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Multigrid for Semiconductor Device Simulation:
Cell-centered or Vertex-centered Multigrid ?

J. Molenaar

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

We study the primal and dual mixed finite element discretization on rectangular grids for the semiconductor
device equations. When suitable quadrature rules are used, the primal version is equivalent to the usual
vertex-centered box scheme, whereas the dual version leads to a cell-centered finite volume discretization.
In both cases the system of nonlinear equations obtained after discretization is solved by multigrid; we use
cell-centered multigrid for the cell-centered scheme and vertex-centered multigrid for the vertex-centered
scheme. In cell-centered multigrid it is necessary to apply a local damping of the restricted residual in
order to deal with the strong nonlinearity of the problem. This can be avoided by using the vertex-centered
multigrid algorithm provided that injection is used for the restriction of the residual. As is well known injec-
tion is usually too inaccurate a grid transfer operator for second order differential equations, but by means
of a two-grid analysis we show that the choice of a suitable smoothing operator can alleviate this problem.
In numerical experiments vertex-centered multigrid appears to be more efficient and robust for solving sem-
iconductor equations than cell-centered multigrid.
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1. INTRODUCTION

The electric behavior of semiconductor devices is usually described by the classical drift-diffusion
model, that consists of a system of three nonlinear partial differential equations. In this paper we
only consider the steady state equations in two space dimensions. The usual approach for the discret-
ization of these equations is the application of a box method (finite volume method), where the fluxes
between the control volumes are approximated by the one-dimensional Scharfetter-Gummel scheme
(cf. [1,16]). Brezzi et al. [3,4] introduced a two-dimensional exponential fitting method for the sem-
iconductor equations using a hybrid mixed finite element method. We consider both the primal and
the dual version of the mixed finite element scheme on rectangular grids, and by using quadrature in
the evaluation of the integrals involved we retain the classical Scharfetter-Gummel discretization of
the fluxes; in fact, the dual version leads to a cell-centered finite volume scheme, whereas the primal
version yields the usual box-scheme (vertex-centered finite volume scheme).

To solve the system of nonlinear equations obtained after discretization there are basically two
approaches: either the equations are decoupled and solved iteratively (Gummel’s iteration), or they
are solved simultaneously. Gummel’s iteration has the advantage that the linear systems involved are
smaller and that it is more robust, i.e. it often converges even if a poor initial guess is available.
Linear multigrid algorithms for solving the discretized continuity equations in Gummel’s iteration

~ have been proposed by Fuhrmann [7] and Reusken [19]. However, when the equations are strongly
coupled Gummel’s iteration converges slowly, so coupled approaches are more attractive. Usually
the full system of equations is solved by Newton’s method; the linear systems involved are either
solved directly or their solution is approximated iteratively, e.g. by a preconditioned conjugate gra-
dient method (cf. [16]). Nonlinear multigrid methods have also been proposed to solve the full system
of equations. However, as the equations are strongly nonlinear, a priori it is not clear whether the
coarse grid corrections really help. In the cell-centered multigrid methods in turns out to be necessary
to apply a local damping of the restricted residual (cf. [15,23]), due to fact that the corresponding
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diagonal elements of the coarse and fine grid Jacobian matrices may differ by orders of magnitude;
in vertex-centered multigrid methods (cf. [5]) this scaling problem does not seem to occur. Here we
study both this scaling problem and the stability of the coarse grid operator. It is shown that the
scaling problem can indeed be avoided by using a vertex-centered multigrid method with straight
injection for the restriction of the residual. It is well known from Fourier analysis that injection is too
inaccurate to be used in multigrid algorithms for solving second order differential equations: initial
high frequency error modes are blown up in the coarse grid correction. Instead of using a more accu-
rate restriction operator we construct a smoothing operator that effectively wipes out the ‘dangerous’
high frequency error modes. By a two-grid analysis we show that the use this smoothing operator
leads to well-behaved two-grid algorithms indeed.

To compare the resulting cell-centered and vertex-centered multigrid algorithms in practice we con-
sider two test-problems: a MOS-transistor and an LDDMOS-transistor. In numerical experiments it
appears that vertex-centered multigrid is more efficient and robust than cell-centered multigrid.

An outline of this paper is as follows. In Section 2 we introduce the steady semiconductor equa-
tions, and in Section 3 we present the primal and dual mixed finite element discretizations. In Section
4 we discuss the scaling problems of the coarse and fine grid matrices, and the stability of the coarse
grid operator. The two-grid analysis is carried out in Section 5 and in the next Section we present the
results of our numerical experiments for both the cell-centered and the vertex-centered multigrid algo-
rithm. In the last Section our conclusions are summarized.

2. THE "QUATIONS
The equations to be solved are

diviy=p—n+D, j,=—py grady,
divj, = +R, jn = tun(gradn — ngrady), 2.1
divj, = —R, ip = —pp(grad p + pgrady).

