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In this paper, we analyse parallel, diagonally-implicit iteration of Runge-Kutta methods (PDIRK 
methods) for solving large systems of stiff equations on parallel computers. Like Newton-iterated 
backward differentiation formulas (BDFs), these PDIRK methods are such that in each step the 
(sequential) costs consists of solving a number of linear systems with the same matrix of coefficients and 
with the same dimension as the system of differential equations. Although for PDIRK methods the 
number of linear systems is usually higher than for Newton iteration of BDFs, the more computational 
intensive work of computing the matrix of coefficients and its LU decomposition is identical. The 
advantage of PD IRK methods over Newton-iterated BDFs is their unconditional stability (A-stability for 
Gauss-based methods and L-stability for Radau-based methods) for any order of accuracy. 
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1. Introduction 
Consider the initial-value prQblem for systems of ordinary differential equations (ODEs) of dimension d 

(1.1) y'(t) = f(t,y(t)), y(to) =yo, y: lR ~ JRd, f: JRxJRd ~ JRd, to~ t ~tend· 

In this paper, we analyse integration methods based on iteration of implicit Runge-Kutta (RK) methods of collocation 
type. Such RK methods possess both a large step point order and a large stage order. Furthermore, by a suitable choice 
of the collocation parameters, these RK methods are unconditionally stable for any order of accuracy. 

We shall employ the diagonally-implicit iteration-type methods proposed in [7, 8]. These methods are designed in 
such a way that a large number of the implicit systems to be solved can be processed in parallel, so that the number of 
systems that have to be solved sequentially is substantially reduced when implemented on multi-processor computers. 
As a reference method, we take the method based on the backward differentiation formulas (BDFs), which is considered 
as one of the best methods for sequential computers. The sequential computations (i.e., the computations that cannot be 
performed in parallel on a multi-processor system) of the parallel diagonal-implicitly iterated RK (PDIRK) methods are 
of the same nature as those of Newton-iterated BDFs, that is, in each step, both types of methods require the sequential 
solution of a number of linear systems with the same matrix of coefficients and with the same dimension as the system 
of differential equations. Although, this number of linear systems is usually higher for PDIRK methods than for 
Newton iteration of BDFs, the effort required for computing the Jacobian and the LU decomposition of the matrix of 
coefficients is identical. For large systems of equations, these computations are the more computational intensive work, 
so that the overall computation time is primarily determined by the number of Jacobian updates and LU 
decompositions. The advantage of PDIRK methods over Newton-iterated BDFs is their A-stability (Gauss and Lobatto 
IIIA correctors), strong A-stability (Lagrange correctors derived in [7]) or even L-stability (e.g. Radau IIA correctors) for 
high orders of accuracy. The property that unconditional stability can be combined with high orders reduces the number 
of integration steps (and therefore the number of Jacobian updates and LU decompositions) considerably. 

2. PDIRK Methods 
In this section we define PDIRK methods by specifying the RK corrector, the iteration scheme for solving the 

stage vector equation, the predictor formula, and the formula for the step-point values. The various families of PD IRK 
methods are determined by special choices of the iteration parameters occurring in the iteration scheme. In order to 
simplify the notations, the formulas are given for scalar ODEs. The extension to systems of ODEs is straightforward. 
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2.1. The corrector 
We consider RK methods of the form 

(2.1) Y - hAf(etn +eh, Y) = eyn + haf(tn. yn), Yn+i = Yn + hbof(tn. yn) + hbTf(etn +eh, Y), c :=a+ Ae, 

where bo is a scalar parameter, e is the vector with unit entries, a= (aj), b =(bi) and c = (ci) are k-dimensional vectors, 

and A= (aij) is a k-by-k matrix. In (2.1) we used the convention that for any given vectors v=(vj) and t = (tj). f(t, v) 

denotes the vector with entries f(tj. Vj). We always assume that the matrix A is nonsingular. Uthe vector a or the 

parameter bo does not vanish, then (2.1) presents an (s = k+l)-stage RK method requiring k implicit stages and one 

explicit stage. If a= 0 and bo = 0, then (2.1) reduces to the general (s = k)-stage RK method with s implicit stages. For 

a discussion of the order of accuracy and the stage order of RK methods, we refer to e.g. [ 4] and [3]. In the sequel, the 

method (2.1) will be called the corrector. 

2.2. The iteration scheme 
The stage vector equation in (2.1) is solved by applying the diagonal iteration method studied in [8] and [7]. Let 

y(µ) denote the successive iterates, then we may define the (highly parallel) iteration process 

(2.2) 
y(l) - hD f(etn + ch,Y0)) = eyn + ahf(tn,yn) + hA f(etn + c*h,Y(O)) - hD f(etn + c*h,Y(O)), 

y(µ) _ hD f(etn +,,Ch,Y(µ)) = eyn + ahf(tn,yn) + hA f(etn + ch,Y(µ- 1))- hD f(etn + ch,Y(µ-l)), 

where µ = 2, ... , m, and where D is a diagonal matrix whose diagonal elements Oi (i = 1, ... , k) are the iteration 

parameters which are assumed to be positive. The parameter vector c* depends on the predictor formula used for 

computing y(O) and serves to make the arguments off consistent in the first iteration (see Section 2.4). The step point 

formula defining Yn+l and the predictor formula will be discussed in the Sections 2.3 and 2.4, respectively. Together, 

the predictor formula, the iterati,..on scheme (2.2), and the step point formula determine the PDIRK method 
Each iteration in (2.2) requires the solution of k nonlinear systems which can be obtained by applying modified 

