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Abstract

Dufour (1982) gives a conjecture concerning a characterization of the
exponential distribution based on type 2 right censored samples. This
conjecture, if true, generalizes the characterization based on complete samples
of Seshadri, Csorgd, Stephens (1969) and Dufour, Maag, van Eeden (1984).
In this paper it is shown that Dufour’s conjecture is true if the number of

censored observations is no larger than %n —1, where n is the sample size.
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1. Introduction

Dufour, in his 1982 Ph.D. thesis, presents the following conjecture concerning a characterization
of the exponential distribution. Let X;, X,,..., X, be independent, identically distributed, non-
negative random variables and let r be an integer satisfying 2 < r < n. Write

Yl,ﬂ < Y2,n <...< Yn’n for the order statistics of X, Xy, ..., X, with Yo,n = 0 and

define

(1.1) {Di’" = @i D iYoo)

1
Si,n = 2 Dj,n'
J=1

The conjecture then states that, if

Sl,n S2,n Sr—l,n
(1.2) Wen = (S 1§ g

ran Vryn r,n

is distributed as the vector of order statistics of a sample of size r—1 from a U (0, 1) - distribution
(i.e. a uniform distribution on the interval (0,1)), then'X; has an exponential distribution. That this
result, if true, characterizes the exponential distribution follows from the fact that Wr’n has this
‘ uniform-order-statistics distribution when X, is exponentially distributed.

For the uncensored case (n=r) a proof of the characterization for the case wheren > 3 was
given by Dufour, Maag, van Eeden (1984) (see also Seshadri, Cstrg6, Stephens (1969)); Menon and
Seshadri (1975) show that for the case n = 2, the uniform distribution of W, , does not characterize the
exponential distribution.

The problem of whether the uniform-order-statistics distribution of Wen characterizes the
exponential distribution arises, for example, when one bases a test of the hypothesis that X, is

exponentially distributed on the statistic Wr’n. If the conjecture is true then the hypothesis that X is



exponential is equivalent to the hypothesis that Wr,n is distributed as the vector of order statistics of a
sample of size r—1 from a U(0, 1) — distribution. There are of course numerous tests of uniformity
available and this result offers a natural way of testing the exponentiality of a sequence of ordered
observations before the complete set of observations has been collected. However, if the conjecture is
false then there exists at least one alternative distribution for X; for which the power of the test
equals the size.

In this paper it will be shown that Dufour’s conjecture is true if r > 21 |, 1. We do not know

3

whether it is true for the case where n > 3 and r < QTH + 1

Section 2 contains the main result and its proof. Some lemmas, needed for the proof in section
2, are given in section 3. The vector of order statistics of a sample of size j from a
U(0, 1) - distribution will be denoted by U(y(§) = (UpyUzy - » U;)) and 2, ~ Z, will be used
to denote that the random vectors Z; and Z, have the same distribution. Finally, F(x) = 1-F(x),
—o < X < oo, where F is the distribution function of X,.
Under the assumption that the density of X; exists, the proof of the main theorem is relatively

straightforward. In avoiding that assumption the proof has had to become somewhat more

complicated.



o

The main result

This section contains the proof of the following theorem.

Theorem 2.1. Letr > 239- + 1. Then X, is exponentially distributed if and only if

W, ~ U,-1)

o

Proof. As already mentioned above, W, .= ~ U(.)(r —1) when X, is exponential.
We show that

(2.1) W,on ~ Upy- 1) = X, is exponential.
By Lemma 3.8, W, ~ U(_)(r — 1) implies

Zy Z, - 1

(2.2) P(—Z— > 51, ’Z“ > 52) = my 31’ 32 Z 0)

where Z, Z, and Z, are independent random variables each distributed as min (X;, Xy, ..., X, p49)-

We apply the following key theorem from Kotlarski (1967).

Theorem A (Kotlarski): Let W;, W,, W be three independent random variables, and set Y,
= W,;/W;, Y, = Wy/W3. The necessary and sufficient condition for W (k=1,2,3) to be
identically and exponentially distributed is that the jdint distribution of (Y,,Y3) has the following

density

gypye) = 2L+y;+y2) % vy > 0, yp, > 0.

