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Abstract

We present a method to solve the steady Euler equations by using an upwind finite-
volume discretization on a locally refined grid and multigrid convergence acceleration. The
locally refined grid consists of grids in a locally nested sequence. We describe the discretiza-
tion with emphasis on grid interfaces and accuracy. We describe the multigrid algorithm
and give some computational examples.
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1 Introduction

Multigrid is known to be a very efficient method for solving boundary value problems, governed
by partial differential equations. It has also proved to be well-suited for the Euler equations
of fluid dynamics as shown by various researchers. To further improve the efficiency of fluid
dynamics computations we introduce a multigrid method involving grids on finer and finer levels
which do not cover the complete computational domain and which are constructed during the
computation. This procedure results in a composite grid with locally refined regions. Examples
of this approach for elliptic problems have already been given through MLAT [1] and FAC [5].

In our approach the refinements of the grid on some level form the grids on the next finer
levels. The generation of local refinements results in a number of levels with grids of high grid
point density only covering a part of the computational domain.

The set of equations resulting from the first-order consistent finite-volume discretization
on the composite grid is solved by nonlinear multigrid iteration (FAS). The equations from
the higher-order discretization are solved by defect correction iteration, where the first-order
discretization is used as the less accurate operator and the multigrid method is used to invert
this operator. A computation is started on some basic grid. After a number of nonlinear
multigrid iterations a new level of refinement is generated. The initial solution in all newly
generated cells is found from an interpolation on the next coarser grid. Then, the multigrid
iteration is started with the new level as top level. After a few cycles, again cells may be refined
both on the top level and on lower levels. Further, cells that seem to have become superfluous
may be discarded (coarsening). These steps may be repeated until a satisfactory solution is
obtained.

Report NM-RS8122
ISSN 0169-0388

Ccwi
P.O. Box 4079, 1009 AB Amsterdam, The Netherllands



2 Geometric structure

We consider the two-dimensional, steady Euler equations defined on a domain § c R? and
boundary conditions defined on the boundary 8 of Q. For the discretization the domain  is
approximated by a regular partitioning of disjoint quadrilateral cells.

We consider grids on different levels of refinement, on each level employing a regular parti-
tioning of one or more subdomains of Q. The grid on level [ is denoted by @', 1€{0,1,2,..., L}.
The coarsest grid is Q0 and completely covers Q. Each cell on the grid 2! on level I > 0 is a
member of a disjoint division of a cell on Q'~! into a set of 2 x 2 smaller cells. The cells on
Q-1 and the cells on Q' are coexistent, i.e. the coarse cells overlaid by the fine cell are not
removed when the fine cells are generated. Except for the cells on Q0 each cell is one of the
four descendants (kids) of a cell on a coarser (lower) level (parent). All cells in the geometric
structure are related to each other through a so-called quad-tree structure.

Each cell on € has either none or one neighboring cell at each side. The location of each
cell on Q' is determined by a set of coordinates (4,7) € Z*. This integer coordinate system is
chosen such that for 2° the smallest coordinate in each direction is zero. A kid of a cell Qéyj is
either 0122;]% leﬁmj: Qét;j+1 or leﬁl,zjﬂ-

The edge aag,]. of a cell Qﬁ,j consists of four rectilinear sides, which we identify through their
relative locations by 8Q£’j,k, k€ {N,E,S,W}, where {N, E, S, W} is the set of wind directions.

The grid Q' consists of a part Q% with cells that have been refined (kids residing on level
1 +1), and a part Q! with cells that have not been refined (have no kids). The grids Q} and
Q'+ cover the same part of Q2. The set of all non-refined cells is called the composite grid Q..

The part of the boundary of Q! which does not coincide with a part of O is called a green
boundary and denoted by Bﬂlg. The part that does coincide with a part of 89 is denoted by
9. In adaptive multigrid computations we are interested in the solution on the composite grid
which is constructed during the computation.

