1991

A.S. Klusener

Abstraction in real time process algebra

Computer Science/Department of Software Technology Report CS-R9144 October

CWI vationaalinstitout vooronderzoek op hetgehied van wiskunde en informatica

CWI is the research institute of the Stichting Mathematisch Centrum, which
was founded on February 11, 1946, as a non-profit institution aiming at the
promotion of mathematics, computer science, and their applications. It is
sponsored by the Dutch Government through the Netherlands organization
for scientific research (NWO).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Abstraction in Real Time Process Algebra

A.S. Klusener
CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

e-mail: stevenk@cwi.nl

Abstract

In this paper we extend Real Time Process Algebra by the silent step 7. We start by giv-
ing the operational semantics and we find a characterizing law of which the soundness and
the completeness is proven. By adding the integral construct we can interpret symbolic
(untimed) process terms as timed processes. We investigate the resulting 7-equivalence
and come to a delay bisimulation with a stronger root condition. Finally we test the ap-
plicability of this notion of real time abstraction by proving the PAR protocol (Positive
Acknowledgement with Retransmission) correct.

1985 Mathematics Subject Classification: 68Q60.
1982 CR Categories: D.3.1, F.3.1, J.7.
Key Words & Phrases: Real Time, Process Algebra, ACP, Abstraction, Protocol Verifica-

tion.
Note: This work is in part sponsored by ESPRIT Basic Research Action 3006, CONCUR.

1 Introduction

In recent years much effort is paid to develop techniques for proving software systems
correct w.r.t. to their specification. A motivation and an overview of these techniques
can be found in [dR89]. In this paper we restrict ourselves to ACP ([BW90]), which is a
Proces Algebra like CCS ([Mil89]) and CSP ([Hoa85]). The idea of protocol verification
by using Process Algebra is that one has a specification and an implementation both
formulated in the same language. One can abstract from the implementation details
by renaming certain “internal” actions to the silent action 7. Then, one can apply
the axioms of the algebra for proving the equality between the specification and the
implementation. For examples of protocol verification in (untimed) Process Algebra we
refer to [Bae90].

The most common notion of abstraction, weak bisimulation, is due to Milner [Mil80].
Van Glabbeek and Weijland introduced in [GW89] delay bisimulation and branching
bisimulation, which are slightly different notions of abstraction.

In timed Process Algebra abstraction is not yet well developed. Only Wang studied
abstraction in a timed Process Algebra (timed CCS) ([Wan90]). In another timed exten-
sion of a Process Algebra, Timed CSP ([RR88],[Ree89]), there is a special action WAIT

Report CS-R9144

ISSN 0169-118X 1
CwiI

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

t which idles for ¢ time units. In this way an internal activity can be expressed. Similar
constructs can be found in [MT90], [HR90]. It may be the case that the introduction
of a 7 action to Real Time ACP makes it more easy to compare Real Time ACP with
other calculi.

In this paper a notion of abstraction in Real Time Process Algebra is proposed. As
starting point we take the work of Baeten and Bergstra, they presented in [BB91]| their
Real Time Process Algebra BPApé. In that paper they suggested already to interpret a
timed 7 as an explicit idling. We will investigate this idea more thoroughly.

We take BPApé§ (without integrals) and add the timed action 7(t). The operational
semantics is given and we give a complete axiomatization. The addition of the integral
construct allows us to interpret symbolic process terms as a special class of timed process
terms. It comes out that the resulting subtheory can be considered as being a delay
bisimulation with a strongly rooted condition. By generalizing the laws of earlier sections
we obtain axioms for process terms with integrals. Finally, we show the use of this theory
by giving a protocol verification which depends on time.

This paper is based on “absolute” time, thus the timestamps of the actions are
interpreted from the starting point. This is not a serious point since all results can be
formulated in “relative” time as well.

2 Adding the Silent Step to the Original Semantics

2.1 The Syntax

In this Section we give some intuition for timed processes by introducing the opera-
tional semantics of [BB91] for process expressions over Basic Real Time Process Algebra
(BPApé). We do not yet consider integration in this section. Let Aj, be the set of actions,
containing the constants & (for inaction) and 7 (for internal activity). The alphabet of

the theory BPApéT is
ire = {a(t)|a € As,,t € RZ}

Similarly we use A¥™, as the set of timed actions without timed é’s. In the sequel we
refer to actions from As, as symbolic actions and we refer to actions from A%™ as timed
actions. Moreover, process expressions are simply called terms. The set 7 of (closed)
terms over BPApS7 is generated by the alphabet A5™ and the binary operators + for
alternative composition and - for sequential composition and the operator >, called the
(absolute) time shift.

The (absolute) time shift, >, takes a nonnegative real number and a process term,;
t > X denotes that part of X which starts after ¢. The set 7 with typical elements
p, p1, pa is defined in the following way, where a € A5, and r € R>0:

peT Piza(r)|P1+P2|P1'leT>>P

Syntactical equivalence is denoted by =, syntactical equivalence modulo associativity and
commutativity of the + is denoted by ~. Equivalence within a theory 7H is denoted
by TH + p = q or simply p = g when the theory is clear from the context. 8(0) is

abbreviated by 8.

There are three functions defined by induction. U(p) is the ultimate delay of p and
S(p) is the earliest start time of p and L(p) is the latest start time. We need an auxiliary
function inittime; inittime(p) contains all time stamps at which p can perform an initial
action. These functions already occur in [Klu91]. a is taken from A,

Ua(t)) =t inittime(a(t)) = {t}

uit) =t inittime(8(t)) = 0

Up-q) = U(p) inittime(p-gq) = inittime(p)

Up+q) = maz(U(p),U(q)) inittime(p+q) = inittime(p)U inittime(q)
U(r>p) = maz(r,U(p)) inittime(r > p) = {t € tinittime(p)|t > r}

We take maz(P) = min(P) = 0 and we define S(p) = min(inittime(p)) and L(p) =
maz(inittime(p)).

2.2 The Original Semantics

The semantics of Baeten and Bergstra ([BB91]) assigns to every term (in 7) a transition
system in which each state is a pair consisting of a term and a point in time and in which
each transition is labeled by a timed (non §) action.

For example the process a(1) starts in state < a(1),0 >, denoting that each process
starts at 0. From < a(1),0 > an idle transition is possible to a state of the form
< a(l),t > with 0 < ¢ < 1. An udle transition is a transition in which only the time
component is increased without executing any action. In general, from each state <
a(1),t > an idle transition is possible to < a(1),t' >, whenever t < ¢ < 1. Furthermore,
from each state < a(1),t > a terminating a(1)-transition to < /,1 > is possible whenever
t<1.

For technical reasons we add in this paper a boolean value to each state, which is
initialized on F'. So, the process a(l) starts in-< a(1),0, F >. An tudle transition does
not change the boolean value. As soon as an action is executed the value is set to 7.
Once the value is set to T it remains 7" throughout the execution of the proces.

For the moment it suffices to say that we need the boolean value to distinguish root
states from internal states. A root state is a state with time 0 or a state which can be
reached from a state with time 0 by idling only.

Within this semantics the transition system concerns three relations

Step C (TxR*x{T,F}) x A"m x (T xRx{T F})
Idle C (TxR*x{T,F}) x (T x R2® x {T, F})

Terminate C (T x R2°x {T,F}) x A"™ x R°

These three relations are defined as the least relations satisfying the action rules given
in Table 1. The definition of an operational semantics by giving action rules is due to

Plotkin ([Plo81]). We write

<zt b> o) - 't b > for (<z,t,b>,a(r),<z t,b'>) € Step

<z t,b>—< ot b > for (<ztb> <zt >) € Idle
<zt b> o) < Vot > for (< z,t,b>,a(r),t) € Terminate

The transition relation will be defined such that it is guaranteed that
<a:,t,b>ir)><:v',t',b'> = t<rAt=rAbV=T
<z, t,b>—0< 2t > — t<t' Ab=V

<x,t,b>ﬂ<\/,t’> = t<rAt=r

As notion of equivalence we have strong bisimulation; every step or idle transition
on the left hand side has to be matched with an associated step or idle transition on the
right hand side. A bisimulation relation on (7 x R2° x {F,T}) x (T x R2°x {F,T}) is
defined in the obvious way. Two terms p, ¢ are bisimilar, denoted by p &,,;; g, if there is
a bisimulation relation containing (< p,0, F >,< ¢,0, F >). The action rules are given
in Table 1.