Newton iteration. We shall call this last iteration the inner iteration method and the iteration (2.2) the outer iteration 

method. Notice that in each outer iteration the k nonlinear systems can be solved in parallel, provided that k processors 

are available. Thus, the sequential costs per step consists of computing y(O) and of solving m nonlinear systems of 

ODE dimension. 
For particular choices of the predictor formula (e.g., explicit RK formulas) and for step point formulas as defined 

in Section 2.3, the PDIRK method as described above can be interpreted as a diagonally implicit RK (DIRK) method 

using mk diagonally implicit stages. Since the k stages in each outer iteration can be computed in parallel, we arrive at 

a DIRK method with m sequential diagonally implicit stages. These methods form a subclass of the much wider class 

of the PaRK methods investigated by Jackson and Njijrsett [9, 10]. 
In [7] and [8] the performance of PDIRK methods was studied in the case where in each of the m outer iterations 

the inner iteration method was continued until convergence before starting the next outer iteration (this iteration strategy 

is also used in conventional DIRK methods). However, this strategy may be rather expensive if many iterations are 

needed to get the inner iteration converged. Moreover, it does not take into account the special structure of the method. 

The essential difference with conventional DIRK methods lies in the fact that the i-th component of each stage vector 

y(µ) is an approximation to the exact solution at the points tn + Cjh. This implies that y(µ-1) furnishes an excellent 

initial approximation to the solution y(µ) to be ob.tained in the inner iteration process. As a consequence, each outer 

iteration needs only a few inner iterations. Furthermore, in first approximation, the convergence of the inner-outer 

iteration scheme and the stability of the PDIRK method does not depend on the number of inner iterations. This 

motivates our strategy to perform only one inner iteration per outer iteration, leading to the iteration process 

(2.3a) 

[I - hDJ] (y(O) _ y(l)) = y(O) - [eyn+ ahf(tn,yn) + hA f(etn + c*h,Y(O))- hD f(etn + c*h,Y(O))] 

- hD f(tne + ch,Y(O)), 

[I - hDJ] (y(µ-l) - y(µ)) = y(µ-l) - [eyn + ahf(tn,Yn) + hA f(etn + ch,Y(µ-l>)], µ = 2, ... , m. 

Here, J denotes an approximation to the derivative off at the point (tne, Yne). Evidently, if (2.3a) converges, then y(µ) 

converges to Y. In fact, one may interpret (2.3a) as a modified Newton iteration scheme for solving Y from the stage 

vector equation in (2.1) employing a diagonal approximation to the Jacobian ofY - hAf(etn+ch, Y). 
It may be useful to consider (2.3a) in the case of systems of ODEs. Then, the k components Yi(µ) of the stage 

vector iterate y(µ) have to satisfy the equations 
k 

[I - hOiJ] (Y/O) _ yp)) = y/O) - [Yn + ajhf(tn.yn) + hI aij r(tn + cj"'h,Y/O)) - hOj f(tn + Cj*h,Yi(O))] 

j=l 



k 

[I - hoiJl (Yi(µ-l) - yi(µ)) = Yi(µ-l) - [Yn + aihf(tn,Yn) + hL aij f(tn + Cjh,Y/µ-l))], µ = 2, ... , m, 
j=l 
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where i = 1, ... , k and where now J denotes an approximation to the Jacobian matrix off at the point (tn. yn). Notice 
that this iteration scheme can be viewed as a modified Newton method for solving the stage vector equation employing 
a block-diagonal approximation to the Jacobian. Clearly, the k linear systems that are to be solved in each outer 
iteration step can be solved in parallel. Since each system has dimension equal to that of the system of ODEs, the 
computational complexity per step and per processor essentially consists of the computation of Yi(O), the evaluation 
and LU-decomposition of the matrix I - hoiJ (or its updating), m+2 evaluations off, and m forward-backward 
substitutions. Of these costs, the evaluation and LU-decomposition of I - hoiJ are the most time consuming, while the 
evaluations off and the forward-backward substitutions are relatively cheap (notice that the iteration parameters Oi are 
independent ofµ in order to avoid repeated LU-decompositions of I - hoiJ in the successive iterations). Thus, when 
basing a code on PDIRK methods, first of all the number of stepsize changes (which automatically requires new LU­
decompositions) and the number of Jacobian updates should be minimized. 

It is of interest to compare the sequential costs of PDIRK methods with the sequential costs of the celebrated 
BDF-based methods. If the BDFs are solved by using m modified Newton iterations, then the sequential costs in each 
step of the PDIRK methods and the Newton-iterated BDFs are almost identical. We expect that PDIRK methods need 
more iterations but, because of their higher order, less steps to produce some given accuracy. As explained above, 
evaluations of f and the forward-backward substitutions are relatively cheap, so that for modest values of m, the 
sequential costs per step of P~K methods are expected to be not much higher than those of the BDFs. The reduced 
number of steps required by the PDIRKs should make them superior to the BDFs. 

2.3. The step-point values 
Suppose that we adopt y(m) as a sufficiently accurate approximation to the exact stage vector solution Y of the 

corrector (2.1). Then, the most natural way to approximate the step-point value Yn+l in (2.1) defines this value 
according to the formula 

(2.4) Yn+l = Yn + hbof(tn, yn) + hbTf(etn +eh, y(m)). 