3 Discretization

3.1 The set of discrete equations

The two-dimensional, steady Euler equations are discretized on a sequence of grids {941§. By
the rotational invariance of the Euler equations they can be written as

}{ T 'f(Tq)ds =0, (3.1)
an-

for any Q* C Q with boundary 8Q*. T is a rotation matrix which transforms g to a coordinate
system matching 8Q*. A discretization of the equations on a composite grid is obtained by
demanding a discrete version of (3.1) to hold for each finite-volume Qﬁ,j C .. The mean value
of the flux f(g(z,y)) across the kth cell face 6Q£’j,k is denoted by

1 -
hik = 7 / T~'f(Tq)ds, (3.2)
si1j7k Qi,j,k
where s ; , is the length of 0% ; ;- In the upwind discretization the flux fi ; x is approximated

by Osher’s approximate Riemann solver (Godunov-type scheme), in the P-variant [3], denoted
by F(q%, g®). The states g~ and g are the left and right states of the Riemann problem, and
are determined in a projection stage preceding the actual flux evaluation. These cell face states
are determined by interpolations with a bias to the left and right side of a cell face respectively.



In the finite-volume approach we consider ¢} ,j inacell Q’ to be an approximation of the mean

value of ¢(z,y) over Qm The mean flux f’ ik 18 approx1mated by the numerical flux F .
defined by

,],k(( ),J,k’ (qR)l,],k) = (T,],k) 1F( ,J,k(qL)é,j,h ,],k(qR)s,j,k)' (3-3)

Here T} . ik 18 the rotation matrix on on! ik and (¢* J . and (g® J  are the left and right

Riemann states respectively, for 9! k- The set of discrete equations on the composite grid is
given by

Z F,],k((q )t g (G )i,j,k) 8$,,-,k =0, VQE,j C Q.. (3.4)
k=N,E,S,W

The set of equations (3.4) is under-determined when there is more than one grid level in the
composite grid. Additional equations are easily obtained by

1
e _ Lo 141 1+1 141 ! !
%,; =3 (9913; + Gorv1,25 + Gotgjen T Borpr2i41)» VU ; C Q. (3.5)

Equations (3.4) together with (3.5) define the set of equations to be satisfied by an approximate
solution on a composite grid.

3.2 The projection stage
3.2.1 Projection I

The projection stage for a first-order accurate discretization is based on a piecewise constant
interpolation. Consider for example the eastern face of a cell, where its eastern neighbor exists.
As usual in first-order Godunov-type schemes, for this situation the left and right states for
602,]-,,3 ¢ 09 U O are taken as

@ie = 4 (3.62)
(qR)i,j,E = q£+1,j' (3.6b)

Next we compute the flux across 69'2*,-’_'1_1,21- +1,p, the eastern cell face of the north-eastern
kid of Q! ; and where Q3f}, ..., does not exist, but Q},, ; does. We introduce a virtual state
wéﬂmj +1, associated with the location where 912';1_2,2]- 4+1 would be and determined by interpo-
lation on the next coarser grids. Applying (3.6) for 60’21'_,1_1’2 j+1,E Using the virtual state gives

L 141
(q )2z+1 2i+L,E = Q2T+1,2j+1a (3.7a)
(qR)2i+1,2j+1,E = wgﬁz,zjﬂ' (3.7b)

For the other cell faces (k = N, S, W), formulae similar to (3.6)—(3.7) are used. We will call
(3.6) and (3.7) projection I.