From the atomic rules for 7(r) we see that executing the silent step 7 is modeled by
an tdle step which changes the process term in the state. Therefore we have to cover
now as well cases where idling may change the process term in the state.

2.3 Some Process Diagrams

The transition system of the term a(1l) can be represented by the left-hand process
diagram given in Figure 1. A process diagram is simply a pictorial representation of a
transition system. It is not possible to make a picture of the transition system itself,
since it has uncountably many transitions. The intuition behind such a process diagram
is that the process starts in the top-point. It can idle by going to a lower point without
crossing any line, whereas the execution of an action a at time r is reflected by going to
a dashed line at level r labeled with a. Only dashed lines may be crossed, after landing
on them.

A very particular set of atomic actions is the set of §(r)-terms. §(1) can do nothing
more then idling until 1. Thus the root node is < §(1),0 > and from each state < §(1),t >
an idle transition to < §(1),¢ > is possible, whenever t < t' < 1.

The transition system of p + ¢ is defined in terms of the transition systems of p and
g. The behaviour of p + ¢q can be considered as the “union” of the behaviour of p and
that of g.

A state p (in Figure 1) is of the form < a(1) 4+ b(2),t > with 0 < ¢t < 1. From
p both a terminating a(1)-transition to < 4/,1 > and a terminating b(2)-transition to
< +/,2 > are possible. However, from a state like v of the form < a(1) + b(2),¢ > with
1 < t < 2 only a terminating b(2)-transition to < 4/,2 > is possible. Hence, by idling
from < a(1) + b(2),tp > to < a(1) + b(2),t; > with 0 <, < 1 < ¢; < 2 we have lost
the option of executing the a(1)-summand. Thus one could say that a choice has been
made at time 1; after the choice has been made for b(2) the summand a(1) has become
redundant.

The transition system of a(1) + 6(1) consists of exactly the same relations as the
transition system of a(1). The summand 6(1) contributes only idle steps which are
contributed by the summand a(1) as well, hence we may consider the §(1) summand as
being redundant.

However if we consider a(1) + §(2), the §(2) summand contributes idle transitions
which are not contributed by a(1), since §(2) has idle transitions to points in time

4

t<s<r
<a(r),t,b>—<a(r),s,b>

t<s<r
<7(r),t,b >—< 7(r),s,b >

t<s<r
< 8(r),t,b>—< §(r),s,b>

t<r

<a(r),t,b> =) <+,r>

t<r
<7(r),t,b>—< /,r >

<pt,F>—<prF >
<p+q’t7b>_—_’<p+%rab>

<p,t,b>m<\/,r>

<p+q,t,b>ﬂ"—)><\/,r>

<pt,b>—0<,r>
<p+q,t,b>—<r>

<p,tb> =) <p,rb >

<p+atb>D <pry >

<p,t,F>—<p,rT>
<p+qgt,b>—<p,rT>

And similar rules for ¢ + p

<p,t,b>i(1)><\/,r>

<p-q,t,b>ﬂ<q,r,T>

<pt,b>—< 7>
<p-g,t,b>—<qnr,T>

<ptb> alr) <p,rb >

<p'Qat)b>g(:—))<pl'q>r7b,>

<pt,b>—0<p,rb >
<p'q7t’b>_)<p/'Q7rab’ >

t<r<s

<s>pt,b>—<s>prb>

r>s <p,t,b>ir)><\/,r>

a(r)

r>s <pt,b>—"<p,rb >

<s>>p,t,b>g(—r)><\/,r>

r>s <ptb>—< VT >

<s>pt,b> alr) <p,rb >

r>s <ptb>—<p,rbt >

<s>ptb>—0<ir>

<s>pthb>—0<p,rbd >

Table 1: The Original Transition System of BPApé7, (a € A4, 7,5 > 0)

between 1 and 2. The transition system of a(1) + 6(2) can be represented by the process
diagram on the right-hand side in Figure 1.

The last operator we introduce is the (absolute) time shift denoted by >, which takes
a real number s and a process X and delivers that part of X which starts after s. Hence,
before s it can only idle or do a transition to a state after s.

2.4 The Closure Rules

In the original transition system of Baeten and Bergstra, thus the one without silent
actions and without a boolean value in the state, the following property was guaranteed:
<p,t>—<p,s> A <p,s>:@><p',r> = <p,t>5£r—)><p',r>
Since we require this property also in the context with silent steps (where idling may

change the process term), we need the following closure rules. In the sequel we will
discuss why these closure rules may only be applied on internal states.

<p,t,T >—<p,t'\T > <p,t,T>—<p ¢/, T >
<t T> < /r> <#t\T>—<hr>
<pt,T> < /r> <ptT>—<yir>
<p,t,T >—<p,t',T> <pt,T >—<p,t'\T>
<p . T> cp rT> <pt,T>—<p,r,T>
<pt, 7> < rT > <pt,T>—<p",nT>

Table 2: The Closure Rules, (a € A4, 7,5 > 0)
In Figure 2 we see process diagrams corresponding to the terms a(1)-(7(2)-b(3)+¢(3))

and a(1) - (b(3) +7(2) - c(3)). On the left hand side the process diagrams without closure
rules are given; without closure rules the terms are certainly not bisimilar. On the right

ASWA

Figure 1: Process Diagrams of the terms a(1),6(1), a(1) + 5(2) and a(1) + 6(2)

without closure rules with closure rules

Figure 2: Process Diagrams for a(1) - (7(2) - b(3) + ¢(3)) and a(1) - (b(3) + 7(2) - ¢(3))

hand side the process diagrams with closure rules are given; the two terms have become
bisimilar.

Since in both terms the two summands are in a context a(1)-(...) we know that there
are no other summands involved, hence the 7(2) action determines a moment of choice,
namely at time 2. But it is not relevant whether the 7(2) is on the left hand side of the
+ or on the right hand side. Consider 7(2)-b(3) + ¢(3), thus without context a(1)-(...),
then we can not say that the choice for the ¢(3) is made at 2. This becomes clear when
we would add d(3). In the next Section we discuss this in more detail.

In the sequel we refer to idle steps which are generated by the closure rules as tmplicit
(idle) steps. Similarly we have ezplicit (idle) steps.

2.5 Closure Rules' and Internal States

Now we can discuss the need for distinguishing root states from internal states. Assume
that we would not make this distinction, so forget about the boolean values. And assume
that we would apply the closure rules on the root level as well. Then we would have

a(1)+7(1)-b(2) = a(l)+5(2)
But if we add ¢(2) then
a()+7(1)-b(2)+c(2) £ a(l)+5(2) +¢(2)

Since in the left hand process the choice for the b(2)-summand is made at time 1, while
in the right hand side the corresponding choice is made at time 2. Thus in case of
a(1) + b(2) it is not right to say that the choice for the b(2) is made at 1, since other

summands, such as ¢(2), may be there in the context.
If we put both terms in a sequential composition after d(1) then

d(1)-(a(1) +7(1)-b(2)) £ d(1)-(a(1)+5(2))
because only the right hand process has an option of doing the b at time 2.

7

So, when the closure rules are applied from the root level as well bisimulation equiv-
alence is not a congruence. By making the distinction between root states and internal
states we can apply the closure rules only for internal states and bisimulation equivalence
is a congruence. For example:

a(1)+7(1)-6(2) £ a(l)+b(2)

3 An Alternative Operational Semantics

3.1 Encoding the Course of Time in the Process Terms

In the previous Section the operational semantics is presented according to [BB91]. Each
state consisted of three components. In this Section we give a transition relation, in which
the course of time is encoded in the prefix by an occurrence of the > operator. In [Klu91]
a similar operational semantics is given. Since no abstraction was considered in that
paper it was not necessary to model the idle steps there. Hence, the transition relation
became finite for (recursion free) terms without integration. Now, we encorporate the
silent step into this semantics; idle steps which determine a moment of choice are modeled
by 7-steps. Moreover, we define a notion of equivalence, called timed weak bisimulation,
which coincides with & opig.

