1991

M.l. Kanovich

Fast theorem proving in
intuitionistic propositional logic

Computer Science/Department of Software Technology Report CS-R9157 December

CWI vationaal instituut voor onderzoek op het gebied van wiskunde en informatica

CWI is the research institute of the Stichting Mathematisch Centrum, which
was founded on February 11, 1946, as a non-profit institution aiming at the
promotion of mathematics, computer science, and their applications. It is
sponsored by the Dutch Government through the Netherlands organization
for scientific research (NWO).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Fast Theorem Proving
in
Intuitionistic Propositional Logic

Max I. KANOVICH
Tvef State University, Tver 170000, USSR and
CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Abstract

The decision problem for Intuitionistic Propositional Logic Int is considered:
(1) A computational semantics is introduced for relational knowledge bases. Our semantics
naturally arises from practical experience of databases and knowledge bases.
It is stated that the corresponding logic coincides exactly with the intuitionistic one.
(1) Our methods of proof of the general theorems turn out to be very useful for designing
new efficient algorithms.

In particular, on the basis of a specific Calculus of Tasks related to this compu-
tational interpretation, an efficient prove-or-disprove algorithm is designed with the
following properties:
e For an arbitrary intuitionistic propositional formula, the algorithm runs in linear
deterministic space,
e For every ‘reasonable’ formula, the algorithm runs in ‘reasonable’ time, despite of
the fact that in theory it has an ‘exponential’ uniform lower bound.

Note that in view of the PSPACE-completeness of Propositional Intuitionistic Logic
an exponential execution time can be expected in the worst case. But such cases only
arise for very unnatural formulas, i.e., for formulas that even in their best solutions
need maximal cross-linking of all their possible subtasks.

The theorem prover has been implemented in PASCAL.
Mathematics Subject Classification: Primary 68P15; Secondary 68N05.

CR Categories: F.2.2, F.3.1,1.2.3,1.2.4.
Keywords and Phrases: Theorem Proving, Complexity, Intuitionism.

Note: The author was sponsored by project NF 102/62-356 (‘Structural and Semantic Parallels
in Natural Languages and Programming Languages’), funded by the Netherlands Organization
for the Advancement of Research (N.W.0.).

Report CS-R9157

ISSN 0169-118X

CcwiI

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1

Contents

1

What we used to have before
1.1 Intuitionistic Logic as a Logic of Tasks
1.2 The decision problem for Int

What we have got now
2.1 The precise computational interpretation
2.2 Efficient decision algorithms

The means that were used

3.1 From Formulasto Tasks
3.2 A formula as a Knowledge base
3.3 The formal definition of a Knowledge base
3.4 A basic formula as a constraint, or a dependency

What does ‘BE SOLVABLE’ mean ?
4.1 Relational databases

The Calculus of Tasks

5.1 The language of the Calculus of Tasks
5.2 Axioms for the Calculus of Tasks
5.3 Inference Rules for the Calculus of Tasks . . .
5.4 The programmer’s interpretation of the Calculus

..................

..................

..................

..................

of Tasks

5.5 The Calculus of Tasks is an information preserving calculus

5.6 Kripke models vs Databases

Complexity of the Decision Problem for Int

6.1 The Algorithm of Analysis and Synthesis

6.2 Space Complexity of the Decision Problem for Int
6.3 Subtasks and Measure of Unnaturalness

6.4 Non-uniform upper bound for Time Complexity .

6.5 Subtask Interaction vs Embedding of Subtasks

Finite vs. Infinite Knowledge Bases

Conclusion

..................

.................

W

- ow W

D O OT O

~ =

10
10
10
10
11
11
12

12
12
12
13
13
14

15

15

1 What we used to have before

Let us observe some problems that have arisen in relation with Intuitionistic Propositional Logic
Int.

