardson extrapolation with H = hy.

Theorem 2.2. The Richardson-Euler method {(1.9), (2.6)} with H = hyis a DIRK method of order
p* =r with s* = r(r+1)/2 diagonal-implicit stages per step of length H and 6* = p* sequential singly
diagonal-implicit stages on | (p*+2)/2 | processors. []

These Richardson-Euler methods can be shown to be L(a)-stable where o decreases almost
monotonically from 90° for r =2 to 89.830° for r = 10. )
Finally, we consider extrapolation methods generated by the trapezoidal rule:

2.7 Yo=yo, Yj=Yj1+ %h (YD) +f(Ypl,j=1,2, .., mym=H/, y(o+H h)=Yn.

Theorem 2.3. The Richardson-Trapezoidal method {(1.9), (2.7)} with H = 2hgis a DIRK method of
order p* = 2r with s* =r2+1 diagonal-implicit stages and o* = p* sequential singly diagonal-implicit
stages on | (p*+4)/4 | processors. []

These methods are A(a)-stable with o decreasing from 79.29 for r = 2 to 50.6° forr = 8.
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