In the semantics for ACP, as presented in [Gla87], we have the following transitions

a =/ and a-p —> p

In a real time setting we have to take the time stamps into account. In a(r) - p, after
doing the a(r) action, only that part of p can be done which starts after r, which is
denoted by r > p. Hence, after the addition of time we have the following transitions

(we have also added the boolean values).

<a(r)b> 2 and <a(r)-pb> D <r>pT>

If p can perform an action b(t) then s > p can perform this action only if t > s.

3.2 The Transition System Specification

In table 3 an alternative operational semantics is given. Only the implicit T-rule is new
here, the other ones are taken from [Klu91]. This implicit 7-rule models a moment of
choice by a 7-step. The alternative operational semantics given in this Section concerns

two relations:
Step C (Tx{RT}) x A x (Tx{FT})
Terminate C (T x{F,T}) x A§re

These relations are defined as the least relations satisfying the action rules of Table 3.

We write:
<pb> o) < p,b' > for ((p,b),a(r),(p',t')) € Step

<pb> alr) for ((p,b),a(r)) € Terminate

8

<a(r),b>) Vv

<p,F>f(—r—)>\/ <p,F>ir)><p’,T>
<p+q,F>ﬂ\/ <p+q,F>i(—Q><p',T>

r < S(q) <p,T>ir)> r < S(q) <p,T>ir)><p’,T>
<p+q,T>“—(3)+\/ <p+q,T>ﬂ<p’,T>

And similar rules for ¢ + p

<p,b>i(i)>\/ <p,b>ﬂ<p’,T>
<p-q,b>3@><r>>q,T> <p-q,b>m<p’-q,T>
a(r) a(r) /
s<r <p’b>—)\/ s<r <p,b>——+<p,T>
<s>>p,b>ir)) <s>>p,b>@><p',T>
U(p) > L(p)
6-rule

<p,b>5%)) Vv

s=S(r>p) <U(s>p)

<r>>p,T>—Tﬂ<s>>p,T>

implicit T-rule

Table 3: An Alternative Operational Semantics, (a € A4,, r,s > 0)

Again it is guaranteed that b’ = T if < p,b > o - p',b' >. This can be shown by

induction on the length of the derivation. It is also guaranteed that

a €A, :<p,T>@><p',T> = r=35(p)
All initial actions of p with a time stamp greater than S(p) are postponed till a later
state, as is shown in Figure 3. Two terms p and ¢ are bisimilar, denoted by p <., g,
if there is a timed weak bisimulation relation containing (< p, F >,< ¢, F >). In the
following definition < p, T >g< p',T > abbreviates < p,T > ™) <p, T >..<
pr, T > Lz} < p',T > for some k > 0, moreover a is take from Aj, and a’ is taken from

As.

Definition 3.1 R C (7 x {T,F}) x (T x {T, F}) is a timed weak bisimulation relation
iff it is symmetric and (< p,b >,< ¢,b >) € R implies that

e ifb=F and<p, F > o) < p',T > then there is a ¢ such that

<. F > < ¢, T> and(<p,T><¢,T>)€R.

) z'fb:Fand<p,F>M> \/then<q,F>ir)> V-

o ifb=T and < p, T > 0 < p',T > then there is a ¢ such that

<q,T NP ¢, T > and (<p, T > ,<¢,T>)€ER.

e ifb=Tand <p, T >) < p',T > then either (< p',T >,< ¢q,T >) € R or there
is a ¢’ such that < q,T >0 ¢, T>and (<p,T><¢,T>)€ER

o fb=T and <p,T >} |/ then < ¢, T >23 /.

The §-rule generates transitions labeled with §(¢), for example if ¢t < 2 then

<t> (a(l) +6(2)),b> 22

These deadlock transitions are needed to distinguish a(1) + §(2) from a(1) + §(3). Note
that < a(1)+ §(1),b > does not have a deadlock transition at all. Deadlock transitions
are discussed exhaustively in [Klu91], but they are not important for discussing the silent
step. Hence, they will not be mentioned anymore in this paper.

In this transition relation we have implicit 7-steps only when they determine a mo-
ment of choice. Consider the state < r > p,T >. Assume that the first moment in time
at which 7 > p can do an action is s (e.g. S(r > p) = s). Furthermore, assume that
it can idle till a moment after s (e.g. U(r > p) > s). Then we say that s is a moment
of choice; either the actions with time stamp s are executed or the idling continues and
the actions with timestamp s are dropped from the computation. Since there are only
finitely many of those moments of choice we have only finitely many 7-steps as well. In
Figure 3 the states < 2 > b(3),7 > and < 2> (b(3) +7(2)-¢(3),T > may be related by
a timed weak bisimulation relation. In Section 5 we will give a corresponding semantics

10

a(l)-(7(2)-b(3) +¢(3)), F a(1) - (b(3) + 7(2) - ¢(3)), F
1a(1) 1 a(1)

1> (7(2)-b(3) 4+ ¢(3)), T 1> (b(3)+7(2)-¢(3)), T
7(2 7(2) 7(2 7(2)
2> b(3), T 2> (7(2)-5(3) +¢(3)),T 2> (b(3)+7(2)-¢(3), T 2> ¢(3),T
1b(3) Jc(s) l 3) lc(g)
v v v v

Figure 3: Transition Systems for a(1) - (7(2) - 5(3) 4+ ¢(3)) and a(1) - (5(3) + 7(2) - ¢(3))

where we can use the standard notion of strong bisimulation. The price to pay, however,
is that we have to allow infinite many implicit 7 steps there.

As in [Klu91] we need the definitions of the functions strip and time to state the
correspondence between the two semantics. In the above semantics the course of time
and the actual process are encoded in the term. The function time gives the course of
time and the function strip gives the actual process. For example if we start in the process
(a(1)-p)-q then by executing the a at 1 we obtain (1 > p)-g where strip((1 > p)-q) = p-q
and time((1 > p) -¢q) = 1.

Definition 3.2

strip(a(r)) = a(r) time(a(r)) =0
strip(X +Y) = X+Y time(X +Y) = 0
strip(X-Y) = strip(X) Y time(X-Y) = time(X)
strip(r> X) = X time(r>X) = r

Thus the transition

<(a(1)-p)-q¢+p,0,F > =4 <p-q,1,F >

can be mimicked in the alternative semantics by

a(1)

<(a(1)-p)-g+p, F>—><(1>p)-qF>

The following facts are adapted ones from [Klu91].

Lemma 3.3
atr)

a(r)
—5

p,b p b = time(p))=r ANV =T

p,b

a(r

p',b & r>time(p) A strip(p),b — p', b

p, b alr) v & < strip(p),time(p), b 20 < Vor b >
p,b alr) g, = < strip(p),time(p),b> — o) < strip(q),r, b >
< strip(p), time(p), b > o) - q,m b >

a(r)

= 3¢’ strip(¢’) =g A time(¢)=71 A p,b — ¢,V

11

We can prove similarly as in [Klu91]:

Lemma 3.4 Bisimulation equivalence in the alternative operational semantics equals
bisimulation equivalence in the original operational semantics.

PLwqd < PSorigd

Thus we may omit the subscripts of «,, and S ,nig- In Section 5 we will prove that
bisimulation equivalence is a congruence.

4 The Theory BPApéT

4.1 A Characterizing Law

From the operational semantics we know that a T-action may be removed if it does not
determine a choice. Moreover, this 7-removal can only be applied ‘within’ a term and
not at the level of the root. This is exactly characterized by the 7-law given in Table
4.1. The theory BPApé can be found in [BB91] and [Klu91]

TAU1 t<r<UX)ANUY)<r

a(t) - (r(r)- X +Y)=a(t) (r>X+Y)

Table 4: BPApéT = BPApé + TAU1

Remark 4.1 Baeten and Bergstra use square brackets for the time stamps in relative
time, thus the (absolute) term a(1) - (b(2) + ¢(3)) corresponds with the (relative) term
a[l] - (b[1] + c[2]). We can introduce an operatore ot which shifts the timestamps in a
term with an offset t. For ezample o(b[1] + c[2]) = b[2] + ¢[3]. In relative time the T law
above could then be formulated like

TAUI1r 0<UX)ANUY)<Lr

at] - (r[r] - X +Y) =alt] - (67(X)+Y)

Lemma 4.2 The aziom TAUI is sound w.r.t. to bissmulation equivalence.