1.1 Intuitionistic Logic as a Logic of Tasks

Starting with A.Kolmogorov and A.Heyting there were many attempts to interpret Int
as a logic of tasks. S.Kleene and Ju.Medvedev were probably the first who proposed
an explicit formalization for Int. Unfortunately, all known natural formalizations have led to
logics that are essentially stronger than Int. Moreover, for the propositional logic of Kleene’s
realizability, nobody knows whether this logic is decidable or not.

When I started this study in relation with the problem of so-called program synthesis, I (like
the most mathematical logicians) was convinced that the corresponding logic would be stronger
than Int and, probably, undecidable. ?

It should be noted that most troubles are originating from implication and disjunction.

1.2 The decision problem for Int

Exponential time. It is well-known that Int is PSPACE-complete [Statman 79]. Moreover, we
have a uniform ‘exponential’ lower bound, i.e., almost all formulas may require exponential
time to be recognized.

Space of the 4th degree. It follows from results of [Ladner 77] that Int can be solved in
space

o(L*%),

where L is the size of a formula.

As for the decision complexity, most troubles are originating also from implication and, espe-
cially, disjunction.

2 What we have got now
Let us present our results related to Int.

2.1 The precise computational interpretation

In contrast to what I had expected, I have failed to construct a ‘computational task’ that requires
super-intuitionistic rules.

! See comments of G.Mints [Mints 83] with respect to the system of automatical program synthesis PRIZ.

Moreover, to my surprise, I have been able to prove that Int is complete under a computational
interpretation related to relational databases.

Justifying this statement, a specific Calculus of Tasks has been invented along with the
corresponding Completeness Theorem.

2.2 Efficient decision algorithms

As a matter of fact, just the same Completeness Theorem yields very practical consequences for
running time and space:

Linear deterministic space. We can recognize Int in linear deterministic space
O(L).
It should be pointed out that such space is sufficient for the full set of intuitionistic
connectives.

Quasipolynomial time. We have established a non-uniform upper bound for running
time:
For a given propositional formula f, we can recognize whether it belongs to Int or not, in
running time, approximately,
Lr+1

where 7 is the measure of ‘unnaturalness’ of formula f:
even in its best solutions f needs cross-linking of, at least, » ‘subtasks’.

3 The means that were used

Now, I am going to present the main ideas of our computational interpretation:

¢ A formula is considered as an entity, or quantity. The domain of such an entity may

be infinite.

® An entity that represents an implication may be considered as an entity of ‘functional’
type, a possible value of such a ‘functional entity’ should be a program.

e Possible values of all the entities are collected into a database, relations between the
entities are perceived as constraints, or dependencies, for it.

* Justifying a formula means that the corresponding dependency is satisfied on all ‘admis-

sible’ databases.

The following notational conventions are followed throughout this paper:

(I) By
As, Bs and Cs
we denote positive literals, or names of ‘entities’.

(I) By
Xs, Ys, Ws and Zs

we will denote conjunctions of a number of positive literals.

(III) The ‘empty’ conjunction is denoted by @.

3.1 From Formulas to Tasks

Each propositional formula can easily be rewritten in the following form:
T+ Z ,

where T' is a multiset consisting of formulas of one of the following three basic forms:

(&) (X-Y),
) (X1-n)-Y),
(C) (X g (Y1 or Yg)) .

Such a Task Sequent I F Z is perceived as a computational task:

Task: Given all laws and dependecies from T', compute Z.

Example 3.1 Introducing new names F and G, the propositional formula
((A&B - C) - (A— (B — (C)))
can be represented by the following task sequent

(B— C)— F),(F&B — C),((A - F) - G),(G&A — F),(A&B — C) + G .

3.2 A formula as a Knowledge base

The left side I' of a Task Sequent I' F Z contains all informations that can be used for
computing Z and, hence, represents, so to say, a knowledge base, i.e. the collection of all laws
and dependencies related to our problem.