From (2.2) and Theorem A it follows that Z, has an exponential distribution and from

(2.3) P(Z, >t) = F*™*(t) t >0



it then follows that X, has an exponential distribution.

a
Remark 2.2. Note that the above proof includes the case wheren=r. In that case the
2n

condition r > 3 + 1 becomes n > 3. The proof given by Dufour, Maag, van Eeden (1984) for the

casen=r > 3 is of a totally different nature.

3. Some lemmas

In this section we develop a sequence of lemmas which lead ultimately to a proof of Lemma 3.8.

Lemma 3.1. (Dufour 1982, p 146-151). For2 < j < n, let

Viin = You/ Yim Voin = Yoo/ Yin s Vitin = Yiu./Y,

nn?
then Wj,n ~ U(,)(j —1) if and only if
(Vl,j)"’ vzijy"’ ctt vj’hjyn) has dens“y

) -j
1 (i1 J-l
n(.n(-Jj)}). (,;1 v; + n—j+1) » 0<vp Sy Sy <l
(3.1) { -

0 otherwise .

Remark 3.2. Note that if (Vl, j,mvz, FRERII A% 1, j,n) has a density, then F must be a continuous

function. For if F has a jump at x, (say) of size p then (Vl’ j,sz o Vi, jn) can take the

yJyn? T

value (1,1, ... ,1) with probability at least p™.



For 2 < j < n let, Xl’j,n, X, L X be random variables which are,

vjv"' ° j'lrj:n

conditionally on Y; ., =y, independent and identically distributed with distribution function
F(x)/F(y), 0 < x < y. (Note that the X; . . should, in fact, carry an extra subscript, namely Y; .).

Let Yj’n,i’=1,2,...,j—-1 and set

Ti,j:" = xi,j,n/
Tj,n = (Tlajs"’ T2,j,n’ R Tj-l,j,n)’

The following is an immediate consequence of Lemma 3.1.

Lemma 3.3. For 2 <j<mn W, ~ U(')(j—l) if and only if T._  has density

Jy nn

-1 -7 .
(3.2) [n!/(n—j)!]( Yot + n—j+1) , 0<t; <1,i=12..,j—-1L
i=1

We can further simplify the joint distribution of Tj,n by representing it in terms of the original

independent X,’s.

Lemma 3.4 For2 < j < n and t = (ty, ty .. ,tj_l)

P(T = (ifl)P(x1 <42, X, €52, X;_q < b1 D),

sm S L)

where Z is independent of X, X,, ..., Xj_ , and distributed as min (Xj, Xj+1’ vy Xp)-

Proof: From the definition of T jn

P{Tj,n S E} = P{Xl’j,n S tle,ﬂ ’X2,j,n S tZYj,n g eee gy Xj-l,j,n >

© & [F(xt)| o s
- Lo [Fm} GGy el [l 4P

0 =1



co| j-1 _ n-i
= (i{ll). I , [ L[l vF(xt,-)] (n=j+DF)] . dF(x).

The second equality follows from the fact that, for j = 1,2, ... ,n,

Fy; 0 = ii (‘1‘) [F(x)]‘[F(x)]"" »

=j .
and that F is uniformly continuous, so that for any measurable function h,

(33)  [hdPy, () = fh.(ifll) (n—j + DIF)F [F™. dF(x)

The lemma now follows.

The next result will be useful in an induction argument needed later on.

Lemma 3.5: For0 <k <r-2 < n-2

(34) if W, . ~ Uy(r—1) then W, .y ~ Ugy(r—k=1).

Proof: The result is trivial when r = 2, so assumer > 2.
Using standard properties of uniform order statistics we have that for 2 < j < r,
(3-5) Wr,n ~ U(.)(r“‘l) = Wj,ﬂ ~ U(.)(j—l).

Further we have that for any A ¢ B 20 the o-algebra of Borel sets of R72,

(3.6) P(Tj1n1€A) = (m=j+n P(T;,; e A) +
) + (j=1)n P(T; . e Ax[0, 1]).