Proof. Soundness of an axiorn means that every two terms which can be obtained by
an instantiation of the axiom must be bisimilar. Consider p = a(t)-(7(r)-X+Y) and ¢ =
a(t)-(r>X+Y)witht <r <U(X) and U(Y) < r. From both initial states < p, F' >
and < g, F' > only an a(t) step is possible, resulting in resp. <t > (7(r)- X +Y),T >

12

and <t>> (r> X +Y),T >. Note that no implicit idlings are generated by the closure
rule, since the boolean value is F. For concluding the bisimilarity of these two resulting
states four different cases have to be covered.

a(s)

e Steps originating from Y; if < YT > =5 <Y’ T > and s > t then

a.(s

a(s)

<Y T > and
<Y, T>

<t>»(r(r)- X +Y), T >
<t>(r>X+Y),T> 2

a(s)

e Steps originating from X; if < X, T > —5 < X', T > and s > r then

<t> (7(r)- X+Y)T>—(—)><r>>XT> =) < X',T > by closure rule

<t>(r(r)- X+Y),T>— a(e) < X', T > We have directly
<t>(r>X+Y),T O\ X' T>

e Idling steps before 7, note that U(7(r) - X +Y)=rand U(r > X +Y) > r. It
follows directly that both states can idle to s when s < r.

e Idling steps till a moment in time at or after =, take s such that r < s < U(X).

(s)

<t>>(()X+Y)T>—><r>>XT> < s> X,T > by closure rule

<t> (r(r)- X+Y)T>—><s>>XT> And directly
<t>>(X+Y)T>—><s>>(X+Y),T>

And since U(Y) < r < s, no transitions of < s > (X +Y),T > are generated
by Y; the Y summand has become redundant. Hence, < s > X, T > bisimulates
with < s> (X +Y),T >. O

Theorem 4.3 Soundness of BPApét
BPApéT Fp=q =—=>peg

Proof. A theory is sound w.r.t. to an equivalence if all the axioms are sound and if the
equivalence is a congruence w.r.t. to all operators. Since the bisimulation equivalence
introduced in this paper identifies more than the one of [Klu91] we may conclude that
all the axioms of BPApé are still sound. Moreover, in Lemma 4.2 we have stated the

soundness of the additional 7-law and we will show that bisimulation equivalence is a

congruence in Section 5. a

Lemma 4.4 Assumet <1 < min(S(X),S(Y)) and U(Z) < r then

T-removal a(t)-7(r)- X a(t)- X
T-swap a(t)-(r(r)- X +Y) () (X +7(r)-Y)
T-swap a(t)-(T(r)-X+Y+Z) a(t)- (X +7(r)- Y+ 2)

13

Proof.

a(t)-7(r)- X = a(t) (r(r)- X +6)
a(t) - (X +6)
a(t)- X

a(t) - (r(r)- X +Y)

a(t) - (r(r)- X +(r)-Y)
= a(t)- (X +7(r)-Y)

a(t)-(r(r)- X +Y +2Z) = a(t)-(r(r)- X +7(r)- Y + Z)
a(t)- (X +7(r)- Y + 2) a

4.2 Completeness

In this Section we prove the completeness of BPApéT, e.g. we have to prove that if two
terms are bisimilar then there is a derivation in BPApéT which proves them equal. We
construct for each pair of bisimilar terms another pair of terms by adding 7-actions, such
that the resulting pair is also bisimilar in the semantics without closure rules. We only
add 7-actions in one term if there is already an associated 7 in the other term. Or, put
in other words, if implicit idling is matched with explicit idling then the implicit idling
is rewritten into an explicit idling. Thus the pair

(a(1)-5(3)- 1fl(4) , a(1)-7(2) - 5(3) - (d(4) +d(4)))
1s rewritten into

(a(1)-7(2)-5(3)-d(4) , a(1)-7(2)-5(3)- (d(4)+d(4)))

Since we are working in absolute time and since we have timed §’s, we allow terms with
a lot of “junk” (redundant parts) in it. A basic term is a term without “junk”. If we
consider a term like a(2) - b(1), then the b can never be executed at 1 after we have
executed the a at 2. Thus a deadlock will be encountered after executing the a at 2.
Hence, we can rewrite the term a(2)-b(1) into the basic term a(2) - §, where the deadlock
appears explicitly. Similarly we can remove all redundant §’s, for example the §(2) is
redundant in the term a(2) + §(2).

For the formal definition of basic terms and for further details we refer to [Klu91].
The set of basic terms is denoted by B. Next, we rewrite all basic terms of the form

Siai(r) -pi+X;bi(r)+q with S(g) >r
into
Yiair) pi+ X 0(r)+7(r) - g
In this way we obtain the set of ordered terms which is denoted by B°™.
If p is an orderedterm starting after s we may write p € B°"%(s). If we take Y ;¢ pi = 6,
then every ordered term is of the form

> ai(r) - pi+ D bi(r) with p; € B™(r)

For each s € IR2? and timed weak bisimulation relation R we define a function f§ which
maps a pair of ordered terms onto another pair of ordered terms. The construction of

f5(p, q) guarantees that
14

Lemma 4.5 If p,q in B%(s) and (< s > p,T >,< s > ¢,T >) in R and f5(p,q) =
(', q'), then

— BPApét Fa(s)-p=a(s)-p', a(s)-g=a(s) ¢

. plgql
Here, & denotes strong bisimulation in the transition system without wmplicit T-rule,
which is completely characterized by BPApS. The complexity of a pair of ordered terms

is the pair of natural numbers (depth(p) + depth(g), number of summands in (p+9)),
and we assume a lexicographic ordering on pairs of natural numbers.

Definition 4.6
f}sg c Bord(s) X Bord(s) N Bord(s) % Bord(s)

We construct f3(p, ¢) inductively; we assume that we have constructed already the func-
tion ff on pairs with smaller complexity for arbitrary ¢.

Consider (p, g) both in B%(s) and a timed weak bisimulation relation R containing
(<s>p,T><s5>qT >) such that

Yies aj(t) P+ Ljer a;(t)
Sierbi(r) - a + Xiep bi(r)

There are two cases, either J =0 =Lor J#0 V L # 0. In the first case we simply
take f3(p,q) = (p,q). The second case has on its turn two subcases, t = r and t # r;
these subcases are considered below. We assume that J # (.

p
q

1R

o If ¢ = r then for every j in J a; € A, and there is a z; (with z; = ¢, for some [€ L)
such that
aj(t
<s>p,T > LZ <t>»p;,T>
R R
<s>qT> 94 <t>»z,T >

By induction we have already constructed f%(p;,2;) = (p}, g;)- Similarly for every
[we can find a term z; obtaining f5(qi, 2]) = (q},p{). (It is more efficient of course
to construct (g;,p]') only for those I € L such that g % 2; for every j € J, but this
will not be considered any further).

Since (< s> p,T >,< s> ¢q,T >) € R it is guaranteed that every terminating
a;(t) step can be matched by some terminating bj(r) and vice versa.

We define

falpa) = (Tjerai(t) -0+ Tiep bi(t) - pi + e ai(t)
Yierai(t) g + Xiep bi(t) - a1+ Zier Bi(t))

e If t # r then we may assume ¢t < 7. Then it must be the case that a; = 7 for all
7 in J and J' = (). We have for every j that (<t > p;,T >, < s> ¢,T >) in R.
Since s < t and ¢ € B°"%(t) we may extend R such that it remains a timed weak
bisimulation relation which contains (< s > ¢, >,< ¢t > ¢,T >). Hence we may

15

extend R further such that it contains (< t > p;,T >,< t > ¢,T >) for each
j € J. By induction we have already constructed f%(p;,q) = (o}, g;)- We define

falp,g) = (327() P} do7(t)-pf)

JjEJ JEJ
Now we are ready to give the completeness proof.