Here the dependent variables are y, n and p, which denote the electrostatic potential and the concen-
trations of electrons and holes, respectively, and jy, j, and j,, the displacement current and the
current densities of electrons and holes, respectively. The first equation is Poisson’s equation: p, is
related to the dielectric constant and D is the (given) dope function. The other two equations are
continuity equations for electrons and holes; p, and p, are the electron and hole mobilities, whereas
R models the recombination rate of electrons and holes. For simplicity, in this paper we assume u,
and p, to be constant.

In actual calculations we use the quasi-Fermi potentials ¢, and ¢, as the dependent variables; these
are related to n and p by

n=et "t

P
The set of equations (2.1) expressed in the variables (y, ¢,, ¢,) is strongly nonlinear, but the range of
values assumed by (¥, ¢,, ¢,) is of the same order of magnitude as the voltages applied to the device.
This makes them better suited for numerical computation than e.g. (y, n, p) (cf. [16]).

In the discretization of the equations (2.1) we use the Slotboom variables (¢, ®,, ® )
— "%
n— € >

+
®,=e .

_ 2.2)
=Y,

(2.3)

for which the equations appear in symmetric positive definite form:



—div(p, grady) =e ¥®, —e*¥®, + D,
—div(p,e*¥ grad®,) = —R, 24)
—div(u,e ¥ grad®,) = —R.

At the Ohmic contacts the boundary conditions are of Dirichlet type , (, ¢,, $p) given , and at the
outside boundaries we have homogeneous Neumann conditions: n-j, =n-j, =n-j p = 0, where n is
the outward normal unit vector at the boundary. At silicon/oxide interfaces we have homogeneous
Neumann boundary conditions for j, and j,, while ¢ and j, - n are continuous, with n the normal unit
vector at the interface (this means that we do not consider surface charges).

3. MIXED FINITE ELEMENT DISCRETIZATIONS
To derive a discretization of the set of equations (2.1) we decompose the standard second order ellip-
tic problem with homogeneous boundary conditions into a system of first order equations:

o —Agradu = 0, on 2, (3.1a)
dive = f, on £, (3.1b)

u =0, on 6Qp, (3.1¢)

n-o = 0, on 6Qy, (3.1d)

where 8{) and 8Qy denote the parts of the boundary with Dirichlet or homogeneous Neumann boun-
dary conditions, respectively. The sign is chosen such that 4 > 0.

First we introduce some notation. Let L(R) be the Hilbert space of square integrable functions on
© with inner product (-, -), let H2(div, 2) denote the Hilbert space of vector functions with Lebes-
gue integrable divergence,

H5C(div, 2) = (o] 0 € (LX(R)), dive € L%(Q), n-6 = 0 on 62y},
and let H}(Q) be the usual Sobolev space
Hy@) ={u|DueLl*Q), 0<|a|<1, u=0o0ndRp),

where D* denotes the distributional derivative.

In the dual version of the mixed finite element method it is assumed that ¢ is a much smoother
quantity than u because 4 can be a rapidly varying function, so one takes o € V = HZ(div, ) and
u € W= L*Q). We introduce the bilinear forms a:¥ XV —R and b:¥ XW >R by

a(o, 1) = _,/A “lo-1dQ,
Q

b(s,t)= [ tdivedS,
Q

and write (3.1) in its weak form: find (o, #) € V' X W such that
a(e, 7) + b(r,u) =0, VreV, 32
b(e, 1) =(f,1), VieW, )
with
(f, ) = [ fraQ.
Q
However, in the primal version of the mixed finite element method we take o € V= (L*(Q))* and
u € W= Hy(R); the bilinear forms a: ¥ XV R and b: V X W — R are now defined by

a(o, 7) = a(e, 1),



b(e,1)=— [ o-gradsdQ.
a

Again the equations (3.1) can be written in the form (3.2) but with a and b replaced by a and b.

In the following we consider discretizations of both versions and assume that  can be divided by
a regular partitioning in open disjoint, rectangular cells @/, = UQ'". To obtain the dual mixed finite
element discretization we take the lowest order Raviart-Thomas elements [18] on the partitioned
domain. Then, on each cell Q' we have its characteristic function ¢’, and for each edge E/, E/ ¢ 8Qy,
of a cell @' we define the ‘tent function’ €/, i.e. the vector function of which each component is piece-
wise linear on all ' and which satisfies €/ -n* = 8 ks Where n* denotes the unit vector normal on the
edge E’ in the positive coordinate direction; 8 ik 1s the Kronecker delta. Our discrete approximation
spaces are defined by

V, = span (¢/) C V, (3.3)
W, = span (e') C W.

The dual mixed finite element discretization of (3.1) now formulates as follows: find
(6, up) € Vyy X Wy, such that

a(oh, Th) + b('rha uh) = 0’ V'rh € I/ha (343)
b(O’h, th) == (f, th)’ Vth (S Wh' (34b)

The iategrals b(ef, e;) are easily evaluated; the integrals a(oy, 7,) and (f, 1) in (3.4) are approxi-
mated by a repeated, weighted trapezoidal rule for rectangles (cf. [17]):

f w(x)z(x)d2 =3 f wx)z(x)d2~3 3 z(x*) f w(x)dS, (3.5
Q i Q i v=123,4 Qv
where x*” are the four vertices of @', and Q" the four quarter rectangles, parts of Q, associated with
these vertices, respectively.
If (f, #) is approximated by (3.5), with w = 1, and z = f, we obtain from (3.4b)
V' S hidol = area (@) 7 3 f(x), (3.6)
J v=12,3,4

with
+1, if E/ is a n- or e- edge of &,
d™ = {—1, if E/ is a s- or w- edge of @', 3.7

0, otherwise,

and // the length of edge E/. We notice that (3.6) and (3.7) imply discrete current conservation.