However, the presence of the righthand side evaluations in this formula may give rise to loss of accuracy in the case of 
stiff problems (cf. [12]). This difficulty can be overcome by applying a similar approach as proposed in [6] for the 
implementation ofimplicitRK methods. Observing that the corrector (2.1) can be written in the form 

Yn+l = Yn + bohf(tn.Yn) + b T A-1[Y - eyn - ahf(tn.Yn)l, 

provided that A is nonsingular, we can approximate the corrector solution Yn+l by the formula 

where y(m) denotes the last computed approximation to Y. In many cases the corrector satisfies the relations of stiff 
accuracy, i.e., Ck= l, bo = ak and bT A-1 = E!kT, so that (2.3b) reduces to Yn+l = E!kTy(m). In order to avoid confusion, 
we shall from now on denote the corrector solution and stage vector values obtained from Yn by Un+ 1 and U, 
respectively. 

2.4. The predictor 
In [8] we considered one-step predictors of the form 

(2.5a) y(O) := eYn + hE f(etn, eyn) + hB f(etn + c*h,Y(O)), 

where B and E are k-by-k matrices. Of particular interest are the cases where E vanishes and where B is either the zero 
matrix yielding last step-value predictors (LSP) or B = D yielding implicit Euler predictors (IEP). 

However, by using information from the preceding step, that is the values of Yn and the stage vector y(m) 
computed in the last step, we can construct more accurate predictors. In order to indicate to which step a particular stage 
vector corresponds, we define Yn := y(m) if y(m) corresponds to the step [tn-i.tnl· Consider the two-step predictor 

(2.6a) y(O) = VYn + vyn + hB f(etn + c*h,Y(O)), 

where either B = 0 or B = D and where the matrix V and the vector v satisfy the usual consistency conditions (we shall 
assume that the vector v vanishes in the case of stiffly accurate correctors). The cases B = 0 and B = D will be referred 
to as the extrapolation predictor (EXP) and the backward differentiation predictor (BDP). 
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If B = D, then both (2.Sa) and (2.6a) require the solution of k implicit relations. Similar to the strategy followed 
in solving the implicit relations in (2.2), we shall perform just one Newton iteration (notice that the righthand side 
derivatives required in the Newton iteration method are identical to those occurring in (2.3a)). In order to perform this 
Newton iteration we need an initial guess y(-1) for y(O). For the cases (2.5a) and (2.6a) we shall respectively use 

y(-1) = ey0 , c* = (E + B)e; y(-1) = WY0 + wy0 , c* = c, 

where the W and w are to be determined (we shall assume that w vanishes in the case of stiffly accurate correctors, and 
that W = V, w = v in the case where B = 0). If the corrector is based on collocation, then the matrix W and the vector w 
can be computed by extrapolating the collocation polynomial defined in [tn-1.tnl to the interval [tn,tn+t1 and can be 
expressed in terms of the Lagrange interpolation polynomials. 

2.S. The iteration parameters 
There are various options for choosing the number of iterations m, and the iteration parameters Si. In this paper, 

we consider three cases: 

Option 1: fixed-number-of-iterations option 
- the number of iterations is fixed and such that the orders of the PD IRK and corrector are equal 
- the iteration parameters are chosen such that the stability region in the left halfplane is optimized. 

Option 2: minimal-spectral-radius option 
- the number of ite~ons is sufficiently large to closely approximate the corrector solution 
- the iteration parameters are such that the spectral radius of the matrix o-lA- I is minimized. 

Option 3: minimal-stiff-error-constant option 
- the number of iterations is sufficiently large to closely approximate the corrector solution 
- the iteration parameters are such that the principal stiff error constant of the PD IRK method is minimized. 

Several families of methods ~constructed according to the fixed-number-of-iterations option were already considered 
in [8]. An interesting family considered in this paper possesses the stability functions investigated by Wolfbrandt [13] 
and uses constant iteration parameters Si determined by these stability functions. However, because of the fixed number 
of iterations, these methods are in fact DIRK methods and consequently, they have the disadvantage of possessing stage 
order q= 1. In many stiff problems, such a low stage order may lead to reduced accuracies. In order to get insight into the 
extent of this accuracy reduction, we shall consider the magnitude of the stiff error constants for the 'fixed-number-of­
iterations PDIRK methods' (see Section 4.2, Table 4.1). 

For the explicit one-step predictor, [7] presents a number of PDIRK methods constructed according to the 
minimal-spectral-radius option. The effect of minimizing the spectral radius of the matrix o-lA - I is a strong damping 
of the stiff iteration error components. On the one hand, the number of iterations m should be sufficiently large to solve 
more or less the RK corrector, on the other hand, m should be sufficiently small to achieve that the (sequential) costs 
per step are not excessive when compared with those of the BDFs. In this paper, we shall investigate a few 
characteristics of the 'minimal-spectral-radius PDIRK methods' as a function of m. In particular, in Section 3 we 
consider the rate of convergence (Table 3.1) and the effect on the stability of the various predictors (Table 3.2), and in 
Section 4 we consider the magnitude of the principal stiff error constants (Tables 4.2 and 4.3). 

Option 3 offers an alternative to option 2 and directly addresses the truncation error of PDIRK methods when 
applied to stiff systems. In this paper, we present preliminary results for the simple inhomogeneous test equation 
y'(t) = A.y(t) + g(t). This approach is a special case of a more general treatment of minimizing stiff error constants which 
will be reported in [1]. · 

3. Convergence and Stability 
We shall investigate convergence and stability by means of the scalar test equation y' = A.y. Note that for this 

simple test equation the particular strategy used in the inner iterations is not relevant. For a rigorous convergence 
analysis of parallel RK methods containing the PDIRK methods of this paper we refer to Jackson and N0rseu [9, 10]. 

3 .1. Rate of convergence 
From (2.2) it can be deduced that the iteration error satisfies the recursion 

(3.1) U - Yn+l = Z(z) (U - y(m-1)) = ... = zm(z)(U - y(O)), Z(z) := zD[I- zD]-1 [D-lA- I], z := A.h. 