Theorem 4.7 Completeness of BPApéT
peo q=> BPApéT Fp=gqg
Proof. We prove it first for ordered terms p and g, assume

P~ Yies a;(t;) "Pi t+ Xjer a;'(t;')
q ~ Yier bl(’”l) g+ Der bf(";)

We take some timed weak bisimulation relation R which contains (< p, F >,< ¢, F >).
From a root state (a state with boolean value F') no implicit T steps have to be considered.
Hence, for each j in J thereis a I; in L such that

a]':bl A tj:rl,- A (<tj >>pj,T>,<tj>>91j,T>)€R

and we take f,t{ (pi>»q;) = (p},95). We do similar for each I in L and its associated index
Ji in J. We construct p’ and ¢/,

P Yiesai(t) P;“‘ZleLbl() P+ Xjer a;
¢ ~ Yiesai(ty) g + Zierbi(rn) - @ + Tier bi(

!

a;(t;)
1)
such that BPApéT + p = p',q = ¢’. By construction p’ & ¢'. Hence, BPApé Fp' = ¢
and BPApéT F p = q follows immediately.

If we start with non ordered terms p and ¢, with p & ¢, then we construct ordered
terms p, and g, such that BPApé + p = py,q = ¢.- By soundness of BPApé we obtain
p & p, and ¢ & g, and by transitivity of < we get p, & ¢,. Now we have reduced
it to the previous case and we conclude BPApér F p, = ¢, from which we conclude

BPApéT Fp=gq. a

5 A Third Corresponding Semantics

In the two transition relations of the previous sections we had to keep track of a boolean
value in each state to distinguish root states from internal states. In this Section we give
another solution, we extend the set of terms 7 to 7> by adding a new (absolute) time
shift operator >, which will be used to encode whether a state is internal or not. We
saturate the transition relation with all possible implicit 7 steps as was the case in the
original semantics of Baeten and Bergstra as well. This enables us to deal with strong
bisimulation instead of fzmed weak bisimulation.

16

a(r)
a(r)) 5 L(p) < U(p) s<r p —p

W) 4 s>>pi(r—)>p'
p s P ES p X p p Yy

a(r) — a(r a(r a(r
pa B rsg pg Bpg prg By, g4 By

o Lo T a(r
3>>PQ’PI 7‘<s<U(r>>p) s>>pﬁ,pl p’—(—lp"

—_ b(r —_— (s —_ —_ a(r
s>p Q» p' r>p —(—)> s>p s>p —(—2) p”

Table 5: An Operational Semantics without Boolean Value (a € 4,, b € 44,, 7,5 > 0)

Furthermore, we define only one relation —C 7> x 7. We now have a(r) LSO

instead of a(r) <) (which abbreviated (a(r),r) € Terminate). By doing so we avoid
a lot of rules. The action rules are given in Table 5. Two terms are bisimilar, denoted
by p o g, if there is a strong bisimulation relation R C T> x T>. This approach
only works when there are no occurrences of > at the root level. Therefore we have the
following equivalence for terms without >.

Lemma 5.1 p,ge 7 Peosq — peg

We still have to prove the following Theorem, which can be proven easily for the bisim-
ulation equivalence defined by the transition relation of Table 5.

Lemma 5.2 Bisimulation Equivalence is a congruence w.r.t. all operators

Proof. If all action rules of a Transition System Specification are in Groote’s ntyft/ntyzt
format, then bisimulation equivalence is a congruence (see [Gro89]). We have to prove
only for the closures rules that they can be written into this format, since in [Klu91] we
proved it already for all other action rules of Table 5. The first and the third closure
rule are already in the right format and for the second one we may take

s<t r>,>pmp” r<s<U(r>p)
® instead of s
TSP —> S>p rSp —> §>p

O

In this paper we will not mention anymore this variant of the semantics, since we do
not want to discuss the inclusion of the operator > in the theory.

6 Symbolic Processes as Timed Processes

In this Section we interpret each symbolic process term as a timed process. We will
investigate the resulting subtheory.

6.1 The Interpretation of Symbolic Process Terms as Timed
Processes

By using the integral construct of Baeten and Bergstra we can express a process which
executes an a somewhere in time by the process term [, ,a(v). The formal introduction
of the integral construct is postponed till the next section. By extending the syntax
with the integral construct we obtain BPApé7I. We define a function RT : BPAér —
BPApé7I, which interprets every symbolic process term as a timed process.

a€A RT(a) < [pa(v) [s07(w)
RT(r) & [,r(v)
(6) % fsob()
(p+q) = RT(p)+RT(q)
RT(p-q) ¥ RT(p)- RT(g)
Originally, Baeten and Bergstra had RT(a) = Jysoa(v) (they denote RT(p) by p).
But in this case the first 7-law X - 7 = X ([Mil89]) would not be sound anymore. Since

we prefer to maintain this law we define RT'(a) wf Jos0 (V) - [us0 T(w).
The range of the function RT is denoted by RT(BPAéT).

Remark 6.1 Since we are only interested in the subtheory over RT(BPAST) and since
we know that [,oo7(v) - [,507(v) = [0 T(v) and [,506+ [,50T(v) = [,50 6 we could have
taken as well:
a€ds RT(a) [ya(v) fusor(w)
RT(p+4q) < RT(p)+ RT(q)
RT(p-q) ¥ RT(p) RT(q)

6.2 A Delay Bisimulation Semantics on BPAST

Here we give a semantics for symbolic processes which corresponds with the semantics of
their timed interpretations. In the previous sections we have studied transition relations
which where 7-saturated, i.e all possible appropriate 7-steps between internal states were
added.

In this Section we will not saturate the transition relation but we move the 7-
saturation into the definition of bisimulation. In this way we obtain a notion of delay
bisimulation ([Mil83],[GW89]). Moreover we want to get rid of the boolean value in each
state. In the previous sections the boolean value guaranteed that the closure rules were
only applied on internal states.

In this section we will encorporate this mechanism in the definition of (delay) bisim-
ulation; it leads to a stronger rootedness condition than usual. In the literature a bisim-
ulation is rooted w.r.t. to states p and g if it relates p and ¢ with each other only.

18

a a 7

a % p———>a\/ il
p+e — v ptg — P

a !

p — p— p
pg — g p-qg — pg

Table 6: Transition System Specification for Symbolic Process Terms (a € 4,)

In this Section we allow ourselves the freedom to consider |/ as a special state.

We define a predicate |/ on terms, 1/(p) holds if p can terminate by doing a sequence
of silent steps only.

Definition 6.2 |/ is the largest subset of BPAST such that \/(p) whenever
e p — /impliesa=r.

e p - p' implies a =1 and \/(p').

In the following definition p = p' denotes that there is a path p —— ... — p' of
length zero or more. Similarly, p == p’ denotes the existence of a pathp — ... -
z 2 9.

Definition 6.3 R C BPA6T x BPAST is a delay bisimulation if pRq then

1. Ifp % p' then
either a = 7 and p'Rgq
or 3¢’ such that g = ¢' and p'Rq’.

2. Ifp — ./ then
either ¢ — +/
or 3z such that ¢ = z with \/(2).

3. Respectively (1) and (2) with the role of p and g interchanged.

We need the /() predicate in this context to express that “r-stuttering” afterwards is
allowed, hence we obtain the law X - 7 = X. We define delay bisimulation equivalence.

Definition 6.4 p <, q iff there is a delay bistmulation relating p and q.

Finally we define strongly 1;ooted delay bisimulation

Definition 6.5 p is strongly rooted delay bisimilar with q, denoted by p &3 q +f
1. Ifp =% p' then 3¢' such thatq —— ¢ andp' =44

2. Ifp = / theng = /.

19

not strongly rooted strongly rooted

Figure 4: Example of Strongly Rootedness

3. Respectively (1) and (2) with the role of p and q interchanged.

In this Figure we can see that the strongly rooted requirement corresponds to the re-
quirement that the closure rule is applied on internal states only. In the sequel we will
use the definition of rooted branching bisimulation ([GW89]) as well.

Definition 6.6 R C BPAT6 x BPAT6 is a branching bisimulation if pRq then

1. Ifp %5 9’ then
either a = 7 and p'Ryq
or dz,q' such that g => z - ¢', pRz and p'R2’.

2. pr N \/ then
either 3z such that ¢ => z = |/
or 3z,2' such that g => z 2 2' with \/(2') and pR=.

3. Respectively (1) and (2) with the role of p and q interchanged.
And we define rooted branching bistmulation equivalence
Definition 6.7 p &} q iff there is a rooted branching bisimulation relating p and q.

There is no need to define «}" since it would coincide with &7 .
Finally we have the following Theorem which states that the equivalence «—J is
exactly the equivalence which we obtain by interpreting symbolic processes as timed

ST

processes. Bisimulation equivalence over BPA47 is denoted by <7 .