For the approximation of a(oy, 7,) we use (3.5) now with w =A~', and z = o}, -7,. Here, the use
of the trapezoidal rule can also be considered as lumping, because the matrix a(e/, €) is approxi-
mated by a matrix a(e/, €) that is diagonal:

a(e,)=8; [A7'adQ,
Ap

with Ak = U(Q” | Q"N EX £ & }; i.e. A is the dual box related with the edge EX. If we consider
the Poisson equation as an example of (3.1), with 4 = 1, then we see that it is advantageous to use
lumping: after elimination of o the non-lumped form of the discretization does not yield an M-matrix,
whereas it is an M-matrix if lumping is used (cf. [17]). Moreover, for the continuity equations we
retain the Scharfetter-Gummel scheme [20] by using the quadrature rule (3.5) (cf. [17]), with 4 ~! the
exponentially varying function 4 ™' = e™¥. If we approximate ¢ in A% by a linear function, interpo-
lating ¢ from its values ¥* and Y in the neighboring cells @', i =R, L we obtain



f e¥ d2 = area (A%) Bexp ™' (YR, ¢1),
A
with
Bexp (x, y) = T
e* —e’

For the discretization of the semiconductor equations (2.1) we apply the above scheme for the
discretization of (3.1) to each of the three equations in (2.4); i.e. we apply the discretization procedure
with u =, ©,, @,), 6= (jy,jn ] p) and A = (—py, Tpexp(+¢), —p peXp(—¥)), respectively. In
order to obtain the usual definition of (jy, ., j ip) (cf. [16]) we allow negative values for 4. For an edge
E/ with adjacent cells ©', i =R, L, we obtain

B hi

Jh=+t ZunBeXp(—\lfR, —y(@F — D), (38
. h/

Jp == FHeBexp(+YS, Y@ — @),

with 4/ the length of E/, and a/ = area(Af). After elimination of the fluxes j/ we obtain a scheme
that is equivalent to a finite volume scheme with control volumes Q' (see e.g. [16]) in the interior of
the domain 2. However, the geometry of this discretization is cell-centered as opposed to the usual
box scheme that is vertex-centered. This has its influence mostly at the boundaries.

By using a suitable quadrature rule in the primal mixed finite element discretization we can obtain
a scheme that is equivalent to the vertex-centered box- scheme (cf [6]) On each vertex x/, x' ¢ 8Qp,
of some cell Q' we define the piecewise bilinear functlon ¢ fy ¢ (x¥)=8,,, and on _each edge E/ we
define the piecewise constant vector-valued function ¢, with e parallel to E/ and ||’ || the characteris-
tic function on A4.

Fully analogous to (3. 3) and (3.4) our approximating subspaces are now defined by

V,, = span (e ) - V (3.9
= span (e ) C W
and the pnmal mixed finite element discretization of (3.1) is: find (6, i ) € V}, X W, such that
a6y, ) + b(Fy, i) = O, Vi, €V, (3.102)
b (B, 1) =(f, 1), Vi, €W, (3.10b)

Following Fuhrmann [6] we introduce a quadrature rule for integrals over the dual boxes A%: let
g e C%(A%) be a continuous function, then

do~ 22D .o, 3.11)
A{g Nlength(E")E[g > '

Direct application of (3.11) to the integrals in (3.10a), with u, 6 and A as before, also yields the
Scharfetter-Gummel discretization of the fluxes.

In order to 1nterpretate (3 10b) as a conservatlon law we mtroducle dual boxes A/, that are related
to the vertices x’ of cells: A}, = U{Q" | x/ e Q" } By taking 7, = e and using (3.11) we see that the
left hand side of (3.10b) indeed equals the net influx in the dual cell A},. If the right hand side of
(3.10Db) is also approximated by quadrature then

(fe)~f’ fe dQ = f! area(Al),
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with ! = f(x'), we see that (3.10b) is the conservation law with respect to the dual box A}, and we
have regained a discretization that is equivalent to the usual vertex-centered box-scheme.

Finally, we discuss the treatment of the silicon/oxide interfaces, which we assume to be resolved by
the edges E/ of the cells. In the primal mixed finite element discretization the continuity of ¥ follows
from the choice of V}, but the continuity of the displacement current j, does not hold. In the dual
version the continuity of ¢ does not hold, whereas the continuity of the j, in the direction normal to
the interface is evident. For an edge E/, with adjacent cells - and QR that are in silicon and oxide
region, we obtain from (3.4a) and (3.5) (cf. 3.8)

: g : .

=T r M @b,
,u.jaR + nfaL

i.e. we take the harmonic average of the coefficients p,.