The region in the complex z-plane where zm(z) ~ 0 form ~ oo will be called the region of convergence. We define the 
iteration function C of the PDIRK method by the spectral radius of Z(z), i.e., 

(3.2) C(z) := p(Z(z)) = p(zD[I - zD]-1 [D-lA- I]). 
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Evidently, the region of convergence is detennined by the set of points where C(z) < 1. The rate of convergence is larger 
as the nonn of C(z) is smaller in the region of relevant values of z. Thus, adopting the maximum norm, we are led to 
the minimization of C(z) in this region. In this connection we introduce the following definition: 

Definition 3.1. A PDIRK method is said to be strongly A-convergent if its iteration function C(z) ~TI < l in the whole 
left halfplane Re z < 0. If, in addition, C(-oo) = 0, then the PDIRK method is called L-convergent. [J 

First we consider the constant Si_ case which is of interest in the case of fixed-number-of-iterations methods. 

Theorem 3.1. If D has constant, positive diagonal elements, then minimization of p(D-1 A - I) implies that the norm of 
C(z) is minimized in (any region of) the left halfplane. 

Proof. If D = ol, we,may write C(z) = lozl p(A/o - I) I 11 - ozl. In the left halfplane, the maximum of the function 
loz/(1 - Sz)I does not depend on S, provided that S>O. Hence, the norm of C(z) is minimized if p(D-1 A - I) is 
minimized. [] 

In the case where D does not have constant diagonal entries, we cannot derive such a simple expression for C(z), 
and a numerical search is needed to find the matrix D that minimizes the norm of C(z) in the left halfplane. However, 
our numerical experiments revealed that also in the nonconstant Si case the minimization of p(n-1 A - I) yields fast 
converging PDIRK methods and that llCll := max {C(z): Re(z) ~ O} is considerably smaller than in the constant Oi case. 

Example 3.1. We consider anexample of the fixed-number-of-iterations methods studied in [8] which is based on the 
third-order Radau IIA corrector. For 

1 ( 5 -1) m = 3, A =IT 9 3 , D = SI, s = 0.43586650 

this leads to a third-order, L-stable PDIRK method. The convergence function associated with this method is given by 
C(z) = ISzl p(A/S - I) I 11 - Szl where p(A/S - I) = ()-1 (1/6 - 2S/3 + S2)1' 2• Setting S = 0.43586650 we find that 
C(z) < 0.59 in the whole left halfplane. Among the methods with D = SI this method is almost optimal (the 
minimizing value is given by S = 1/2 leading to C(z) < "173 == 0.577). 

Next, we consider the case where D minimizes p(D-lA - I). In [7] it was shown that the method can be made L­
convergent (i.e., has vanishing p(D-lA - I)) for S1 = (4 - {6)/6 and 02 = (4 + {6}/10. The corresponding matrix Z(z) is 
easily computed, yielding llCll == 0.262. [] 

Table 3.1 lists the llCll-values for a number of minimal-spectral-radius PDIRK methods. These methods are based 
on Radau IIA correctors and on the so-called Lagrange correctors derived in [7]. The Lagrange methods are strongly A­
stable, stiffly accurate collocation methods which are completely determined by the collocation vector c (see Table 3.1 ). 
Their stage order is one higher than that of the Radau IIA methods which was achieved by using one explicit and k 
implicit stages. However, they do not possess the superconvergence property of the Radau methods, so that the 
computation of the nonstiff solution components is considerably less accurate. 

For the Radau IIA and Lagrange correctors with k implicit stages, the iteration parameters are contained in the 
matrices DicR. and Did,: 

(3.3a) 1 (20-5f6 0 ) 
D2R = 30 0 12+3f6 , D3R = 

D - ( 4(;,+1) O J (3.3b) 2L- 1 • D3L= 
0 

6(f2-1) 

4365 13624 0 0 

O ill.!.o D 7373 ' 4R = 
0 0 ill7. 

5077 

055 
9532 ° 0 0 

531 
0 5956 ° 0 

0 0 !ill. 0 
8094 

0 0 0 ~ 
7919 

5147 
0 0 0 2246 38467 T0669 0 0 1983 

2537 0 0 
17459 ° 0 

0 8794 , D4L= 3197 
0 3026 0 0 i'4ci90 0 0 

8923 
0 0 0 

3086 
12339 

Table 3.1 shows that these methods can all be made strongly A-convergent, and that only the methods based on a 
two-stage corrector are L-convergent (see also [7]). Furthermore, we observe that the rates of convergence of the 
Lagrange-based methods are slightly better. Hence, together with their increased stage order, the Lagrange correctors 
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seem to be attractive alternatives to the Radau correctors in problems where the order of accuracy is determined by the 
stage order. However, in problems where, apart from the stage order, the nonstiff (or, classical) order is important, the 
superconvergent Radau correctors are to be preferred. As to the llCll-values given in Table 3.1, it should be remarked that 
these are 'worst case' values, that is, in actual computation, where the relevant values of z are located in a restricted 
region of the left halfplane, the corresponding bound on C(z) may be much smaller. 