3.3 The formal definition of a Knowledge base
Now, we give a formal definition of a relational knowledge base:
A relational knowledge base is a tuple

KB = (Names, Functs, Doms, Deps)

where

(1)

(2)

(4)

Names = (A1, A2,...,4n,...)

is a recursively enumerable sequence of literals or, in other words, names of “entities” (or
“attributes”).

The set Names is divided into two parts: some entities are declared as “functional enti-
ties”.
Functs is a recursively enumerable set of names of all “functional entities” together with

their finite types:
the type of a functional entity F is an expression of the form

(Xl - },l),
this X; is called “the argument list”.

Doms is a recursively enumerable sequence of domains of entities from Names: the domain
of entity V is denoted by Dom(V).
(An empty entity B such that Dom(B) is empty may be considered).

For X, Dom(X) is the Cartesian product of domains of all entities from X.

The crucial point of the definition is that, for functional entities, we require that in
order to specify some concrete value of a functional entity it is not sufficient to give its
set-theoretical description; instead, it is necessary to present a program calculating this
function. Therefore, the domain of a functional entity F of the type (X; — Y1) is defined
to be the set of all programs mapping Dom(X;) into Dom(Y7).

Deps is a recursively enumerable set of laws, constraints, dependencies etc. connected with
our problem area.

Example 3.2 (continues Ezample 3.1) We may say that there are

@

(1)

two functional entities:
F of the type (B — C) and
G of the type (A — F), and

one dependency:

(A&B — C).

3.4 A basic formula as a constraint, or a dependency

Each basic formula is considered as a representation of some constraint:

(a)

An implication (X — Y) should be perceived as the assertion:

“There is a COMPUTABLE function (a functional of higher type) from Dom(X)
into Dom(Y)”. 2

%It should be noted that names of functional entities may be contained in X and Y.

(b) An embedded implication

(F-Y)
where F is a functional entity of type (X1 — Y1) .

(¢) ‘Variant dependency’

Y; and Y, are called “alternative lists”.

4 What does ‘BE SOLVABLE’ mean ?

(X = (Y1 0r Y?2))

(X1 -1)—-7Y)

is treated as the ‘simple’ implication

should be taken as the assertion:

“For some values of X, the values of Y; can be calculated, and, for the rest of
the values of X, the values of Y, can be computed”.

4.1 Relational databases

As models for a knowledge base we consider relational databases:

First, define the notion of a “possible state”. We assume that there is a symbol UNDEF that
represents undefinedness.

Definition 4.1 A sequence

s=(a1,a2,...,an,..

)

where for every n, a, is from Dom(A,) or equals UNDEF , is called the state of an object.

Every a, is denoted also by A,(s) and is treated as

“the value of the entity A, in the state s”.
For X =

B, By, ..., we will write

X(s) = (Bi(s), Ba(s),-..),

if some Bj(s) is equal to UNDEF we shall take X (s) to be undefined:

X (s) = UNDEF .

Definition 4.2 An arbitrary set of states is called (an instance of) a database.

Example 4.1 (continues Ezample 3.2) We may consider the following database T":

where

A|B|C|F |G
11 1] 2]|p2|¢
112]|3|ps|gs
2| 1]3|p3|gs

p2 and p3 are programs transforming any input into 2 and 3, respectively,
g2 and g3 are programs transforming any input into p, and p3, respectively.

4.2 Four possible versions for ‘BE SOLVABLE’

We are interested in instances of databases that are consistent with all the laws from a given
relational knowledge base:

Definition 4.3 For basic dependencies:

(a)

(c)

We say that a ‘functional dependency’ (X — Y') is satisfied on an instance 7' if there exists
a program g mapping Dom(X) into Dom(Y') such that, for every state s from T, if X (s)
is defined then Y (s) is defined and Y (s) = g(X(s)).

An ‘operator dependency’ D : ((X; — Y;) — Y) is satisfied on an instance T if, for ev-
ery W, if the functional dependency (W&X; — Y7) is satisfied on T then the functional
dependency (W — Y) is satisfied on T'.