This can be seen as follows. From Lemma 3.4 one obtains
-1
P(Tp € A) = (;12) P((Xy, Xgy s Xjp) € AZ X,y > 2)

1
+ (?_Q)P((Xl, Xp0 s Xjg) € AZ, X, < 2),



where Z ~ min (X, X; 44, ..., X,) and independent of (X;, X, ..., X;_;). Using (3.3) and noting
that Z ~ Yl,n—j+l

P(X;, Xgy - - - ,‘ X €AZ, X, > Z)

= E {[p((x,, Xy e » Xj.p) € AZ)] F(Z)IZ}

{(n=j+1)/(n=j+2)} P(Xy, Xy, .., X;p) € AZT)

where Z* ~ Y; . i.9 and is independent of (X;, Xy, ..., X;_5). A second application of Lemma 3.4
yields the first term on the right of (3.6).

The second term follows as
P((Xy Xy s ) € AZ, Xy < 7) = P((Xys X 5 Xjog) € (A x [0, 1)2)

-1y _ (i-lYn
i (1) - G2
From (3.5) with j =t —1, (3.6) with j =r and Lemma 3.3 with j =r and with j =r—1, we have that

Wen ~ U(_)(t— 1) implies that for all A ¢ B__,

r

(3.7) P(T, 1 €A) =

r-1,n-

- -1 ] - -1 2 : _ r+1
(n—r+1)n {cg n! [(n—-r+1)!] (ié:lt,+n t+2)' dt, ... dt,

r-1
+ =o' [.f [ - al [(n—r)!]‘l( Yt + n—r+1)" dt, ...dt,,
teB t._;¢€l0,1] i=1

= I (= 0E-D (8 6+ norr2) iy dy +

fo (a-1)!(n-r)? {(::Eit,- + n—r+1)"'+1-( rz-f t; + n—1'+2)""*'1}dt1 coodt g

te€ = i=1

= {cﬁ[ (n—l)![(n—r)!]’l(gt; + n—r+1)"+ldt1...dtr_2,



wheret = (t;,ty ...,t.5)and B = A n [0, 12
This in turn implies, via Lemma 3.3 with j =r —1 and n replaced by n — 1, that Wr_l'ﬂ_1 ~ U(')(r-— 2).
This establishes the lemma for the case k = 1. The other cases follow by repeated application of the

k =1 case.

From Lemma 3.3 and Lemma 3.5 one obtains immediately

Lemma 3.6: For2 <j<r<n W ,~ U(_)(r — 1) implies that T has density

Jynr+3

. =2
-1

(3.8) (n—r+j) [(n—r)!]'l( >t + n—r+l) 0 <t; < 1,i=12..,j-1
=1

The following is an immediate consequence of Lemmas 3.4 and 3.6.

Lemma 3.7: For2 <j <r <on, Wen ~ U(.)(t-l) implies

P(X; £52%2,X; £82,..., Xja < sj_IZ) =

. s $j1 J-1 -
(n—r+1)(J-1)!Jo »--IO E t.-+n—r+1 dtl P dtj-l’

1=1

0 <s;

<1,i=1,2 ..,j-1,

where Z ~ min (X, X,, ..., Xn~r+1) and independent of (X, X,, ..., Xj-l)'

We now give a key lemma whose proof will have to wait till near the end of

the paper but which motivates a number of the subsequent lemmas. It is the lemma used in the proof
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of Theorem 2.1.

Lemma 3.8: Ifr > %n + 1,then W_ ~ U(.)(r—-l) implies
P(Z; >5,2,Zy >58,Z) = (5;+ 55 + 1)}, 8,8, >0,

where Z,, Z,, Z are independent and identically distributed as min (X, X,, ... , X _, + -

For the proof of this result the following lemmas are needed. In each of these lemmas

Z ~ min (X}, Xy, .., X 41) independently of (X;, X, ..., Xj_l).

Lemma 3.9. For2 <j<r<nand0 <1<j-1L, W, ~ U(')(r-—l) implies
39)  P(X; € 52,i=1,2.,j-1-1, S K> s2)

. -3+
=( DG-1-1) 1 i ]g:lt 1+1 dt, ... dt
=(n-r+1)G-1-1)! oo | & ;i +n—r+ s 1Aty

for0 <s; <1,i=12 ...,j=1-1, and se {s;, sy, ...,sj_,_l}.