Corrector k 

Table 3.1. llCll-values for minimal-spectral-radius PDIRK methods 
based on Radau IIA and Lagrange correctors. 

llCll strongly A-convergent L-convergent 

------------------------------------------------------------------
RadauIIA 2 0.262 yes yes 

3 0.401 yes no 
4 0.527 yes no 

Lagrange 2 c = (3/4,l)T 0.182 yes yes 
3 c = (7/12,5/6,l)T 0.403 yes no 
4 c = (1/6,7/12,11/12,l)T 0.404 yes no 

3.2. Region of stability 
In order to investigate the stability properties of PDIRK methods we have to specify the predictor formula. The 

stability of PD IRK methods using the one-step predictor (2.5) was extensively discussed in [8] for the case where Yn+ 1 
is defined by the (2.4). For the case (2.3b) considered in this paper, we have the following theorems: 

Theorem 3.2. For the equation y' = A,y the PDIRK solution generated by { (2.3), (2.5)} satisfies the recursion 

Yn+l = Rm(z)yn. Rm(z) := R(z)- Em(z), 

Em(z) := bT A-lzm(z){[I - zA]-1 [e + za] - [I- zB]-1 [I+ zE] e ), R(z) := 1 + zbo + zbT[I - zA]-l[e + za]. 

Here, R(z) is the stability function of the corrector reducing to R(z) = eic Tu - zA]-1 [ e + za] in the stiffly accurate case. 

Proof. From the relations 

(3.4) y(O) = [I - zBJ-1 [I+ zE] eyn. U = [I - zA]-1 [e + za] Yn. 

it follows that 

(3.5) U • Yn+l = zm(z)( U - y(O)) = zm(z)([I- zAJ-1 [e + za] - [I - zBJ-1 [I+ zE] e)Yn· 

Hence, from the step point formula (2.3b) we obtain 

Furthermore, introducing the stability function R(z) of the corrector, we may write 

(3.7) Un+l = R(z)yn. 

where R(z) is defined in the theorem. From (3.6) and (3.7) the assertion of the theorem is immediate. [] 

Theorem 3.3. For the equation y' = 'Ay the PDIRK solution generated by { (2.3), (2.6)} satisfies the recursion 

( Yn+l) = Mm(z) (Yn), 
Yn+l Yn 

where Mm(z) is the amplification matrix 

M () ·== ( I 0 )-l ( zm(z) [I-zB]-lV 
m z . -bTA-1 1 0T 

[I-zm(z)][I-zA]-l[e+za] + zm(z) [I-zB]-lv ) . 
1 + boz - bTA-l[e+za] 
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Proof. By means of the equation for U given in (3.4), relation (3.5) and 

(3.8) y(O) = [I - zBJ-1[VYn + vynJ 

we derive that 

(3.9) Y n+ 1 = zm(z) [I - zBJ-1 VY n + ([I -zm(z))[I - zAJ-1 [e + za] + zrn(z) [I - zBJ-1v )Yn· 

Together with the step-point formula (2.3b) the one-step recursion of the theorem is easily obtained.[] 

With the amplification matrix Mrn(z) we associate the stability function 

(3.10) Rrn(z) := pCMrn(z)), 

where p(Mrn) denotes the spectral radius of the matrix Mm. The region in the complex z-plane where Rrn(z) < l for all m greater than or equal to some given integer merit will be called the region of stability associated with merit· 

Table 3.2a. Values of merit of minimal-spectral-radius PDIRK methods for various PC pairs 
-----------------------------------/ Corrector LSP EXP IEP BDP 
-----------------------------------RadauIIA k=2 l 1 l l 

k=3 5 5 2 4 
k=4 7 7 4 7 

Lagrange k=2 2 2 2 2 
k=3 3 3 3 3 
k=4 6 7 5 6 

-----------------------------------

Table 3.2b. Values of a=cx(m) of minimal-spectral-radius PD IRK methods for various PC pairs 
-------------------------------------~-------------------Predictor Corrector k m==l m=2 m=3 m=4 m=5 m::6 m=7 
----------------~-------------------~-----------~~-----LSP RadauIIA 2 90 

EXP 90 
IBP 90 
BDP 90 
LSP 3 * * 81.9 89.94 90 
EXP ... * 64.7 88.7 90 
IBP 87.5 90 
BDP 65.0 81.8 88.4 90 
LSP ... ... ... 40.3 80.5 88.5 90 EXP ... * ... ... 70.3 84.2 90 
IEP 4 60.2 75.9 86.l 90 
BDP 43.0 14.6 67.1 78.2 84.6 88.6 90 ......................................................................................................... 
LSP Lagrange 2 ... 90 
EXP * 90 
IBP 86.5 90 
BDP 89.82 90 
LSP 3 ... * 90 
EXP * ... 90 
IBP 77.2 * 90 
BDP 83.4 ... 90 
LSP 4 * * ... 60.8 86.7 90 
EXP * * * * 73.0 88.0 90 
IEP 51.6 * * 86.5 90 
BDP 48.8 * * 79.9 87.6 90 
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For future reference, we have computed the value of 11lcrit for a number of predictor-corrector (PC) pairs. For the 
correctors we again chose the Radau IIA methods and the Lagrange methods of Section 3.1. The predictors are those 
defined in Section 2.4 and the matrices Dare defined according to the minimal-spectral-radius option (see (3.3)). Table 
3.2a shows that merit increases if the number of stages of the corrector increases. However, in actual computation, the 
minimal number of iterations may be much smaller because many stiff problems require only A(a)-stability. This 
means that automatic codes based on PDffiK methods are likely to choose the number of iterations not larger than 
necessary to ensure a stable performance. Table 3.2b presents the corresponding angles a (in degrees) as a function of m 
(lack of A(O)-stability is indicated by•). The results illustrate the favourable A(a)-stability characteristics of minimal­
spectral-radius PDffiK methods after only a few iterations. In general, the implicit predictors IEP and BDP possess (of 
course) larger stability angles a than the explicit predictors LSP and EXP, even if we take into account that the implicit 
predictors require extra computational effort roughly comparable with an additional iteration. Furthermore, if we 
compare IBP and BDP, then IEP has the best stability characteristics (in particular for Radau-based methods). However, 
the overall efficiency will be reduced because of its low-order of accuracy. Therefore, we drop the low-order predictors 
LSP and IEP and recommend either the EXP or BDP predictor. 