4. COARSE GRID CORRECTION

In this Section we study the coarse grid correction stage of multigrid algorithms for the two different
discretizations of the semiconductor equations: the cell-centered scheme and the vertex-centered
scheme. Due to the strong nonlinearity and bad scaling of the equations the construction of the
coarse grid correction operator is not trivial at all. We focus our discussion on two points: the sta-
bility and the proper diagonal scaling of the coarse grid operator. The choice of a smoothing opera-
tor is discussed in Section 5.

For voth mixed finite element discretizations that were derived in Section 3 we obtain the fine grids
from the coarse grids by uniform refinement: starting from a coarsest grid finer grids are constructed
by cell-wise refinement, i.e. the cells 24; on the coarse grid are split into 4 equal, smaller ones. This
means that the cell-centered discretization gives rise to a cell-centered multigrid method (cf. Figure
4.1), whereas the vertex-centered discretization brings about a vertex-centered multigrid method (cf.
Figure 4.2). The important difference between these two multigrid methods is that in vertex-centered
multigrid the nodes of the coarse grid coincide with nodes on the fine grid, which is not the case in
cell-centered multigrid.

The system of nonlinear equations on the fine grid can be written as

Ny(@Gn) = fi- 4.1)

The nonlinear coarse grid correction stage of a two-grid algorithm is then given by (cf. [2,8])
Nu(Gn) = Nu@n) + Riu(f5 = Nu(@n)), 42)
9n = qn + Pu(qn) — Pi(qn); (4.3)

where Ny denotes the nonlinear coarse grid operator, P, the (possibly nonlinear) prolongation opera-
tor for the solution, and Ry the restriction operator for the residual. As we only consider methods
that treat the full system of equations, it seems impossible to construct the coarse grid operator Ny as
the Galerkin approximation of N, so we construct Ny by discretization on the coarse grid. As the
problem is nonlinear, this implies that the choice of the initial iterand on the coarse grid gy deter-
mines the entries of the Jacobian matrix of the coarse grid operator.

There are several approaches for the selection of ;. One can simply take the last available iterate
in the full multigrid process, which is rather unsafe as gy then depends on the history of the multigrid
algorithm, so there is no guarantee that this iterate will remain in a neighborhood of the solution, and
it may loose the properties that are required for a proper approximate solution. Other possibilities
are to take gy = Ryqy, where Ry denotes a restriction operator for the solution, or to solve the prob-
lem on the coarse grid during the nested iteration, and to use that solution as initial iterate gy each
time the grid is visited in the multigrid iteration. Here we only consider the last two approaches.

A priori, it is not clear whether the problem on the coarse grid has a solution at all, or whether the
coarse grid operator is stable. To get some insight in the last question we study the Jacobian matrices



ANu(9m)
3¢}y

that appear when Gummel’s iteration is used to solve the coarse grid problem. For simplicity, we

assume square grids and neglect the recombination rate R.

For Poisson’s equation this matrix is always strongly diagonally dominant (cf. [16]). For the con-
tinuity equation for holes related to the cell 2§, with nearest neighbors QY, N =n,e,s,w, we have

JH(¢IH,¢5'I) = ¢ = .4/9 ¢n7 ¢pa (4'4)

TH@5.m:05m) = +uye® ¥ S BN —v§), (4.5)
N =n,e,s,w
TH@S.mdhm) = —ppe® "V BN — yi) et o, (4.6)
with
X
B(x) = s
()= =

the Bernoulli function. (The expression for the electron continuity equation is fully analogous.) It is
known that the row sum of the Jacobian matrix for the hole continuity equation in Gummel’s itera-
tion is given by (cf. [11])

>Ju (¢1€Ha¢;;,ﬂ) =H(pn+ jour = o = Jpn)s
1

the summation is over all cells 2}; in the grid and H denotes the mesh size. This means that for the
solution of the discrete problem on the coarse grid with zero right hand side (R = 0), the matrix is
weakly diagonally dominant, if there is a Dirichlet boundary value available (cf. [22]).

If we construct the coarse grid solution as some restriction of the fine grid solution, it is not
guaranteed that the coarse grid Jacobian matrix for the continuity equations is still weakly diagonal.
In the following Theorem we estimate the row sum of the Jacobian matrix Jy that is scaled by the
corresponding diagonal element .

THEOREM 4.1. Let Q5 be a cell with nearest neighbors QY, N =n,e,s,w, then
>Ju (¢,C;,H,¢§;,H)
I

Ju (¢E,H,¢;C7,H)
and

>Ju (¢‘§,H,¢;,H)
I

< 2 l 1— e‘i’;.u_‘f’(,:.u
c c ’
JH (¢p,Ha¢p,H) N =n,e,s,w

Proor. Use B(x)>0 and
2T (S5 p.) S BN —y§)(1— et %
1

— N =n,e,s,w . 0O

T (95 1:05.1) > B@EY —vH)

N =n,e,s,w

Theorem 4.1 shows that if a restriction of the fine grid solution is used as initial iterate g5 = ¢% on
the coarse grid, we may expect loss of diagonal dominance. However, if the solution of the coarse grid
problem is fixed and used as initial iterate g5 = gf; on the coarse grid, the matrices in Gummel itera-
tion are all weakly diagonally dominant.