Proof: We use an induction argument on 1 and j but not on r and n.
The trivial case of 1 =0 and 2 < j < ris simply a statement of Lemma 3.7.
Further, the case 1 =1,3 < j < r follows from the fact that we can write
PX; <s5;2,i=1,2,..,j-2, Xj‘l > sZ)
=P(X; £5%,i=12,..,j-2)-PX; <5;2,i = 1,2,..,j-2,X;, < sZ).
Two applications of Lemma 3.7 now establish the required result. Next assume (3.9) is true for some
fixedl > 1with 142 < j < r thenit holdsfor 141, and1+3 < j < r, because

(3.10) P(X <sZi=1,2..,j-1-% mn X, > sz)

F1<i< g1



= P(X; < sZi=12%.,i-1-% _min_ X, > sZ)

JT<i< 41
~P(X; €5 Zi = 1,2, jo1-2 Xy < 5% L K> s2)
' s (Sipg 2 BEALE
= (n-r+1)G-1-2)! JO ‘[0 iz—:l t; + n—r+1+ls dt, ... dtj_,_z

5 8512 s [ 5-1-1 EAL
- (n—r+l)(j—l-l)! Jo .ee J dtl eee dtj-l-2 '[ Z tt' + n“r+1+ls dtj'l-l‘

0 0\ =1

. Sl Sj_l_z j-l-2 - j+'+1
(n-r+1)G-1-2)! Y t;+n-r+14(1+1)s dt; ... dt;
0 0 =1 I

which is (3.9) with 1 replaced by 1+ 1.

o
The case where ] =j — 1 in Lemma 3.9 needs special attention:
Lemma 3.10. For2 <j<r<n, Win ~ U(_)(r —1) implies
(3.11) P( . er‘ug i X; > sZ) = (n-r+1)/n-r+1+(-1)s),0 < s < 1.
o
Proof: Induction on j will be used in this proof. For j =2 it follows from Lemma 3.7 that, for

0<s<1
P(X;, >sZ) = 1-(n-r+1) J:(t+n—r+1)'2dt
= (n—-r+1)/(n—r+1+s).
Now suppose the lemma is true for some j € {2, 3, ... ,1—1}, thenfor 0 < s < 1,

P(1<rni11<jxi > sZ) = P(Xl > sZ,sz‘_inSjX,- > sZ).

11
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From the induction hypothesis and Lemma 3.9 it then follows that for

P(1 mjrijX; > sZ)

(m-r+Dn-r+14+(G-1)s? -—(n—r-*—I)I:’{t+n-—r-{-1+(j—1)s}'2 dt

(n-r+1)/(n-r+1+]s)

which is (3.11) with j replaced by j + 1.

Next we introduce a second minimum term into the probability expression in (3.9) with the ultimate

objective: an expression like (3.11) but with two minimum terms.

Lemma 3.11. For3 <j<r<nl>0k2>01l+k <j-3,a=j-1-k,

w n ~ U(.)(r— 1) implies

r

(312)  P(X; < 5;2,i=12, ., =i, min X > mn X > %)

51 a1 [ @l , -
= (n—r+l)((x—1)!jo Io Y t;+n—r+1+ks+ls dt, ... dt;,

=1

0<s; £1i=12 ...,a-—l;s,s’e{sl,sz’ ey 8o}

Proof: We use an induction argument on 1, j and k but not on r and n.

For k=0 (and 1< j-3, 3 <j<r) the first minimum term disappears

and

the result is a particular case of Lemma 3.9. Further, in the spirit of (3.10)
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the case k=1(andl < j—4,3 < j < r) also follows from Lemma 3.9.