4. The Error Functions for the Linear Inhomogeneous Test Equation 
The following theorem presents a result for general RK methods derived in [2]: 

Theorem 4.1. For RK methods the global error eii when applied to the test equation y'(t) = A.y(t) + g(t) satisfies 

where Yex(t) denotes the exact solution of the test ~qation.,R(z) i~ the stability function of the RK method and q is its 
stage order (i.e., the largest integer such that 1 - jb T cJ-1 = c.l - jAcJ-1 = O for j = 1, ... , q). [] 

We shall prove a similar theorem for PDffiK methods employing one-step predictors. As before, the simplicity of 
the test equation y'(t) = A.y(t) + g(t) implies that the particular strategy used in the inner iteration process is not relevant 

In the following, y(t) denotes the locally exact solution at tn. i.e., Yn = y(tn). It is straightforwardly verified that 
for the linear inhomogeneous equation the recursion (3.5) changes to 

(4.1) U - Y n+l = zm(z)( U - y(O) + h z-l [g(tne +he) - g(tne + he*)J). 

Assuming that g is sufficiently differentiable, we may write for any fixed vector v 

(4.2) 

Hence, 

"'\:"' 1 . (j) 1 "'\:"' 1 . (j) . 1 . 
g(tne + hv) = £..J 1 (hv).l g (tn) = -h k 1 hi y (tn) [jvJ- - zvJ) . 

. 0 J. . 0 J. 
J= J= 

h [g(tne +he) - g(tne +he*)] = L ~ 'Yj(Z.) hi yG>(tn), 'Yj(z) := jcj-1 - zci - j(e*)j-1 + z(c*~. 
j=l 

Furthermore, it follows from (2.1) that 

U = [I - zAJ-1 [y(tn)e + hy'(tn)a + hAg(tne +he)], 

so that 

(4.3a) "'\:"' l '(j) 1 ·1 . u = Yne + £..J 1 Cj(Z) hi y (tn), c1 (z) := c, Cj(Z) := [I - zA]- A uc1- -zc.l], j ;;:: 2. 
j=l J. 

4.1. One-step predictors 
Let us assume that y(O) is provided by a one-step formula, then it can also be expanded in terms of a similar 

Taylor series with coefficients Cj*(z): 

(4.3b) y(O) == Yne + Ii ~ cj"'(z) hi y(i)(tn). 
j=l J. 
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Thus, 

(4.4) U - Yn+l = zm(z) I, Qj(z) hi yCD(tn), Q1(z) := c* - c1*(z), Qj(Z) := t [cj(z) - cj*(z) + z-1yj(z)], j ~ 2. . 1 J. J= 

Assuming that c1 *(z) does not depend on z, we may choose in (2.3) c* = q *so that cu(z) vanishes. Using the relation 

the iteration error (4.4) can be expanded in terms of derivatives of the exact solution. We obtain 

(4.4') U - Y n+l = zm(z) I, qj(Z) (zi [Yn - Yex(tn)] +hi Yex(j)(tn)). 
j=2 

As 

(4.5) Un+l -Yn+l = bTA-l [U - Yn+ll. 

we find 

(4.6a) Un+l - Yn+l = Sm(zjhn - Yex(tn)] + I, Qmj(Z) hi Yex(j)(tn), 
j=2 

(4.6b) Sm(Z) := bTA-1 zm(z) I, Qj(Z) zi, Qmj(Z) := bTA-1 zm(z)qj(Z). 
j=2 

Applying Theorem 4.1 to the corrector at the point tn with en= Yn - Yex(tn) yields 

hence, 
Yn+l - Yex(tn+l) = Yn+l - Un+l + Un+l -Yex(tn+l) = Yn+l - Un+l + R(z) [Yn - Yex(tn)J + O(M+1). 

Thus, using (4.6) we obtain 

(4.8) Yn+l - Yex(tn+l) = (R(z) - Sm(z)) [Yn - Yex(tn)] - L Qmj(Z) hi YexG>(tn) + O(M+l ). 
j=2 

The functions Qmj(z) will be called the error functions of the PDIRK method. 
Finally, we show that the function R(z) - Sm(z) is identical with the stability function Rm of the PDIRK method. 

For that purpose, we consider the particular case where the inhomogeneous term g vanishes. It is easily verified that we 
then may write 

(4.9) Yn+l - Yex(tn+l) = Rm(z) [Yn - Yex(tn)] + (Rm(z) - ez) Yex(tn), g = 0. 