3.2.2 Projection II

For higher-order accuracy the projection stage is based on higher-order interpolation of the
states. This interpolation can be done with a limiter to suppress spurious wiggling of the
solution (as in e.g. [6]), or without a limiter such as the piecewise linear x-schemes [9], (as in
e.g. [2]). Again, consider the eastern cell face of Qﬁ,j. For the situation not involving a green
boundary or a domain boundary, a standard x-scheme or a limiter scheme may be applied



directly. When there is no green boundary involved, in both a x-scheme or a limiter scheme a
projection depends on the states in at most three cells in a row, denoted by

(@i = Clgi_y; a4l ir Gie1i), (3.8a)
(qn)i,j,E = C(‘If+2,j» q1!+1,j, qf,j): (3.8b)

where C denotes either a k-scheme or a limiter scheme.
Next consider the situation where a green boundary is involved. This is e.g. the case for
004t} .1 p and 095t} 95415 When Qutiagie1 and Q3tls . ) do not exist and Qf,,; does.
We proceed in the way of section (3.2.1) and construct virtual states w;t}l-2,2j +1 and wéﬁa’zj +1»

associated with the locations where Q;ﬁ.z,zj +1 and leﬁa,zj 4+1 would be. Again they are found
from an interpolation involving ¢", n < I.” The left and right states are found in the way of
(3.8). For 892511, .11 5 C O we have

R\l+1 _ 141 141 141
(¢ )2i,2j+1,E = C (w2i+2,2j+1’ 92i+1,2+1> q2i,2j+1) » (3-93)
Lyl+1 _ 1+1 141 141
(@ )si41,24,8 = C (2835415 Bolt1,2j+1> Warta,2j41) » (3.9b)
R\l+1 _ I4+1 1+1 1+1
(g )2i+1,2j+1,E‘ = C (w2i+3,2j+11 Wai42,2j+1> 92i+1,2j+1) . (3.9¢)

For the flux computation for the other cell faces (k = N, S, W), formulae similar to (3.8) and
(3.9) are used. We will call (3.8) and (3.9) projection II.

4 Accuracy

4.1 Virtual states and consistency

Let the restriction operator ﬁ:o be defined as the operator delivering the mean value of its
argument over a cell and the restriction operator R!,, delivering the integral of its argument over
the cell, for each cell on level I. From here on we will omit the arguments of the numerical flux
and, unless other arguments are given, we will denote by F}; i the flux Fl (@™ x (a®);0)-
We assume that we have a smooth composite grid and across the green boundaries a difference
in levels of only one. Then with the projections I and II a numerical flux F’,.',j,,c depends on ¢!

and ¢'~! only. Denoting the corresponding system of equations by N (g%, ¢1) = 0, we have for
all 0 c 0,
_ 1
M@V}, = Y Fliashie (4.1)
k=N,E,S,W

Moreover, let N(g) = 0 be the set of equations when (3.1) is applied to all Qli,j cQ,ie.

{N(Q)}i,j = Z Lk Sk (4.2)

k=N,E,S,W

In a finite-volume discretization the local truncation error 7!(g) of a discretization of N(g) may
be defined by

F@, = (VA B - N}, L valca, (43)

l
B i, i’j

for any admissible state function g(z,y) and where Aﬂ,j is the area of Qﬁ,j. By definition, a
pth-order consistent discretization is obtained, if for I — oo the local truncation error satisfies

{7'@)};, =0m), vai;ce, (4.4)



where hy satisfies A} ; = O(h?). On a smooth enough grid which converges to a uniform grid
as | — oo, the projections I and II for the discretization in a cell where no green boundaries
are involved, yield a first-order and second-order local truncation error respectively. With the
K = 1/3-scheme, accuracy of order higher than two may be found in practice ([4]).

The virtual states for the projections I and II involving a green boundary are determined
by O(h7) accurate interpolation, with p = 1 (e.g. piecewise constant) for projection I and p=2
(e.g. bilinear) for projection II. The local truncation error of a discrete equation involving a
green boundary is then only O(h? _1). However, the discretization using this interpolation can
be shown to satisfy a weaker form of consistency. On a smooth enough grid an O(hY) accurate
interpolation to compute a virtual state leads to an O(h?) accurate computation of the mean
flux across a cell face, when projection I is used for p = 1 and projection II for p = 2. Therefore,
for all cells 17, | ,..,, which are the descendants of a cell Q}; C Q, after n times refining Q! ;,
the equations satisfy the weaker form of consistency:

2" -1
1 1 1
A[ ] Z {Tl+n(q)}2t?+r,2"j+a A2t?+~r,2“j+a = O(hf+n) (45)
2Y) 1‘,8:0

This is asymptotically 2~™? times the local truncation error on Qﬂ,j when not refined.