6.3 The Correspondence between the Symbolic and the Timed
Semantics

In this Section we state the correspondence between <3 over BPA§T and ©,,. over
RT(BPAG6T). A typical element of BPA§7 will be denoted by p and a typical element of
RT(BPAé4T) will be denoted by .

20

We map each p in BPA§T onto a function [0, c0] — RT(BPAST) by

a = Attt > fve(o,oo) a('u) : fvE(O,oo) ’I'(’U)
T = AL [,c(0,00) 7(v)

1) = MAt.b

p+q = Atp(t)+q(t)

p-q =)\t.p(t) . RT(q)

Proposition 6.8 a € A, d € A, p,q € BPA§T and r > 0.

p(r), F o) mT = dp' Vi>t T —) (), T ANp = p
p(r), F), m, T — 3dp P)=r Ap D p

p(r), T «) m T — 3dp' Vi>t w, T —>) P'(t), T AN p=17p

p(r), T —> () — 7, T = dp ’(t)_.7r ANp=>p

p(r)b %5 mT = I -)=

P N i = dr Vrtht r<t' <t Vb p(r),b ‘iQ w, T a0\ p'(t),T

We have similar statements for terminating transitions

From this proposition we can prove easily

Lemma 6.9

pegqg < p(0),T o q(0),T
poyq < p(0),F < q0),F

And using
RT(p) = RT(q) <= p(0) = q(0)

We obtain the following theorem.

Theorem 6.10 p,q € BPAT6
peiq << RI(p) = RT(q)

6.4 Completeness for Strongly Rooted Delay Bisimulation

In this Section we give a complete axiomatization for the equivalence <3 following the
work of Van Glabbeek and Weijland ([GW89]). We take the axioms DEL 1 and 2 from
[GW89], where it is proven that these two axioms characterize Branching Bisimulation

completely. Furthermore, we take the axiom
7-Y=7-Y+Y,

which can be found in [GW89] as well and we require that it is only applied in a context.
This corresponds with our stronger rootedness condition. In this way we obtain

DEL3 X.-(r-Y+2Z)=X-(r-Y+Y +2)

21

Since Van Glabbeek and Weijland use a graph model we have to define the following.
The set of graphs G is the set of triples (N, E,r) where N is a set of nodes, E C N x N
is a set of edges and r € N is the root. Moreover, if g = (N, E,r) then E(g) = E. A
graph g is trivial if E(g) = (. G* is the set of non trivial graphs. The graph of a term p
is denoted by [p], this graph can be seen as that part of the transition relation which is
associated with p, where / is now considered as a special state. ‘

Definition 6.11 The graph rewriting —.,
If a graph g has a path s — s' -2 s" where s is not the root of g and g has no edge
s —» s" then s — s" is added.

Lemma 6.12 [p] —-9 = 3 [pP]=9g A DEL3Fp=1p
As in [GW89] we can prove easily

Lemma 6.13

e Both G and G* are closed under — ..
o — . 15 confluent and terminating.
Definition 6.14 A graph g is 7-saturated if it can not be reduced any further by —..

Lemma 6.15 If g and h are 7-saturated graphs then
=i = geph

Proof. Since] is a smaller equivalence than 3% it is sufficient to prove that
R:g ¥ himplies R: g o] h.
e The roots are related only with each other
e if R(r,s) and r — 7' then either
—a=r7and (r',s) € Ror

. T T 17 .
- s=>s" — s with (r',s') € R, assume s = sy — s;... —> s = s”, since
. a a]
h is 7-saturated we have s; — s’ and also s — s'. O

DELI X 7=X
DEL2 X-(r-(Y+2)+Y)=X (Y + 2)

DEL3 X - (r-Y+Z)=X-(r-Y+Y +Z)

Table 7: BPAST a1

22

Theorem 6.16 peyq <= BPAbrgubp=gq

Proof.

e <= The soundness can be seen by investigating the operational semantics.

e —> By construction of the graph model we have p &, ..q iff [p] ©,,.[¢]. By
T-saturating the graphs [p] and [g] we obtain g and h. By Lemma 6.12 we can
construct terms p’ and ¢’ such that [p'] = g, [¢'] = h and BPAé74u-p=p',9=4¢".
By transitivity of &, we get g &,,,, h and since g and h are 7-saturated we
obtain g ., g and by the completeness result of Van Glabbeek and Weijland we

conclude BPAS§74,; F p' = ¢/, from which it follows directly that BPAé74 F p = ¢.
0O

7 Adding Integrals

An integral can be considered as a sum over a continuum of alternatives, this notion is
introduced in [BB91]. Baeten and Bergstra allow integration over arbitrary subsets of
the real numbers and they allow more then one integral behind each other. The idea
of prefized integration is that every action has as time stamp a time variable v taken
from some set T'Var, and the action is directly preceded by the integral binding this
v. Moreover, only Intervals are allowed. In [Klu91] a completeness result is given for
prefized integration. The term [,c ;5 a(v) denotes the process which executes an action
a somewhere between 0 and 1. An integral binds a time variable, which may occur in
the rest of the term, for example the term [ic o5 a(v) - fuecos1vros b(w) denotes the
process which executes an action a at ¢ where ¢ is within 0 and 1. It waits between 1
and 2 time units after t and executes an action b. Hence, the bounds of a interval of an
integral are (linear) expressions over the real numbers. Let ¢ € IR2% v € TV ar then we
can define the set Bounds as follows:

bEBounds b:t|’0|bl+b2’b1—bgltb

where — denotes the monus operator, i.e 5—3 = 2 but 3 — 5 = 0. If b € Bounds then
the set of time variables occurring in b is denoted by twar(b). Now we can construct
intervals like < 1,9 > and < v + 3,w >. An interval without free time variables can be
considered as a connected part of the nonnegative reals. However, we don’t want to deal
with the complexity of set theory over reals and we want to define intervals containing
occurrences of free time variables. Hence, every interval is a four tuple, containing two
booleans and two reals. The interval V = (F,1,2,T) is abbreviated in the sequel by
V =< 1,2, denoting that the lower bound is open and 1, and that the upper bound is
closed and 2. If b € Bounds then b € V denotes the logical expression of (in)equalities
1 < b < 2. Similarly we have t € Vi UVa, t < sup(V), V =0, Vi < Vo and V < t as

abbreviations for logical expressions over Bounds.
We can redefine the set of terms. Let a € As,, V € Int, v € TVar, b € Bounds

peT pi=[)| [_(a@)p)palp+alr>p
23

TAUIL V <W <U(X) A U(Y) < inf(W)

Loev a(0) - (Joew T(w)) - X +Y) = [,ev a(v) - (inf(W) > X +Y)

TAUI2 V<W <U(X+Y) A U(Y) < sup(W)
Joev a(v) - ((Juew T(w)) - (X +Y) + X) = [,ey a(v) - (X +inf(W) > V)
TAUI3 V < W < U(X) A U(X) < sup(W)

Joev a(v) - (foew T(w)) - X +Y) = [iev a(v) - ((Juew 7(w)) - X +inf(W) > X +Y)

Table 8: BPApI = BPApéT +TAUI1 —3

We abbreviate [,c(,.;a(v) by a(w) and §(0) by 6. In this definition the notion of
prefixed integration becomes clear; every action has as time stamp a #ime variable v
and is directly preceded by its binding integral. Hence, we do not allow a term like
Joev Juew (a(v) - frecuws B(1) - c(r)). On these terms we have notions as FV() for the set
of free time variables , a-conversion, and substitution. If a term or interval has no free
time variables, then it is called time closed.

The adaptions of the transition relation as given in Table 3 are given in Table 9. Due
to the integral construct there is no more a discrete notion of a moment of choice, hence
the closure rule must generate infinitely many 7-steps.

