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Let X, X,2,.. be a sequence of independent identically distributed random variables taking values in
a measurable space (J(, @) having a common distribution 7, on this space. Consider an U-statistic
— [n
Un - [ Q(Xm',’ ey an_) (])

] -1
m 1< <..<i,<n

where ®:3(" R is a symmetric function, m is integer number, 1<m<n, which is called the degree of
the U-statistic. The asymptotic theory, as n—co, m being fixed, for U-statistics is constructed in [1].
The case when m depends on n, i.e. m =m(n), so that m—o0 as n—>co is studied very little. Some
results (see [2],[3],[4]) give a hint that in this situation the asymptotics is essentially different to that in
the case of fixed m.

The aim of this paper is to study the asymptotics of the U-statistics (1) under the condition

mn~' 5B 0<B<1 ()
as n — 0.
THE GENERAL THEOREM

Let A stand for the Radon measure (i.e. A(4) < oo for all 4 @) having no atoms on the measurable
space (3, @) and P)(4)=P)(w, A) denotes the Poisson measure with intensity A, i.e.

PIPAA) =k]=[k!]" A Q)e ) Kk =0,1,2,..

Aand also events {w: Pr(41)=¢,}, ..., {w:PA(AP)qu} are independent for any positive integer )2
any disjoint subsets 4,,..., A,e@ and any non-negative numbers g, ..., gp- Further, put
An(A)=nm,(4), A @ and define a sequence of point measures

On(4) = 8x (A) + 6% ,(4) +..+ 8x_(4) 3

based on the random variables X,, X, . . ., X,, for any 4 €@, with 8,(4) standing for the Dirac
measure.

The method of analysis proposed is based under condition (2) on the canonical Hoeffding decom-
position ([1], p. 21)

m -1
U~ 60 = 3 (7] 2] Suetemo @
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where
on= [ [0pi, ..., ym)sill A&y,
Snc(gmc): 2 gmc(Xm',» LR | Xm‘,):

1<i\<..<i,<n

Bl -, %)= [+ 80y, - ) T B @)~ M@IX T Ay

THEOREM 1. Suppose that the weak convergence of random measures

0, % Py ‘ ‘ ®)
takes place. Let the limit
o (m, )gme(X1y .+ v s X) > 8e0(X1y ..., X)AS N —> 00

exist for some o(m, n)>0, the functions g (x1, . . . , X.) being continuous, |g o|<M° (M is a constant),
and there exists a compact in JC outside of which g, equal zero; and also -

Io_l(m) n)gmc(xlr R xc)' sMcs c= 0) 1) 21""
If condition (2) takes place then the weak convergence

o Ym, n)U,—6] & 3 ch—, .0\ o | ©)
c=1 ~° .

where

W= [ [ gulx1, ..., x) Px(dx)) - - - Pp(dx,)
denotes c-dimensional stochastic Poisson-Wiener-Ito integral [5].
To prove (6) the representation (4) is rewritten into the form

O‘I(m, nU,—8]= i [.[:_;]csnc(gw)_*_rnm + Py . v e

c=1

Where
] ) s o]

; m c
fm=3 H LONMCINN
in addition &(1) = 0,

8 =11;11 [1—jm~1—jn=1]"' =1, c =2, 3,...
The detailed analysis shows that in (7)

P P
rmm =0, p,, >0

as n—oo. It follows from [4] and [6] that in (7)

m

3 i Suge) S S L oww
c=1 *°

c=1

Let’s illustrate the more detailed estimates of this proof by the following example.



THE PARTICULAR CASE
Letin (1)

(D(xl) DR xm) = h(xl)'"h(xm)’
where A :J(—R is a continuous function with compact support. Denote

= [ hGM(dx), p= [ hGIA@x)
¥ %
and let p, 50, p~0. The assumption (5) implies that p,—p as n—o00.
THEOREM 2. If condition (5) holds then the weak convergence
w"U, S exp{ [ -8+ %h(x)m(dx)}
%
or, on the other form,

iU, - S 3 8y 2 L fn re)—n) 1L, Py ()

clp‘c

PrOOF. Under the above conditions

Gme (X15 -+ oy X)) = pr T [AGe) ] - - - [A(XE) — pal,
0 =py

Then one can choose o(m, n)=p,' and hence o o
Boo (15 - oo, %) = BT Th Ger) = ] - - - [(xe) — ]

Reduce then representation (4) to the form

m -1 :
A/ N 4 B I N U ETA RN e MM R

c=0 I<i|<..<i,<n . .
Whence we derive as n— o0

pn U, = E [ 2 [ (X, m,) Pn] '[h(Xni,)_r”'n]‘_*' R,(w) .

c=0 ”F‘n 1<i) <..<i,<n

®

®

where R,(«) 0. Then making use of the generating function for a symmetric polynomial ‘we have

n

pn " U, = ,H1

) ~ Bal| T Ry(w)

In (10)

n

II
j=1

1+- [h( n) ~ #n]}
= exp {é In|1+
j=1
=exp{f

Under the condition (5) the weak convergence

L:n—[h(xn,-) - m]” =

(dx)}

(10)



4

m_  m d _pg+ B
J1nt1 = S S H Qi) S [Inl1 = Bt HGIPA@)

takes place. This relation taken together with (10) implies (8).

Note that

Eexp{ts [ o1 - 8+ {-h(x)m(dx)} =
X

exp{g{ G

isto{1— g+ L nix
tnf1-g+ 4 ”]~1]A(dx)}

for all seR.

The second statement from (9) follows directly from (6).

THE WEAK CONVERGENCE OF VON MISES FUNCTIONAL.
Consider the von Mises functional

Vn = n-—m é é ‘D(Xm’,» ceey Xm‘,,)

h=1i,=1

and denote

EVnzl"”fVn(xl,"-:xn)An(dxl)"'An(dxn)’

where V,(xn1, - - -, Xun) =V,. We suppose that |EV,|<co. V, satisfies decomposition similar to (4)

m m _ n n
Vo—EV,= 3 [C]n ¢ > EmeXniys « 5 Xni)

c=1 i=1 =1

Further, by means of measure Q, the expression in the right-hand side of the latter relation can be
represented in the form

Vo= EV, = ﬁ [’:‘]n—c f ttT jgme(xh cee xc)jljl Qn(dxj)

c=1

Thus, under the conditions of Theorem 1 one can state the weak convergence

mnlVu=EV) S B L [ g2 B Pr@n

c=]

as n—o0 holds, i.e. the weak limits for U, and V, coincide.
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