This item of the definition is based on the following

Principle of conservation: @ WHEN THE VALUES OF ENTITIES ARE KEPT FIXED, ALL
THE LAWS MUST BE PRESERVED.
That is to say:
For a given W, 3 let g be a program computing Y; from the conjunction W& X; on
the whole database T'.
When we fix values for the entities from W, say W = w, we thus truncate the
database. On the new database the dependency between X; and Y; becomes func-
tional, namely, one can extract a program p from g such that ¥; = p(X1) on the new
database. According to the operator dependency D, Y can be computed from p and,
finally, Y is computed from w. ¢

A variant dependency (X — (Y7 or Y3)) is said to be satisfied on an instance T if there
exists a program ¢ mapping Dom(X) into the set {1,2}, a program g; mapping Dom(X)
into Dom(Y1), and a program g; mapping Dom(X) into Dom(Y3) such that, for every
state s from T, if X (s) is defined then

1. if ¢(X(s)) = 1 then Yi(s) is defined and Y3(s) = ¢1(X(s)),

2. if ¢(X(s)) = 2 then Y(s) is defined and Y3(s) = g2(X(s)).

We say that an instance T is in full accordance with a functional entity F of the type
(Xl — Y1) lf

(a) for every state s from T, if both X;(s) and F(s) are defined then Y1(s) is defined and
Yi(s) = F(s)(X1(s)). ®
(b) the operator dependency ((X; — Y3) — F) is satisfied on 7.

Definition 4.4 An instance T is called consistent with a set of basic formulas T’ if

(1)

all the dependencies from I' are satisfied on T,

3For the weakest case, when W is empty, we have got a characterization related to modal logics S4 and S5.
“It should be noted that this item of the definition is also correlated with Kleene’s s-m-n theorem.
®Let us recall that F(s) is a program of the type- (X1 —-1).

(2) T is in full accordance with every functional entity F from T.

Definition 4.5 (Solvability) For a given class of instances K, we say that atask I' + Z
is K-solvable if, for every instance 7' from K, if T' is consistent with T', then the functional
dependency (@ — Z) is satisfied on T'.

Example 4.2 (continues Ezample /.1) It seems that the database T from Example 4.1 rejects
our valid formula from Example 3.1 because

(1) the dependency (A&B — C) is satisfied on T,
(2) T isin accordance with both functional entities F and G, but

(3) the dependency (@ — G) is not satisfied on T'.

The point is that there is no full accordance between T and F.

If we truncated T by setting:
A=1,

then, on the truncated database 7}:

A|B|C|F |G
11 1| 2|p2|q
12| 3|ps|gs

the relation between B and C became functional and, hence, F were not in accordance with 7}.

Theorem 4.1 (Robustness and Completeness) . For every V , let Dom(V) be infinite or
empty. 6
Let K be

(a) either the class of all databases, or

(b) the class of all finite databases.
Then, for a given task sequent . - Z the following sentences are equivalent pairwise:

(3) I' v Z is K-solvable,

(i) on replacing all computable functions with the corresponding set-theoretical functions in the
definitions related to the concept of consistent databases, the task T + Z is K-solvable
1n this new sense,

(iii) one can construct a program for the task T & Z

(w) T F Z can be derived in the Calculus of Tasks (see below).

8This hypothesis is essential!

Theorem 4.1 shows that all reasonable definitions are equivalent and demonstrates that our
definition of solvable tasks is very robust and does not depend on the particular choice of a level
of constructivity. 7

Corollary 4.1 Under the hypotheses of Theorem 4.1, a sequent

A, (9— X) &+ Z s derivable in the Calculus of Tasks if and only if, for every database
T (from K) that is consistent with A (saying nothing about (@ — X)), the functional
dependency (X — Z) is satisfied on T.

5 The Calculus of Tasks

All theorems are based on the Calculus of Tasks that operates with task sequents.