For the semiconductor equations (2.4) without any scaling, the residual of the continuity equations
corresponds with the rate-of-change in the carrier concentrations. Without row scaling this means that
the size of the residuals varies widely in magnitude throughout the domain. In the cell-centered
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multigrid algorithm obtained from the dual mixed finite element discretization it may also happen
that the diagonal elements of the Jacobian matrices for a father cell differ by orders of magnitude
from the corresponding elements for the four kid cells, especially if the transition between n- and p-
region is not properly resolved on the coarse grid. In this case a small residual (after row scaling) on
the fine grid may result in a large correction on the coarse grid. Therefore it is necessary to apply a
damping operator Dy for the restricted residual (cf. [15,23]). The modified coarse grid equation now
reads

Nu(@n) = Nu(qu) + Dy Ry(fr — Nalgn)- 4.7)

This Dy is a diagonal matrix with entries in [0, 1] that are determined by comparing the diagonal ele-
ments of the coarse and fine grid Jacobian matrices: for every cell Q%;, which is split into four cells
Q},, we have

2| Tu(oh,9h) |
" sup [ T(@hoh)| |

D} = min

=Y, ¢y, bp- (4.8)

In actual calculations we observe that damping is not necessary for Poisson’s equation, and for the
continuity equations the elements of Dy differ from 1 only in small parts of the domain (the transi-
tion regions), but there extremely small values (< 10~!°) for the diagonal elements appear. With this
modified cell-centered multigrid algorithm good results were obtained for both one- and two-
dimens; nal test problems (cf. [15,23]).

To understand the necessity of damping in cell-centered multigrid we consider the Jacobian matrix
again. If a transition between n- and p-region is not properly resolved on the coarse grid, the hole
concentration e «\p’ that appears in (4.5), explains the large variations in magnitude of J(¢%,9})
between coarse and fine grids in the cell-centered multigrid method. A possible solution for this
problem is to construct gy, by means of the L*-projection of the variables (y, n, p); unfortunately,
this choice may lead to ill-conditioning of the coarse grid matrix (see [13]).

This scaling problem can be avoided by using a vertex-centered multigrid method: if we use injec-
tion for the restriction of the solution, the electron and hole concentrations are equal in the coinciding
coarse and grid fine points. In this case, if we assume a kind of monotonicity for y, we can prove
that the corresponding elements of the Jacobian matrix are of the same order of magnitude on the
coarse and fine grid.

THEOREM 4.2. Let Qjf, be a cell of the fine grid with nearest neighbors Q4. I=n,e,s,w, and let Q5 be the
corresponding cell of the coarse grid, with nearest neighbors Qf;, L=N,E,S,W (see Figure 4.3). If
vertex-centered multigrid is used, with injection for the restriction of the solution , and if, furthermore,

min ) <Y§ < max ¥}, (4.9a)
l=n,esw l=n,e,s,w
and ,
min (f, ¥7) < ¥, < max (4§, ¥5), (4.9b)

for (I,L) = ((n,N), (¢,E), (s5,S), (w,W)), then we have for the ratio of the corresponding diagonal elements
of the fine and coarse grid Jacobian matrices

Tr($5.1,95.1) _1

Jn(@5n05n) 4

PROOF. Suppose that (¥}, — ¢5) is minimal for some / = k. From (4.9a) it follows that ¥} <%, so
from (4.9b) we conclude & <. Using the fact that B (x) is monotonically decreasing we obtain



4’(14_‘1’; L C
ppe™" T'Bg — yg)
Ju@5.m:950)  L=NEsSW ©

TS5, 051) S wpe® TV BWL — 45)

I =n,es,w
L
S B(h — )
L=N,ES W

S B@h— )

l=n,e,s,w

_BUE-E) 1
4B —¥i) ¢

Theorem 4.2 shows that in a vertex-centered multigrid method local damping of the restricted resi-
dual is not necessary, provided that injection is used for the restriction of the residual Ry. The use of
e.g. full-weighting brings back the scaling problem. Moreover, if we assume that in vertex-centered
multigrid the concentrations 7 and p on the coarse grid are a good point-wise approximation of the
concentrations on the fine grid, we expect that the coarse grid operator, with ¢f; as initial iterate, is
both stable and properly scaled. _

This brings us to the point of the choice for the grid transfer operators . Py and Ry. We have seen
that in vertex-centered multigrid method it is attractive to use injection Ry for the restriction of the
residual. For the prolongation of the solution in vertex-centered multigrid we define a nonlinear
interpolation operator P}*. For this interpolation, injection is used for the fine grid points, that also
appear as coarse grid points (see Figure 4.2). Next we use the one-dimensional, current-conserving
interpolation proposed by Hemker [9], to obtain values at the midpoints of the edges. Finally, we
locally solve the equations at the middle of the cell, using the interpolated values at the midpoints of
the edges as boundary conditions.