Now we assume the lemma true for somek > 1(1 < j—-k-3, k+3 < j < r) and show it holds for
k+1 (1 £ j-k—-4, k+4 <j <L)

The idea of the rest of the proof is essentially the same as that of the proof of Lemma 3.9. We start
with the left side of (3.12) with k replaced by k+1, i.e. a replaced by a —1. We leave the second
minimum term untouched, but take the variable X _; out of the first minimum term. We then
represent the probability (i.e. left-side of (3.12) with @ — a — 1) as a difference of two probabilities in a
way directly analogous to (3.10). The resulting probabilities are covered by the results assumed true
under the induction hypothesis and can be replaced by appropriate integrals. These are manipulated in

a way similar to the treatment given to the corresponding integrals in the proof of Lemma 3.9.

o
Lemma 3.12. For 2<j<r<n 0<1<j-2
W,.,n ~ U(.)(r—l) implies
(313)  PX <5 %, mp, %> ulomin X > 512)
= (n—-r+1){(n—r+l+ls2+(j_—l—2)sl)'1—(n-,-r+1+ls2+(j—l—-1)sl)'1}
0<s; <1li=12
a
Proof: The case 1 = 0 is just a special case of Lemma 3.9. Also when 1 =1, we represent, as in

(3.10), the probability in the left-side of (3.13) as the difference between two probabilities the first of
which involves an event placing no restriction on X, and the second includes the condition

X, < s, Z. Lemma 3.9 can be applied and the resulting integrals evaluated. We now assume the



14

lemma true for some 1 > 1 and show it holds for 1+ 1. The general case is essentially the same as
“the 1=1 case, i.e. we represent the probability on the left of (3.13) as the difference between two
probabilities. The first term is the probability of the event:

X; £ 2 X; > s, 2, min X; > 5 Z,

min ;
3<i<I+2 4+3<i< ;1

whereas for the 2nd term the associated event is:

X, €82 X, 8,7,

X; > s, Z,

min i X; > s Z
3<iLI+2

min
1+3<i < 51
The first term is covered by the induction hypothesis whereas the second can be evaluated using

Lemma 3.11, the latter involving a double integral which is easily evaluated.

We are now in a position to state the key lemma on which Lemma 3.8 depends and hence on which the

main result of the paper rests.
Lemma 3.13. For 2 <j<r<n 0<£1<j-2

(314) P _min X; > 57, n X > 52)

mi
+1<i<j1

= (@-r+1)/[n-r+1+ls;+(G-1-1)sp), 0 <s; < Li=12

o

Proof: For 1 = 0 the result reduces to Lemma 3.10. The case 1 =1 is covered by Lemmas 3.9 and

3.10 after using a representation analogous to (3.10).

Using an induction argument on 1, we represent the left side of (3.14), with 1 replaced by 1+1, as a



15

difference in two probabilities obtained by splitting off one of the variables from one of the minimum

terms, for example X;,,. The split being based, as usual, on the fact that

Xl+leR¢>{X,+l < SIZ}U{XI+1 > SIZ}.

Proof of Lemma 3.8. In Lemma 3.13 we make sure that the number of variables involved in the two
minimum terms as well as in the minimum expression defining the distribution of Z, are all equal. We
thusset l=j—1—1 = n—r+1. Clearlyj=2l+1andasj < r so 21 + 1 < r. Butl also equals
n—r+1so we need 2(n—r+1)+1 < r. This is equivalent to r > %n + 1. Lemma 3.13 then

states that

(3.15) P(Z; > 812,29 > 5,Z)=(s;+s,+1), 0 <

A
0
IA
=
-
Il
-
N

where Z, Z,, Z,, are i.i.d. as min(X,, X, ..., X, | -

We now show that (3.15) holds for all s, sy > 0. Let V, = Z,/Z, V, = Z,/Z and let gvlvz(vl, vy)

denote the density of (V,, V,) on [0, 1]2. Then, by (3.15)
(3.16) gvlv2(v1’ V2) = %(1 +V1 + V2)-3, 0 S Vi < 1, i= 1, 2.

Now set W; = V!, W, = V,/V,, then W, = Z/Z;, W, = Z,/Z,

and from (3.16) it follows that the density of (W,, W,) is

— 1.3 -1 -1}3
hW1W2 (wy, Wo) = zw, (1+w1 +w2wl)'
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= %(1‘+w1+w2)'3, w; > 1,0 < wy < wy.

The lemma then follows from the fact that W, and W, are exchangeable and that V1, V, have the

same distribution.
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