Theorem 7.1 The laws TAUI1 — 3 are sound

reV
fev a(v),b 22
reV
fev(a(v) -p),b %2 v > plr/o], T

r<s<U(s>p) nstead of s=S(r>>p())<U(s>>p)

<r>>p,T>L)><s>>p,T> <r>pT>T5<s>pT>

Table 9: (Additional/Changed) Action Rules for Integral Construct

24

8 Protocol Verification

Now we are ready to verify a protocol which is time dependent. First we have to state
'~ the fact that every time guarded recursive specification has exactly one solution (RSP
and RDP). A guarded recursive specification is time guarded if there is a lower bound
bound on the time interval between two recursion variable unfoldings. This is only an
informal characterization but it is needed to exclude so-called ‘Zeno’ machines. The
proof of this principle and a thorough treatment of time guarded specifications do not
fall into the scope of this paper, they will treated in later papers. Next, we have to state
an Unwind Principle (UP) which allows us to unwind a recursive specification infinitely
many times. The dots in the derivation below express that this principle is not provable
within the theory BPApé7 in a finite derivation . We take Y'(¢) such that

t>Y(t)=Y()
thus assuming that Y'(¢) has no parts starting at or before t. We define X(t) as
X(@t)=7)-{Y(t+s)+7(t+r) X(t+m)}
for some ry < rq and ry < s then

X(t) = () {Y({t+s)+r(t+r) X(t+r)}
() - {r(t+7r0) Yt +s)+X({E+7)}
= 7(t)-{r(t+ro) - Y(t+s)+
T(t+rm) {Yit+s+r)+r{t+ro+r) X(t+2-r)}}
= 7(t)-{r(t+r) Y(t+s)+{Y({t+s+r)+r(t+ro+r) X(t+2-r)}}
= 7(t)-{r(t+ o) - Y(t+s)+r(t+ro+r) Y(iE+s+r)+X(t+2-7)}

L o) {TRr(t+ro+n-m) - Y(t+s+n-r)}

We take example 6.15 of [BB91], which is a PAR protocol (Positive Acknowledgement
with Retransmission). Some small changes are made. In the example below the set H
contains all read and send actions along the internal ports 3,4,5 and 6. The operator 6y
renames every action which occurs in H to §. It is known as the encapsulation operator
and it forces actions to communicate, for example if r;|s; = ¢; then &g, 53(sil|7i) = ci.

25

\ /

) 6

8.1 The Specification and the Implementation of the Protocol

First we define the individual components.

A = A(0,0)

Abt) = Tuep fisimi(d)(v) - Alb, d,2)

A(b,d,t) = s3(db)(t +0.001)- {Juerro00 t40.01> ms(ack)(w) - A(1 — b, w) +
time_out(t 4+ 0.01) - A(b,d, ¢ + 0.01)}

K = YsepxB Joso3(f)(v) - {sa(f)(v + 0.002) + errorg(v + 0.001)} - K
L = Jisors(ack)(v) - {ss(ack)(v + 0.002) + errors(v + 0.001)} - L
B = B(0)
B(b) = Yaep Jysora(db)(v) - so(d)(v +0.001) - B(1 — b,v) +

aep Jysora(d(b— 1))(v) - B(b,v)
B(b,t) = sg(ack)(t +0.002) - B(b)

The implementation of the protocol is the following merge:

PARim = 65(A| K | L || B)

8.2 Expanding the Definitions

We expand the definitions, for each new configuration a new recursion variable is chosen.
In this way we obtain the parameterized recursion variables Xy — X5, Y; — Y5 and Z1, Z,.

PARimpl = XO(Oa 0)

Xo(b,t0) = 8u(A(b, to)|| K||L|| B(b))
= fu>to ZdED Tl(d)(v) ’ Xl(b’ d, U)

Xl(b7d>t) = 6H(A(b’dvt)” K ” L ” B(b))
[fwepttr0.01y 7s(ack, w) - A(1 — b,w) + time_out(t + 0.01) - A(b,d,t + 0.01)]
” > tepxB Jyso T3(f)(v) - [sa(f)(v + 0.002) 4 errorg(v + 0.001)] - K
L

26

I B(b)
)

= c3(db)(t + 0.001) - Xy(b, d, ?)

Xa(b,d,t) =06g ([fuepetroon rs(ack,w) - A(1 — b,w) + timeout(t+0.01) - A(b,d,¢ + 0.01)]
|| [sa(db)(t + 0.003) + errorg(t + 0.002)] - K
I L
I Zaep Joso ra(d)(v) - s2(d)(v +0.001) - B(1 — b,v) +
2aep Ju>oa(d(1 b)) (v) - B(b, v)

)
= c4(db)(t + 0.003) - so(d)(t + 0.004) - Z;(b,d,t) +
errorg(t + 0.002) - time_out(t + 0.01) - X;(b,d,t + 0.01)

Z1(b,d,t) = 6m ([fuepiroony rs(ack,w) - A(1 —b,w) + time_out(t +0.01) - A(b,d,t + 0.01)]
K .

I fusors(ack)(v) - [ss(ack)(v + 0.002) + errory(v 4+ 0.001)] - L
| se(ack)(v)(t + 0.005) - B(1 — b)
)

= Cs(ack)(t + 0005) . Zg(b, d, t)

Z3(b,d,t) = 6m ([Jueproo rs(ack,w) - A(1 — b,w) + time_out(t +0.01) - A(b,d,t + 0.01)]
| &
|| [ss(ack)(t +0.007) + errorz(t + 0.006)] - L
|)| B(1-b)
= c5(ack)(t 4+ 0.007) - Xo(1 — b,t + 0.007) +
errorg(t + 0.006) - time_out(t 4 0.01) - Y1 (b, d, ¢ + 0.01)

= ég (s3(db)(t +0.001) -
[fuept ir0.01 T5(ack,w) - A(1 — b,w) + time_out(t + 0.01) - A(b,d,t + 0.01)]
” Ytepx fuso0T3(f)(®) - [sa(f)(v +0.002) + errorg (v + 0.001)] - K
L A
| B(1-5)

- cg(zlb)(t +0.001) - Y(b,d,t)

Ya(b,d,t) =6u ([fueperoon) rs(ack,w) - A(l —b,w) + time out(t +0.01) - A(b,d,t + 0.01)]
| [sa(f)(t + 0.003) + errork(t+ 0.002)] - K
| L
| Eaep Jysora(d(1 — b))(v) - 52(d)(v + 0.001) - B(b,v) +
Yaep Jusora(db))(v) - B(1 - b,v)

errorg(t + 0.002) - time_out(t + 0.01) - Y1(b,d,t + 0.01)

27

8.3 Abstracting from Internal Steps

We apply the renaming operator 7; which renames every atomic action a(t) to 7(t) except
for the actions ry(d)(t) and sy(d)(¢).

TI(Xo(b, to))
TI(Xl(b, d, t))
’I‘I(XQ(b, d, t))

71(Z1(b,d, 1))
11(Zs(b, d, t))

77(Y1(b, d, t))
77(Ya(b, d, t))

I

Jisto Laep 1(d)(t) - 71(X1(b, d, 1))

7(t +0.001) - 77(X2(b,d,t))

7(t + 0.003) - s5(d)(t + 0.004) - 77(Z1(b, d, 1)) +
7(t +0.002) - 7(t + 0.01) - 74(Xy (b, d, t + 0.01))
7(t + 0.005) - 77(Z5(b, d, t))

7(t +0.007) - 77(Xo(1 — b, ¢ + 0.007)) +

7(t 4 0.006) - 7(t + 0.01) - 77(Y1(b,d, ¢ + 0.01))

7(t 4+ 0.001) - 7;(Ya(b,d,t))
7(t + 0.003) - 77(Z1(b,d, 1)) +
7(t +0.002) - 7(t + 0.01) - 77(Y1(b, d, ¢ + 0.01))

Now we can apply the 7-law and its implied identities (such as the 7-swap and the

T-removal).