We conducted an experiment to show that the projections I and II and the virtual states
determined by piecewise constant interpolation for projection I and bilinear interpolation for
projection II, give first-order and higher-order accurate solutions respectively, in the presence of
a green boundary. We consider the subsonic flow through a channel with a ‘sine-form’ bump,
defined by the shape y,,(z) of the lower wall, given by

0, z<1, z2> 3)
Yu(z) = { 0.1(1 —cos((z —1)7)), l<z<3. (4.6)

The upper wall is at y = 1 and the computational domain extends from z = 0 to £ = 4. The
boundary conditions are ‘over-specified’. On both z = 0 (inlet) and = = 4 (outlet) we specify
the Mach number: M = 0.5, the density: p = 1 and the velocity: u = 1, v = 0. Along the
upper and lower wall non-permeability is imposed: un, + vn, = 0. For this problem the exact
solution has constant entropy, i.e. constant pp~7, where 7 is the ratio of specific heats. In Fig. 1
we show iso-line plots of the entropy error, obtained on the grids shown. In projection II the
x = 1/3-scheme is used. The local truncation error of an equation involving a green boundary
satisfies (4.5) end the solutions found are first-order and higher-order accurate for projections I
and II respectively.

If we want to use an estimate of the local truncation error of the equations involving a green
boundary in the refinement criterion, we need to be sure that the truncation error is O(hT). This
is obtained when the projections themselves are pth-order accurate interpolations and when they
satisfy

1
(@")ie— (‘IL)li,j,w = q;p— Qf,j,w +O(RP), (4.7a)
1
(qﬂ)i,j,E - (qR)S,j,W qé,j,E - qé,j,W + ORI+, (4.7b)

and similarly for £ and W replaced by N and S. The state qf,j‘k denotes the mean value of

q(z,y) along 895’1-,,‘, and the left and right states are determined by the projections. When
no green boundaries or physical boundaries are involved (4.7) are satisfied both by projection I
(p=1)and II (p = 2).

When a green boundary is involved (4.7) can be satisfied by computing the virtual states
with an O(hY +1) accurate interpolation. Instead of using a piecewise constant interpolation in



projection I, we could use a bilinear interpolation (as in the example used with projection II)
or the more compact interpolation

3 1
141 ! !
Wolts g1 = 1%+ 1 7%+ (4.8)

and similar formulae for other virtual states. By Taylor series expansion this can be shown to be
second-order accurate on a smooth enough grid ([8]). We favor the more compact interpolation
(4.8). For projection II we use the third-order accurate interpolation given by

1 .
1+1 _ ! ! : ! 1 !
Wait2,2i+1 = g (9 + 170041, — 26i40; + G i1 + Gt — 20i41,5-1) » (4.9)

and similar formulae for other virtual states.

Computation of the virtual states with this (p + 1)st-order accurate interpolation yields an
O(h?) relative truncation error for the equations involving green boundaries. Note that (4.8)
and (4.9) are symmetric with respect to the line through the centers of 0} +1,; and Qli,j +1, and

give the same virtual state when we are concerned with 69‘2'17_,1_2’2j +2,5 C Nkt

5 Multigrid and iterative defect correction

The set of discrete equations in (3.4) and (3.5) is solved by multigrid iteration, applied to the
set of first-order discretized equations on the sequence of grids. The method we apply is the
nonlinear multigrid scheme FAS, as described in [3]. The equations for higher-order accuracy
are solved by iterative defect correction as applied in [2].