In the dual mixed finite elements discretization the approximating subspaces are nested,
Vi C V), and Wy C W, so a natural set of grid transfer operators is available for the cell-centered
multigrid algorithm (cf. [11,15]). The prolongation P, for the scalar quantities uy is a piecewise con-
stant interpglgtion, whereas the restriction of the residual is its transpose; these operators are denoted
by P§ and Ry, respectively. From (4.5) and (4.8) it follows that for R;; we have to apply the damp-
ing operator Dy in the cell-centered multigrid algorithm.

5. TWO-GRID ANALYSIS

In this Section we carry out a two-grid analysis for the cell-centered and the vertex-centered multigrid
algorithms proposed in the previous Section. This is done because it is well known that the grid
transfer operators proposed are too inaccurate to be used in multigrid algorithms for solving second
order differential equations (cf. ([2,10]). Our strategy to circumvent this possible source of problems
is to take smoothing operators that can be used in combination with the inaccurate grid transfer
operators, as we did before for Poisson’s equation on a square grid (cf. [14]). For an introduction to
two-grid Fourier analysis we refer to Stiiben and Trottenberg [21].

We consider the anisotropic model problem

82
Lu=—A—— +
( ax?2

32 _ 1
ayz)u_f9 (5- )

with 4 >0, on the infinite domain € = R?; this model problem can be considered as Poisson’s equa-
tion on a rectangular, not necessarily square, grid. For both the cell-centered and the vertex-centered
discretization the Fourier transform L, : T, »C, T, = [—, )", of the discretized operator L, is given
by
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4
h2
As usual in two-grid analysis we introduce a matrix notation for T},: every @ € T}, is written as a 4-
vector on Ty with entries (6 + 7p), where 8 € Ty, = [—%,%)2 and pe{(0,0), (1,0), (0,1), (1,1)}. The

accuracy of a restriction operator Ry is measured by the high frequency order my, i.e. the largest
number my for which

6, .50,
A sinZT + sin®—%). 5.2)

Lh (0xa 0)') = 2

Ry(8 + mp) = 0(0]™),  for |8]—0, p5£(0, 0).

The high frequency order should at least be equal to the order of the differential equation being
solved in order to avoid blow-up of high frequency error components in the coarse grid correction (cf.
[2, 10]).

The two-grid error amplification matrix M}, for a two-grid algorithm is defined by

My = Sy (I — Py(Ly) "' RyLy,) S}, (5.3)

where I, denotes the identity operator and », v, the number of pre- and post relaxation sweeps Sy,
respectively. Using the techniques developed in [10, 14]Av0v% find for the cell-centered multigrid
method, described in Section 4, that the Fourier transform M, in matrix representation of the coarse
grid correction operator My is given by

~ 0,0 4fifjgj

M 1:8_ B i,'zl’---’4’ 5'4a
(M iy Y Asin’6, + sin20’,, J (>42)
with
g, 0, 0
= oS -5 cog ~2- = Aoin? X 1 gin2 22
f1 =cos S COsSST, &) Asin > + sin 5
6, 0, 6, . .0,
f2=sin—-cos >-, g2=A00527+sm27},
B Y (-45)
f3 =cos 5 sin—-, g3 =Asin” =+ cos” —-,
.6, .6, B , 0, , 0,
f4—sm751n 5 g4 = Acos > + cos 5

From (5.4) we see that initial high frequency error modes in the neighborhood of (0,7) and _(75,0) are
blown up by the coarse grid correction, due to the inaccuracy of the restriction operator Ry. The
Fourier representation of Ry is

ﬁ161:[1 VERRE f4}»

so its high frequency order my, is only one, whereas it should be two.

The same problem occurs in vertex-centered multigrid when straight injection is used for the restric-
tion and bilinear interpolation for the prolongation. In this case the coarse grid correction matrix is
given by

~ 0.0 afig

M :6— ) i,.zl"",4, 553.
(M g Y Asin®6, + sinza). J (5-52)

with
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~ 0 0
f1 = cos® = cos® =,

2

- 9, 9,
f2:sin27'cosz—2*—,
) p , (5.5b)
f3=cosz—2f—sin2%,
~ 0. 7

w2 Ix 29y
f4 =sin 5 sin” ==,

and g; as in (5.4b). Now all initial high frequency error modes (4,,6,), with 0[‘ —7 or §, >7 are
blown up by the coarse grid correction because the high frequency order my of Ry is zero.

The obvious remedy seems to be the use of more accurate restriction operators, but these have
larger stencils which is undesirable for the semiconductor equations (see Section 4). Therefore we
look for relaxation operators that effectively eliminate the dangerous high frequency error modes.
Table 5.1 shows which of the high frequencies are eliminated by some standard smoothing operators
for problem (5.1). For Poisson’s equation discretized on a square grid (4 = 1), we observe that point
Gauss-Seidel can be used as the smoother in our cell-centered multigrid algorithm, as was found ear-
lier in [14]. For the more general case (4 7= 1), we see that of the smoothers that do not mix fre-
quencies only damped Jacobi relaxation, with damping parameter 0.5, eliminates one of the highest
frequencies, viz. (6,,0,) = (7,7). On the other hand red-black and zebra relaxation are more powerful
smoothers, but they have the disadvantage of coupling frequencies; this is also shown in Table 5.1.
Due to the coupling between high frequencies the alternating zebra relaxation, i.e. the combination of
x-line zebra and y-line zebra relaxation, does not eliminate both the frequencies (,0) and (0,7).