T[(Xl(b, d, t))

TI(}fl(b) d, t))

o

7(t 4 0.001) - 77(X5(b,d,t))
7(t 4+ 0.001) -
{ 7(t +0.003) - so(d)(t + 0.004) - 77(Z1(b,d,t)) +
7(t +0.002) - 7(¢ + 0.01) - 77(X1(b, d, ¢ + 0.01)) }
7(¢t 4+ 0.001) -
{ sa(d)(t +0.004) - 7(t + 0.005) - 77(Z2(b,d,t)) +
7(t +0.002) - 77(X1 (b, d,t + 0.01)) }
7(t 4+ 0.001) -
{ s2(d)(t + 0.004)-
{ 7(t+0.007) - 77(Xo(1 — b,t + 0.007)) +
7(t + 0.006) - 7(¢t 4+ 0.01) - 77(Y1(b,d,t + 0.01)) } +
7(t + 0.002) - 77(X1(b,d,t + 0.01)) }
7(t +0.001) -
{ s2(d)(t 4 0.004)-
{ 71(Xo(1 = b,t +0.007)) + (¢ + 0.006) - 77(Y1(b,d,t + 0.01)) } +
7(t + 0.002) - 71(X;(b,d,t + 0.01)) }

7(t +0.001) - 77(Y2(b, d,t))
7(t +0.001) -
{ 7(t+0.003) - 77(Z:(b,d,t)) +
7(t +0.002) - 7(¢t 4 0.01) - 77(Y1(b,d,t + 0.01)) }
7(¢t 4+ 0.001) -
{ (¢t +0.005) - 71(Z5(b, d, t)) +
7(t +0.002) - 77(Y1(b,d,t + 0.01)) }
7(t + 0.001) -
{ { 7(t +0.007) - 72(Xo(1 — b, ¢ + 0.007)) +

28

7(t 4+ 0.006) - 7(t + 0.01) - 77(Y1(b,d,t + 0.01)) } +
7(t + 0.002) - 77(Y1(b, d,t + 0.01)) }
= 7(t+0.001) -
{ 71(Xo(1 —b,t +0.007)) 4 7(t + 0.006) - 77(Y1(b, d,t + 0.01)) +
7(t +0.002) - 77(Y1(b,d,t + 0.01)) }

By applying the Unwind Principle:

T1(X1(b, d,t)) = 7(t40.001) - X2, 7(t 4+ 0.002 + n - 0.01) - s5(d)(t + 0.004 + n - 0.01)-
{ 71(Xo(1 — b, + 0.007 + n - 0.01)) +
7(t 4+ 0.006 + n - 0.01) - 77(Y1(b,d,t + (n+ 1) - 0.01)) }

mr(Y1(b,d,t)) = 7(t+0.001)- 32, 7(t + 0.002 + n-0.01)
{71(Xo(1 = b,t + 0.007 + n - 0.01)) + 7(t + 0.006) - 77(Yi (b, d, ¢ + 0.01))}

If we abstract from all internal activity we come to the following sequence:

Read the data at port 1 1
It takes n time outs before it is delivered at the sender 2
The data is send over port 2 3
Either the system is back in its starting position 4a
or another round is needed for the acknowledgement 4b

An “acknowledgement round” is similar, though no read at port 1 an send at port 2
occus. Below we give a more formal presentation of this high level view. We define Q(b)
and Q'(b,t) as follows. Q'(b,t) is the “acknowledgement round”.

Q) = Jist, Laenri(d)(v)- 1

% o T(t+0.002 + n - 0.01)- 2

sa(d)(t 4 0.004 4+ n - 0.01)- 3
{(t+0.007+n-0.01) > Q(1 — b)+ 4a

7(t +0.006 + n - 0.01) - Q'(b,£ + 0.006 + n - 0.01)} 4b

Q'(b,t) = 7(t+0.001) 32 ,7(¢t+0.006 + n-0.01)-
{(t +0.007 + n - 0.01) > Q(1 — b)+
7(t +0.006 + 7 0.01) - Q'(b, ¢ + 0.006 + n. - 0.01)}

If we take
PAR,p.. = Q(0)

we can prove
ACPp + TAUIL + RSP+ RDP - PAR;pmp = PAR,..

However, the expression for PAR,ype, still contains too much time information; all points
in time at which it is decided whether a channel delivers its message or not is captured.

29

We would expect a specification which states that sooner or later the incoming datum
will be send out at port 2. Hence, one needs a mechanism to abstract from some time
information. One very rough way to obtain this, is to throw away all time information
obtaining the (untimed) term:

S(b) = Y ra(d) - so(d) - S(1 — b)

deD

9 Conclusions and Further Research

In this report a notion of abstraction is introduced. The adjustment of the model is
quite simple and requires the introduction of so-called closure rules. As equivalence we
still can use the standard notion of strong bisimulation. The resulting equivalence can
be characterized by only one additional 7-law for the calculus without integration.

By interpreting symbolic processes as a special class of timed processes, we obtain a
notion of 7 equivalence for symbolic processes. The resulting equivalence coincides with
delay bisimulation on which a stronger rootedness condition is imposed.

We can verify a protocol using these laws. To deal with recursion, we need as well
the common requirement that every guarded recursive specification has a unique solution
(RDP and RSP) and a new principle which we call the Unwind Principle (UP).

However, some questions are left open. The completeness proof is given for terms
without integration. We would like to have to completeness result for a larger class of
terms.

The statement of the principles RDP, RSP and UP is rather ad hoc and needs further
research.

Finally, the PAR protocol is specified and verified in absolute time. For investigating
the underlying theory it is suitable to study the absolute time calculus, since all results
can easily be transferred to relative time which is not the case for the converse direction.
However, relative time is possibly more suited for protocol specification and verification
since relative time expressions tend to be smaller.

All these matters are subject for further research.

A cknowledgements

The author would like to thank Jos Baeten (Eindhoven Univ. of Technology) for his
encouraging comments. Part of the research of this paper was suggested by him. Willem
Jan Fokkink (CWI) is thanked for having clarifying discussions with.

References

[Bae90] J.C.M. Baeten, editor. Applications of Process Algebra. Cambridge Tracts in
Theoretical Computer Science 17. Cambridge University Press, 1990.

[BB91] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Journal of Formal
Aspects of Computing Science, 3(2):142-188, 1991.

30

[BW90]

[dR89]

[Gla87]

[Gro89]

[GW89)

[Hoa85]
[HRI0]

[Klu91]

[Mil80]
[Mil83]

[Mil89)]
[MT90]

[Plo81]

[Ree89]

J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts in The-
oretical Computer Science 18. Cambridge University Press, 1990.

W.P. de Roever. Foundations of computer science: Leaving the ivory tower.
Bulletin of the European Association for Theoretical Computer Science, 44:455—
492, 1989.

R.J. van Glabbeek. Bounded nondeterminism and the approximation induc-
tion principle in process algebra. In F.J. Brandenburg, G. Vidal-Naquet, and
M. Wirsing, editors, Proceedings STACS 87, volume 247 of Lecture Notes in
Computer Science, pages 336-347. Springer-Verlag, 1987.

J.F. Groote. Transition system specifications with negative premises. Report
CS-R8950, CWI, Amsterdam, 1989. An extended abstract appeared in J.C.M.
Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, LNCS

458, pages 332-341. Springer-Verlag, 1990.

R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in
bisimulation semantics (extended abstract). In G.X. Ritter, editor, Information

Processing 89, pages 613-618. North-Holland, 1989.

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall Interna-

tional, 1985.

M. Hennessy and T. Regan. A temporal process algebra. Report 2/90, Com-
puter Science Department, University of Sussex, 1990.

A.S. Klusener. Completeness in real time process algebra. Report CS-R9106,
CWI, Amsterdam, 1991. An extended abstract appeared in J.C.M. Baeten and
J.F. Groote, editors, Proceedings CONCUR 91, Amsterdam, LNCS 527 , pages

376-392. Springer-Verlag, 1991.

R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, 1980.

R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25:267-310, 1983.

R. Milner. Communication and concurrency. Prentice Hall International, 1989.

F. Moller and C. Tofts. A temporal calculus of communicating systems. In
J.C.M. Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam,
volume 458 of Lecture Notes in Computer Science, pages 401-415. Springer-

Verlag, 1990.

G.D. Plotkin. A structural approach to operational semantics. Report DAIMI
FN-19, Computer Science Department, Aarhus University, 1981.

M. Reed. A hierarchy of domains for real-time distributed computing. In Math-
ematical Foundations of Programming Language Semantics. Springer-Verlag,
1989.

31

[RR88] M. Reed and A.W. Roscoe. A timed model for communicating sequential pro-
cesses. Theoretical Computer Science, 58:249-261, 1988.

[Wan90] Y. Wang. Real time behaviour of asynchronous agents. In J.C.M. Baeten
' and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, volume 458 of
Lecture Notes in Computer Science, pages 502-520. Springer-Verlag, 1990.

32