5.1 The language of the Calculus of Tasks

Let us recall that a task sequent is of the form
T+ 2Z ,

where T is a multiset consisting of formulas of one of the following three basic forms:

(a) (X-Y),

() (X1—-1M)-Y),

(c) (X->(MorYy)) .

5.2 Axioms for the Calculus of Tasks

Definition 5.1 For a sequent T F Z , by Out(I') we denote the set of all B such that a
formula of the form (@ — W1&B&W,) is contained in T'.

Definition 5.2 A sequent T F Z | is called an axiom if either

(a) Z is contained in Out(T'), or

(b) for some B such that Dom(B) is empty, B is contained in Out(T).

5.3 Inference Rules for the Calculus of Tasks

Let us give the inference rules for the Calculus of Tasks :

"Theorem 4.1 is valid for all finite knowledge bases. As for infinite knowledge bases cf. section 7

10

T, (X->Y)F Z B € Out(T)

Composition: T XEF ST Z
Composition’: L (XIT ((?&0; }3)()}{0?},2)) I—BZE' Out(T)
Branching: —> (2~ Y) F 2 L, (@-Y,) F Z

I @—- M orYs)) F Z

5.4 The programmer’s interpretation of the Calculus of Tasks

Each inference rule can be perceived as a formalization of a constructive step in a natural
reasoning related with a process of solving tasks:

(Composition) If a knowledge base contains a dependency (@ — B) (that means B is com-
puted) and a dependency (B — Y) (that means Y is computed from B) then we can
compute Y with the help of a composition and, therefore, the true law (@ — Y') can be
added to the knowledge base.

(Subprogram) If, for a functional entity F of the type (X; — Y7), we want to add the de-
pendency (@ — F) (“a procedure F is implemented”) to the set of laws T, then , in

advance, we must synthesize a subprogram for this F', in other words solve the ‘subtask’
I -X,) b 1p

(Branching) If, for a variant dependency (@ — (Y1 or Y3)) that means either Y; or Y; is com-
puted, we are able to solve both ‘subtasks” T, (@ -Yy) F Z and T, (0 —-Y2) F Z
then we can solve the main task.

Corollary 5.1 Taking into account what has been sa’+ a program can be extracted directly
from a derivation in the Calculus of Tasks .

Corollary 5.2 This minimal se. * rules of tasks reasoning turns out to cover all possible
rules of tasks reasoning on the , . opositional level.

i

5.5 The Calculus of Tasks is an information preserving calculus

We can used the liberty that is provided by the following strange corollary.

Corollary 5.3 None of the rules of the Calculus of Tasks does loose any information.
More specifically,

For the composition rule: its conclusion is derivable if and only if its premise is derivable.

11

For the subprogram rule: if its left premise is derivable then its conclusion is derivable if
and only if its right premise is derivable.

For the branching rule: its conclusion is derivable if and only if both its premises are deriv-
able.

5.6 Kripke models vs Databases
Our refutable database can be easily transformed into a Kripke model K that refutes the cor-
responding propositional formula f.

But there is no straightforward inverse transformation because such an inverse should
ensure the full accordance with all the functional entities, which is a very strong and tough
condition. In particular, considering “self- and cross-referential” functional entities and variant
dependencies, we need the recursion theorem and unbounded domains.

6 Complexity of the Decision Problem for Int

6.1 The Algorithm of Analysis and Synthesis

Let us consider the following algorithm based on the Calculus of Tasks .

Input. A tasksequent S: T F Z .
Output. A scheme program for S if S is solvable, or a refutable database , otherwise.

Method. A derivation of the sequent I' + Z is being searched for.

If this search is successful then the derivation is transformed into the scheme program for

S.

Otherwise, the answer is: “S is unsolvable” and the corresponding refutable database is
constructed.

Theorem 6.1 For each entity V, let Dom(V') be either infinite or empty. Then this algorithm
runs correctly on all finite task sequents.

6.2 Space Complexity of the Decision Problem for Int
Theorem 6.2 For a given sequent S: T + Z |, one can

(a) recognize whether S is solvable or not,
(b) construct a minimal scheme program for S,
in deterministic linear space

0(L)

where L 1is the number of all occurrences of literals in T.