In order to eliminate all the highest frequencies we introduce the zebra-JOR relaxation 7% that
consist of the sequence of a x-line zebra sweep, a damped Jacobi sweep (with damping factor 0.5) and
a y-line zebra sweep. After the x-line zebra sweep and the JOR sweep both the high frequencies (,0)
and (7,7) are eliminated; in the final y-line zebra sweep the high frequency (0,7) is eliminated, while
the two others are not reintroduced again. We notice that in the Jacobi sweep only half of the points
need to be relaxed, as it follows the x-line zebra sweep.

As usual for relaxation operators that mix frequencies, we define the smoothing factor /'~ of
zebra-JOR relaxation by

w7 = sup p(QS) ™ (0)),

where p(-) denotes the spectral radius, S,, the Fourier transform of the iteration matrix of zebra-
JOR relaxation and Q the operator that annihilates all low frequencies

0
Q=
1

Table 5.2 shows /'~ for different values of A; we conclude that zebra-JOR is a robust smoother.

As the last relaxatlon sweep of zebra-JOR is a zebra sweep, we can define a more accurate restric-
tion operator Ry n for the vertex-centered multigrid algorithm, that also uses the residual from only
one point, provided that in the last partial relaxation sweep of S}’ (on the fine grid) the lines are

relaxed that do not contain coarse grid points; its stencil is given by
101
=z
Ry ~ 0 4 0. (5.6)
1 1

1
3 4
0
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The use of ﬁfl in combination with zebra relaxation is equivalent to the use Zof half weighting in
combination with red-black relaxation (cf. [21]). The Fourier representation of R}; is

R, =4

72

so its high frequency order my is still 0, as with injection, but now there is no aliasing of the high fre-

quencies (7,0) and (0,7) with (0,0).

Besides the spectral radius p( ) of the error amplification matrix, we also study its spectral norm

l-lls. The spectral norm IV, ) s of the two-grid error amphﬁcatlon matrix indicates what happens

in a single two-grid cycle, whereas the spectral norm p(M,"") describes the convergence behavior

after many cycles. We are interested in the supremum of these quantities with respect to @ (the worst
case behavior), so we define

[1 + cosf,cosf, 1 — cosf.cosf, 1— cosd.cosf, 1+ cosﬂxcosoy],

}\vl.,uz = su ”M"u"z H
§ 06?,, h 5
A2 = sup p(M,""
P 0EPHP( h )7

with » =»; +»,. Table 5.3 shows the AL® and )\‘ for three dlfferent multigrid algorithms: cell-
centered multigrid, vertex-centered multigrid with straught injection R; u and vertex-centered multigrid
with the more accurate restriction Ry. In all cases A§° is bounded so initial high frequency error
modes are not blown up in a single two-grid cycle. The vertex-centered multjgrid algorithm with
straight injection R; # fails to converge in all cases (A, = 1), whereas the use of Ry yields an algonthm
that does not converge for 4 > 1. The problem is that the low frequency (0,0) is not removed in the
two-grid cycle, in fact we have

~10 _ —A?
m(Mh )]’] - (2+A)2 :

8] —0
When we interchange the x-zebra and the y-zebra sweep in the zebra-JOR relaxation, we get a two-
grid algorithm that fails to converge for 4 < 1; in this case we have

. A0 —1
lim =—
o 2o M = Ty
Therefore we alternately use S;” and S}”* in a series of two-grid cycles; the two-level convergence
factor )\ for the two-grid cycle with a single relaxation sweep is now defined by
2 00x

‘(SUp oM, S M, 8572

The last column of Table 5.3 shows 5\,]3; the two-grid algorithm now converges for all values of 4.

6. NUMERICAL EXPERIMENTS
To compare the efficiency and the robustness of the multigrid algorithms that we have developed, we
consider two test problems: a MOS-transistor and an LDDMOS-transistor.

In order to represent the geometry of these devices properly on the coarsest grid, we use non-
uniform grids. The problem on the coarsest grid is solved by a combination of relaxation sweeps
and Newton steps (cf. [9]). As it is necessary to use a relatively fine coarsest grid we use the
HARWELL sparse matrix solver for the linear systems in Newton’s method; it analyzes the sparsity
pattern of the Jacobian matrix, which needs only be done once as we always use the same discretiza-
tion method on all grids.

The continuation process to find a proper initial estimate is applied on the coarsest grid only. We
start by solving the thermal equilibrium case (no applied voltages). Then we change the applied vol-
tages and solve the problem on the coarsest grid using the previously obtained solution as initial
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iterate; due to the robustness of the solution procedure we are able to take large steps. The coarse
grid solution is interpolated to a next finer grid, and multigrid is used to solve the problem on the
fine grid (nested iteration).