Now, suppose that the initial value YO tends to zero. Then, Yex(t) also tends to zero. Since (4.8) holds for vanishing g 
too, it follows that Rm(z) = R(z) - Sm(z). Notice that in the case of the predictor (2.5) the functions Sm(z) and Em(z) as 
defined in Theorem 3.2 are apparently identical. Thus, we have proved the following PD IRK analogue of Theorem 4.1: 

Theorem 4.2. For one-step predictors possessing the expansion (4.3b) with c* = q* the global error of PDIRK methods when applied to the test equation y'(t) = A.y(t) + g(t) satisfies the recursion 

Yn+l - Yex(tn+l) = Rm(z) [Yn - Yex(tn)] - L Qmj(Z) hi Yex(j)(tn) + O(hq+l ), 
j=2 

Rm(Z) = R(z)- Sm(Z), Sm(z) := bTA-1 zm(z) L qj(z) z.i, Qmj(Z) := bTA-1 zm(z)qj(Z), 
j=2 

where q is the stage order of the corrector, and R(z) and Rm(z) are the stability functions of the corrector and the PD IRK 
method, respectively.[] 
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This theorem shows that the stage order of PDIRK methods is only one, unless the error function Qn2(z) is 

identically zero for them-value used (this is not surprising because formally PDIRK methods are just DIRK methods 

which are known to have stage order one). However, a8 all error functions Qmj(Z) contain the factor zm(z), their 

maximal values IQnjl are expected to decrease rapidly with m in any region of the left halfplane, so that effectively the 

stage order shown in actual computation is much higher. 
The following corollary presents an explicit expression of Qnj for the predictor (2.5). 

Corollary 4.1. For the predictor (2.5) the error functions are given by 

where c* := (B + E)e. 

Proof. In the case (2.5) the expansion (4.3b) becomes 

so that 

y(O) =[I - zB]-1 ([I+ zE] y(tn)e + hEg(tn)e + hBg(tne +he*)) 

= y(tn)e + [I/zBJ-1 (E hy'(tn)e + B L ~ hi y(i)(tn) fj(c*).i-1 - z(c*).iJ), 
. 1 J. 
J= 

q *(z) = [I - zB]-1 (Ee+ Be - zBc*) = c* = (B + E)e, Cj*(z) = [I - zBJ-1 zB fjz-l(c*).i-1 - (c*).i], j;;::: 2. 

By virtue of Theorem 4.2 we may write 

Qnj(Z) = bT A-1 zm(z)qj(Z) = ~ b T A-1 zm(z) [Cj(Z) - Cj*(z) + z-lyj(Z)] = 
J. 

= ~1 b T A-1 zm(z)z-1( (I - zAYluci-1 - zci] - [I - zB]-lfj(c*).i-1 - z(c*).iJ) 
J. 

By means of the simplifying condition C(q) associated with (2.1) (cf. [3]), we obtain the relation jAcj-1=ciforj=2, 

... , q which leads to the result of the corollary.[] 

4.2. Last step-value predictor with constant iteration parameters 
In the case of the predictor LSP (predictor (2.5) with B = E = 0) with constant iteration parameters (D = SI), the 

error functions Qnj(z) can be factorized into factors that depend on z and factors that do not depend on z. This enables us 

to derive an explicit upper bound for Qmj(Z). 

Theorem 4.3. Let D=SI and let the predictor be given by (2.5). Then the error function bound in a region lR is given by 

If lR is the infinite wedge defined by W:= (z: n/2 :5: <I> :5: arg(z) :5: n, -n :5: arg(z) :5:-<!>}, then 

d(m) = ( ) 12 , 
m(l - XmCOS(<j>)) m 

where xm is the positive root of the equation x2 - (2 - m) x cos(<!>) - m + 1=0. 

Proof. The expression for the error bound IQmjlJR immediately follows from Corollary 4.1. In order to derive an 

expression for the function d(m) we first observe that 

1-z-I = lzl , 
l - z .Y l - 21zl cos(arg(z)) + lzl2 

where rc/2:.,; arg(z):.,; nor -1t:.,; arg(z) :5: -n/2. Hence, 
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I zm-1 I lzlm-1 
(1 - z)m = [1 - 21zlcos(arg(z)) + lzl2]m/2 ' 

Since the function zm-1(1-z)-m is analytic, its maximum value in W is assumed at a point on the line arg(z)=Cj>. An 
elementary calculation reveals that the modulus of this point is given by the positive root Xm of the quadratic equation 
x2 - (2 - m)cos(cj>)x - m + 1 = 0. This leads us to the bound d(m) given in the theorem. [] 

This theorem shows that in the case where the relevant z-values are in an infinite wedge W, the optimal choice of 
the matrix D = SI does not depend on W. Furthermore, the function d(m) is slowly varying with m. This can be 
concluded from the extreme case~ere R is either only the negative axis or the whole left halfplane. We then have, 
respectively, Xm=m-1 and Xm=V m-1, which yields 

1 ( 1 )m 1 ( 1 )m/2 d(m) = - 1 - - and d(m) = -- 1 - - . 
m-1 m -'1 m-l m 

Thus, within a few iterations the function d(m) slowly converges to zero. 
It is of interest to compare the error functions Qj(z) of conventional DIRK methods (cf. Theorem 4.1) with the 

error functions Om1(z) of PDIRK methods. Table 4.1 presents a comparison for two conventional Nf,llrsett-DIRK 
methods [11] and a few L-stable, fixed-number-of-iterations PDIRK methods constructed according to option 1 [8]. In 
this table, k denotes the number of processors needed, p* is the order of the method, and m denotes the number of 
sequential stages per step (ti(>th for the Nf,llrsett-DIRK and PD IRK methods). Clearly, the PDIRK methods possess 
considerably smaller error bounds. 

Table 4.1. Values of IQjlR and IOmjlR with R = (z: Re z ~ O} for the 
Nf,llrsett-DIRK methods and fixed-number-of-iteratiqns PDIRK methods. 