12

Proof. We can search for a derivation of the sequent T F Z with the help of a depth-first
search.

Taking into account Corollary 5.3, for a given sequent T'; + Z; that is assigned to a vertex
of this search tree, the search stack needs to contain no more than

(1) anumber of names of ‘variant’ and ‘operator’ formulas (without repetitions),

(2) the set Out(T'y) (without repetitions).

Thus we get a linear bound on the stack size. O

6.3 Subtasks and Measure of Unnaturalness

Taking into account the PSPACE-completeness, all known algorithms of analysis and synthesis
are forced to perform an exponential search for “almost all” computational tasks. In spite of
this, all examples of “bad” tasks are unnatural.

We introduce some level (rank) r to task sequents, so that natural (realistic) tasks have a small
level 7.

Now let us explain what subtasks are and how they interact.

According to what has been said, in performing the task I' + Z there may appear ‘subtasks’,
e.g. in such cases as follows:

(a) For afunctional entity F of the type (X; — Y1), we must solve asubtask T, (@ — X;) + Y;
the input of it is the “argument list” X;.

)

(b) If we use a variant dependency (@ — (Y3 or Y3)) for computing some Z;, we have to solve
two subtasks

I‘, ((D—)Yl)l-Zl and I‘, (O—)Yz)*“Zl y
where the inputs of these subtasks are the “alternative lists” Y; and Y>.

In performing the main task, subtasks can interact, namely, we can solve a subtask provided
that values of inputs of some oth-r subtasks are given ii. addition. Embedding of subprograms
is related to this phenomenon.

Definition 6.1 (The degree of subtask interaction) For » given task sequent S, we say
that the degree of subtask interaction in S is not greater th:n r if there is a solution for
S such that the maximal number of subtasks with different inpuis which can interact in the
process of this solution does not exceed the integer r.

6.4 Non-uniform upper bound for Time Complexity
Theorem 6.3 For a given sequent S: T F Z |, one can

(a) recognize whether S is solvable or not,

13

(b) construct a program for S,

in quasipolynomial running time

L,n2_m3r

MG

where L is the number of all occurrences of literals in T,
n 1is the number of different literals from T,
m s the total number of different “argument lists” and
“alternative lists” from T,
7 1s the minimal degree of subtasks interaction
with which S can be solved.

In fact, our algorithm runs faster than in Theorem 6.3.

Let us consider small r.

Corollary 6.1 For all sequents with r = 0 (that corresponds to Horn clauses), our algorithm
runs in linear time.

If the minimal degree of subtasks interaction with which a task can be solved is equal to 1, we
say that this task is solvable with separable subtasks.

Corollary 6.2 Our algorithm runs in quadratic time for all task sequents that can be solved
with separable subtasks.

Corollary 6.3 We can solve task sequents with separable subtasks in parallel near-linear time.

6.5 Subtask Interaction vs Embedding of Subtasks

Finally, let Taskgmbedding=r be a set of all tasks for which there exist programs such that
embedding of their subprograms and conditional statements is not greater than r.

Theorem 6.4 For every r, this class is a proper subclass of the class of all tasks that are
solvable with degree r of subtasks interaction.

On the other hand, Theorem 4.1 implies

Corollary 6.4 For each entity V', let Dom(V') be either infinite or empty. Thenatask T + Z
18 solvable if and only if it is contained in the class Taskgmbedding=m ,
where m is the total number of different “argument lists” and “alternative lists” from T'.

Theorem 6.5 For a given task sequent S: T + Z |, we can
(a) recognize whether S is solvable or not,

14

(b) construct a program for S,
in quasipolynomial running time

O(L-n-m")
in linear space

o(I)

where 7 ts the minimal integer that
S is contained in the class TaskEmbedding=r-

Theorem 6.6 For every r, the class Task Embedding=r 1S Tunning in parallel near-linear time.