In order to use multigrid we must specify the grid transfer operators. Two restriction op-
erators, I_i:_H and R} +1, and the prolongation operator I-"’,th are defined such that we obtain a
sequence of nested discretizations on the locally refined grids, and such that upon convergence
(3.5) is satisfied. The restriction operator for the solution is defined by R:H, being the operator
taking for a cell on Q' the arithmetic mean of the solution of the four kids on Q! of the same
parent. The restriction operator for the right-hand side, R} +1, takes the sum of the components
of the four kids of the same parent. The prolongation operator, P,H'1 of (a correction of) the
solution, is defined to be the piecewise constant interpolation from data on level [, transferred
to level [ + 1. We denote the operator N* on Q! with projection I by N} and with projection II
by Nj;. If we use (4.1) for all Qij C O, where N' is the operator N}, it can be shown that the
coarse grid operator restricted to fo is a Galerkin approximation of the fine grid operator on
Q1 (see [3]).

In the nonlinear multigrid algorithm the following equations are used to obtain a solution
on the composite grid, or to find the coarse grid correction:

N ) =1, (5.1a)

. 0, on@}
= =l
N(¢"Y, Rip1qt) — Ry (NP ¢ —rY), on Q.

Upon convergence of the FAS-scheme, the solution of the set (5.1) satisfies (3.4) and (3.5).

As the smoother, on each level collective, symmetric point Gauss-Seidel relaxation is used,
where in each cell Qﬂ’ ; Visited, the state qﬁ,j is updated by Newton iteration applied to the local
system {N{(¢'!,¢')}{; = r};. The residual tolerance for this Newton iteration is taken such
that in all but exceptional cases only one or two iterations are performed. The cells on a level
are visited in the usual lexicographical order. After a relaxation sweep has been made, another

(5.1b)



sweep is made in the reversed direction (symmetric). This smoother has been shown to be very
efficient [4].

The higher-order discretized equations are solved, using an iterative defect correction ap-
proach [2]. The set of higher-order discretized equations on 2, is given by

Nfi(¢"1,¢") =0. (5.2)

The defect correction process solves (5.2) by iteratively solving (5.1a) through the FAS-scheme,
where the right-hand side 7 is initially taken zero, but updated during the computation and
depends on the defect of the higher-order equations through

[ M@ - N, on e,
-1 5 !
Ni(¢ Y Rypyqtt) — Rl (N{t! (¢, ¢'t1) — 1), on Q’f

(5.3)

Upon convergence, the solution satisfies (5.2) and (3.5).

6 Results
6.1 Shock-reflection

In this section we show some results of the adaptive multigrid method. First, we consider
the shock-reflection problem. The domain is given by Hz,y0<z<40<y< 1}. The
boundary conditions are such that z = 0 is an inflow boundary with mach number M = 2.9 and
an incoming shock through (z,y) = (0, 1), which has an angle with the positive z direction of 29°.
We use the first-order discretization NI' from section 3, with piecewise constant interpolation
for determining the virtual states . In the refinement criterion the first undivided difference of
the density is used. The threshold is taken to be 0.05, which showed to give a broad band of
refinements along the shock. The unrefinement threshold is taken to be 0.024, giving a small
safety margin with respect to the value 0.025. The number of multigrid cycles (V-cycles) between
each refinement cycle is only one.

The adaptive grid uses only 7554 cells on the composite grid and a total number of 10068
cells. The non-adaptive grid uses 49152 cells on the finest grid and a total number of 65532
cells. The finest cells of the composite grid are of the same size as the cells of the non-adaptive
grid. In both computations the same coarsest grid of 6 x 2 cells is used.

Fig. 2a and 2b show iso-plots of the Mach number on both the adaptive and non-adaptive grid
respectively. In Fig. 2c the adaptively generated grid is shown and in Fig. 2d the convergence
histories of both the adaptive method and the method using uniform grids. The amount of
work in a multigrid V-cycle is proportional to the total number of cells present on the composite
grid. The residual shown in Fig. 2d is the mean of the discrete L;-norms on Q, of the residual
of the four discrete equations, defined for cells on the composite grid. The amount of work for
the adaptive method is about ten times less than the amount of work needed when grids fully
covering the computational domain are used, while virtually the same solution is obtained.