-----------:------------------------------------------------
Method I PC pair k Si m p* j=2 j=3 j=4 j=5 

-----------------------------------------------------------
Nf,llrsett-DIRK 1 2 3 0.144 0.076 0.024 0.0055 
{LSP, Radau IIA} 2 0.43586650 3 3 0.024 0.015 0.005 0.0012 
{LSP, Lagrange} 2 0.43586650 3 3 0.038 0.015 0.005 0.0012 

Nf,llrsett-DIRK l 3 4 0.112 0.054 0.015 0.0040 
(LSP, Radau IIA} 3 0.278053841 5 5 0.019 0.006 0.0014 0.0003 
(LSP, Lagrange} 3 0.572816063 4 4 0.046 0.013 0.0001 0.0012 

(LSP, Lagrange} 4 0.278053841 5 5 0.025 0.005 0.0001 0.0001 

-----------------------------------------------------------

4.3. Minimal-spectral-radius PDIRK methods 
Table 4.2 lists values of IQrojlR with R = {z: Re z ~ O} for minimal-spectral-radius PDIRK methods (option 2), 

based on (LSP, Radau IIA} pairs and using the iteration parameters given in (3.3). It turns out that form> p* the error 
constants decrease by an almost constant reduction factor r as m increases by 1 and that they are substantially smaller 
than those of the fixed-number-of-iterations PDIRK methods of Table 4.1 (notice that r is almost independent of j). 

Table 4.2. Values of the error constants for minimal-spectral-radius PDIRK methods. 
------------------------------------------------------------

PC pair k m p* j=2 j=3 j=4 j=5 

-----------------------------------------------------------
(LSP, Radau IIA} 2 2 2 0.0249 0.0263 0.0102 0.0027 

3 3 0.0060 0.0062 0.0024 0.0006 
3 r = .25 r"' .25 r = .25 r"' .25 

{LSP, Radau IIA} 3 3 3 0.0360 0.0086 0.0027 0.00076 
4 4 0.0138 0.0031 0.0009 0.00025 
5 5 0.0052 0.0012 0.0003 0.00009 

5 r= .40 r == .38 r"' .39 r"" .38 
{LSP, Radau IIA} 4 5 5 0.0153 0.00098 0.000031 0.00004 

6 6 0.0079 0.00051 0.000016 0.00002 
7 7 0.0041 0.00027 0.000008 0.00001 

7 r= .50 r"' .52 r"" .50 r"" .52 
-----------------------------------------------------------------------
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For future reference, we give a survey of the principal stiff error constants 1Qm21R wi:th R = {z: Re z ~ O} for a 
number of PC pairs. In Table 4.3, p denotes the order of the corrector and the order of the iterated method is in all cases 
given by p* = min {p,m}. From these results we conclude that the explicit predictor LSP leads to slightly smaller 
principal error constants than the implicit predictor IEP, provided that we count the application of IEP as an additional 
iteration. Furthermore, the Lagrange-based methods show considerably smaller error constants. However, we should bear 
in mind that the nonstiff error constants of the Radau-based methods decrease much faster than those of the Lagrange­
based methods because of the high (nonstiff) orders of the Radau correctors. Finally, note that the reduction factors are 
very close to the llCll-values listed in Table 3.1 

Table 4.3. Values of the principal error constant for minimal-spectral-radius PDIRK methods. 

-----------------------------------------------------
Method k p m=k m=k+l m=k+2 r 

-----------------------------------------------------
{LSP,Radau IIA} 2 3 0.025 0.0060 0.0015 0.25 
{IEP, Radau IIA} 2 3 0.024 0.0059 0.0015 0.25 
{LSP,Lagrange} 2 3 0.013 0.0023 0.0004 0.18 
{IEP, Lagrange} 2 3 0.006 0.0011 0.0002 0.18 

{LSP, Radau IIA} 3 5 0.036 0.0138 0.0052 0.40 
{IEP, Radau IIA} 3 5 0.014 0.0053 0.0020 0.41 
{LSP, Lagrange} 3 4 0.008 0.0034 0.0014 0.40 
{IEP, Lagrange} 3 4 0.004 0.0018 0.0007 0.40 

{LSP ~c;1u IIA} 4 7 0.027 0.0153 0.0079 0.50 
{IEP, ulIA} 4 7 0.017 0.0088 0.0044 0.50 
{LSP, Lagrange} 4 5 0.022 0.0092 0.0037 0.40 
{IEP, Lagrange} 4 5 0.013 0.0054 0.0021 0.40 ____ .,. _________________________________________________ 

5. Concluding Remarks 
In this paper, we have studied special characteristics, such as the rate of convergence, the (linear) stability, and the 

stiff error constants, of PDIRK methods based on Radau IIA and Lagrange correctors using various types of iteration 
parameters and predictors. The minimal-spectral-radius methods tum out to be either comparable or superior to fixed­
number-of-iterations methods. Confining our considerations to minimal-spectral-radius methods, the following 
conclusions can be drawn from our analysis: 

Rate of convergence: 

Linear stability: 

Order reduction: 

Lagrange correctors are superior to Radau corrector fork= 2 or k = 4 
For k = 3, these correctors are comparable. 

Lagrange correctors are slightly superior to Radau correctors 
The implicit predictors IEP and BDP are superior to explicit predictors EXP and LSP. 

Lagrange correctors are superior to Radau correctors (both with respect to the stage order 
and the magnitude of the error constants) 
The explicit predictor LSP is slightly superior to the implicit predictor IEP. 

Nonstiff error constants: The two-stage Radau corrector is comparable with the two-stage Lagrange corrector 
Radau correctors are by far superior to Lagrange correctors for k > 2 
The predictors EXP and BDP are by far superior to the predictors LSP and IEP. 

By these conclusions, we are led to recommend PDIRK methods using an {EXP, Radau} PC pair and the minimal­
spectral-radius iteration strategy as the most efficient in the class of PDIRK methods. 
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