Summary: Treating task sequents on the basis of our calculus, an exponential execution time
should be expected in the worst case, as is customary.

But such cases arise for very unnatural tasks that need maximum cross-linking of all
possible subprograms, even in the best programs.

Our prover runs in polynomial time on all natural tasks; the degree of the polynomial is
determined by the minimal depth of interacting of subtasks that can be achieved in some
solution for the main task.

7 Finite vs. Infinite Knowledge Bases

It should be pointed out that Theorem 4.1 is valid for all infinite knowledge bases containing no
variant dependencies, as well as for many infinite knowledge bases having such dependencies.

Nevertheless, we can show an infinite knowledge base T’ (containing only a single variant depen-
dency) anda §: I + Z such that

(1) this S is solvable, but still

(2) there is no program for this S.

8 Conclusion

In conclusion it should be pointed out that
e In fact, our calculus works as a rewriting system,
by means of simplifying tasks and reducing them to equivalent ‘normal’ forms.

* On the basis of similar information preserving calculi one can get algorithms that run
in polynomial (and even linear or subquadratic) time also for

(1) the membership problem in the theory of relational databases with functional and
multivalued dependencies,

15

(2) recognizing the validity of Horn formulas in monadic predicate logic,

(3) flow analysis of “and-or” graphs,

(4) recognizing derivability of formulas of some kind in the classical and intuitionistic
propositional and modal calculi, etc.

A cknowledgements

I am gratefully indebted to Prof. Johan van Benthem and Prof. Jan van Eijck for providing
supportive and stimulating environments to present and discuss the work reported here.

I would like to thank my Dutch colleagues: Johan van Benthem, Jan van Eijck, Dick de Jongh,
Michel van Lambalgen, Fer-Jan de Vries, A.S.Troelstra and many others from the University of
Amsterdam and CWI for very useful and stimulating discussions. In particular, Jan van Eijck
gave valuable comments on the manuscript.

References
[AHU 76] A .Aho, J.Hopcroft and J.Ullman, The Design and Analysis of Computer Algo-
rithms, (1976).

[DK 85] A.Ja.Dikovskii and M.I.LKanovich, Computational models with separable sub-
tasks. Proceedings of Academy of Sci. of USSR, Technical Cybernetics, 5 (1985),
36-60. (Russian)

[GJ 79] M.R.Garey and D.S.Johnson, Computers and Intractability, (1979).

[Kanovich 87] M.I.LKanovich, Quasipolynomial algorithms for recognizing the satisfiability and
derivability of propositional formulas. Soviet Mathematics Doklady, 34, N 2
(1987), 273-277.

Kanovich 90] M.I.Kanovich, Efficient program synthesis in computational models. J. Logic Pro-
g g
gramming, 9, N 2-3 (1990), 159-177.

[Kanovich 91] M.I.LKanovich, Efficient program synthesis: Semantics, Logic, Complexity. Theo-
retical Aspects of Computer Software, TACS’91, Japan, Sendai, 1991, September.

[Ladner 77] R.Ladner, The computational complexity of provability in systems of modal
propositional logic. STAM J. Computing, 6 (1977), 467-480.

[Mints 83] G.E.Mints and E.Kh.Tyugu, Third All-Union Conference ’Application of the
Methods of Mathematical Logic’, Proceedings, Tallinn, (1983), 52-60. (Russian)

[Mints 90] G.E.Mints and E.Kh.Tyugu, Propositional logic programming and the PRIZ sys-
tem. J. Logic Programming, 9, N 2-3 (1990), 179-193.

[Rogers 67] H.Rogers, Theory of Recursive Functions and Effective Computability, (1967).

[Statman 79] R.Statman, Intuitionistic propositional logic is Polynomial-Space complete. The-
oret. Computer Sci., 9 (1979), 67-72.

[Ullman 80] J.D.Ullman, Principles of Database Systems, (1980).

16