6.2 Transonic airfoil low

Here we consider the transonic flow around the NACA0012-airfoil with M., = 0.8 and an angle
of attack of & = 1.25°. The computational domain extends to about 100 chords to all sides.
We use the second-order discretization N} that is also second-order accurate when a green
boundary is involved. In Nf; the Van Albada limiter [7] is used, since spurious wiggles in the
solution are expected when a non-limited scheme is used. In the refinement criterion we use the
first undivided differences of the density. In each cell we use the gradient of the density in flow



direction and the gradient perpendicular to the flow direction, multiplied by the square root of
the area of the cell. Two thresholds are used, one for each direction. This allows the algorithm
not only to find a contact discontinuity, but it also prevents the algorithm from refining in
the neighborhood of a shock only. Then, we not only get a good resolution of the shock, but
also a good resolution of the expansion region, and this in turn is important for the accurate
computation of the the lift and drag coefficients. The first undivided difference refines a cell,
when in flow direction it is larger than 0.02, or when this difference in the direction perpendicular
to the flow, is larger than 0.004.

The Mach number distributions are shown in Fig. 3a and 3b for the adaptive and non-
adaptive grid respectively. The computed lift and drag coefficient on the adaptively generated
composite grid are ¢; = 0.3480, c¢; = 0.0235. On the non-adaptive grid we find ¢; = 0.3512 and
cqg = 0.0235. The difference between these values is less than 10% of the scatter found between
reference results listed in [10]. This reference gives ¢; = 0.3632 and cq = 0.0230 obtained on a
grid of 20480 cells, by Schmidt and Jameson. The number of cells on the composite grid (Fig.
3c) is 2995 and a total number of 3980 cells was used in the computation. The non-adaptive grid
uses 10240 cells on the finest grid and a total number of cells of 13640. The convergence histories
of both the adaptive and non-adaptive case are shown in Fig. 3d. The adaptive computation
takes about three times less work than the computation on the non-adaptive grid.

7 Conclusions

We introduced an efficient method to perform Euler flow computations on a locally refined grid.
We use an upwind finite-volume discretization on an adaptively generated composite grid. Both
first-order and higher-order accurate discretizations are considered.

Across a green boundary a difference of only one level is used. The algorithm may be
extended to more general composite grids. From this no gain in efficiency is expected, since it
increases the number of possible grid configurations at a green boundary enormously.

On a smooth grid, the local truncation error in a cell bordering a green boundary can be
O(hY _1) but, for a pth-order accurate discretization in the interior of the grid, the discretization
will still satisfy a weaker form of pth-order consistency and the solution may be O(h}) accurate,
as shown by numerical experiments. By applying a (p+ 1)st-order accurate interpolation to find
virtual states, a pth-order accurate discretization is obtained in cells where green boundaries
are involved. This allows the use of an estimate of the local truncation error in the refinement
criterion. However, results are not yet completely satisfactory and this technique is still under
investigation at the moment.

Compared with non-adaptive computations, the adaptive method shows a decrease in num-
ber of local Newton iterations of a factor three to ten, while the solution is obtained with
approximately the same accuracy. No thorough comparison has been made yet between the
efficiencies of this method and a comparable method which uses a structured grid and which
may be vectorized. Although the present method may not be vectorizable, we think that paral-
lelization will be feasible and hence compensate for the loss in efficiency of possible overhead of
the adaptive grid structure.
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Figure 2: Shock-reflection problem. (a)M on adaptive grid, 7554 cells; (b)M on non-adaptive

grid, 128 x 384 cells; (c)Adaptively generated composite grid; (d)Convergence history, O:non-
adaptive grid, A:adaptive grid.
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Figure 3: Transonic flow around NACA0012, M, = 0.8, @ = 1.25°. (a)M on adaptive grid,
2995 cells; (b)M on non-adaptive grid, 80 x 128 cells; (c)Adaptively generated composite grid;
(d)Convergence history, O:non-adaptive grid, A:adaptive grid.
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