In our numerical experiments we consider both possibilities for constructing the coarse grid initial
iterate g that are described in Section 4: either we ’freeze’ the coarse grid solution qﬂ, or we use a
restriction qﬁ = Ryg, of the fine grid solution. In vertex-centered multigrid we take injection for Ry,
and in cell-centered multigrid we use the Lz—projection of the variables (Y, ¢,, ¢,), which works suc-
cessfully in the case of a bipolar transistor problem (cf. [13]). We only consider W-cycles, as it
appeared that V-cycles are not sufficiently robust for the semiconductor problem (cf. [9,15]). In all
cases a single zebra-JOR sweep is used both for pre- and post smoothing; in vertex-centered multigrid
the x-zebra. and y-zebra sweeps are interchanged in the subsequent V-cycles that make up the W-cycle
as indicated in Section 5. For details about the nonlinear relaxation operators we refer to [13, 15].

To estimate the convergence rate of the multigrid algorithms we introduce the average reduction

factor p,
419
P= 170

where d) denotes the maximum of the scaled residual after i FAS-sweeps. The residual is scaled
point-wise by means of the diagonal 3X3 blocks of the Jacobian matrix; thus the scaled residual
corresponds with corrections that would occur in a point-wise collective Jacobi relaxation. The max-
imum of this scaled residual is taken over the grid and over the three variables (, ¢,, ¢,).

Figure 6.1 gives a schematic view of the geometry and the doping profile of the MOS-transistor.
The length of the device is 4.0 wm, the width is 1.5 pm and the oxide-layer is 0.05 pm thick. The
recombination rate R is given by the Shockley-Read-Hall model,

1
0
, 6.1)

R = np — 1 ,
T,(n+1)+7,(pt1)

(6.2)

where 7, =71, = 1076 s are the electron and hole lifetimes, respectively. The applied voltages at the
source, drain and substrate are kept constant at V;, =0.0V, V; =0.1V and V,, = 0.0V, respectively.
During the simulation the applied voltage at the gate is raised from V, = 0.0V to ¥V, = 5.0V in steps
of 1.0V. Table 6.1 show the average residual factor p for the different multigrid algorithms on a
64 <80 grid; the coarsest grid is an 810 grid, so 3 levels of uniform refinement are used. In all
cases the multigrid algorithms converge rapidly; we observe that the vertex-centered algorithms are
more efficient than the cell-centered multigrid algorithms.

A harder problem is the LDDMOS-transistor of which a plot is shown in Figure 6.2; a precise
description of the device is found in the CURRY-example set [12]. We solve this problem only for
the electrons, and assume that ?p is piecewise constant; the recombination rate R is zero. We keep
the applied voltages at the gate, substrate and source constant at V, =2.0V, ¥, =00V and
Vs = 0.0V, respectively, while the drain voltage V, is raised from 0.0V to 5.0V in steps of 1.0V.

In this case the coarsest grid used is a 10X 10 grid. Table 6.2 shows the average reduction factor p
for the different multigrid algorithms. For this test problem the relaxation procedure sometimes fails
on one of the coarse grids. In this case we do not use the correction calculated on that grid, and
return to the finer grid immediately; in Table 6.2 these cases are indicated by an asterisk. Notice that
only for vertex-centered multigrid with a frozen solution gj; on the coarse grids, we are able to use all
grids: as shown in Section 4 in this case the coarse grid problems are properly scaled and stable. In
Figure 6.3 we show the convergence behavior for much finer grids (the finest grid contains 320<320
cells) of this multigrid algorithm for ¥, =5.0V; we observe that the convergence behavior is grid
independent. Finally, we give a rough estimate for the execution times of the vertex-centered mul-
tigrid algorithm in Table 6.3; these results are obtained on a SUN SPARC station 1 for a non optim-
ized PASCAL-code. As the convergence behavior is grid independent and the amount of work is pro-
portional to the number of grid-points we conclude that multigrid has optimal complexity also for this
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test problem.

7. CONCLUSIONS

We have derived two different mixed finite element discretizations of the stationary semiconductor
equations, that are both equivalent to finite volume discretizations. To solve the systems of nonlinear
equations obtained after discretization, we have developed a cell-centered and a vertex-centered mul-
tigrid algorithm. By studying the Jacobian matrices of the coarse grid problems it appears that the use
of vertex-centered multigrid avoids the scaling problems that are inherent to the cell-centered mul-
tigrid method. Moreover, it is shown that the use of a restriction of the fine grid solutions as a start-
ing solution on the coarse grid may lead to ill-conditioned coarse grid problems; it is better to calcu-
late the solutions on the coarse grids during the nested iteration, and to use these solutions as starting
iterate on the coarse grids during the multigrid iteration. In both cell-centered and vertex-centered
multigrid we use inaccurate grid transfer operators for the restriction of the residual; by Fourier
analysis it is shown that the choice of a suitable relaxation operator may lead to a well-behaved two-
level algorithm for an anisotropic model problem. Our findings are confirmed by numerical experi-
ments.

FIGURE 4.1. Coarse and fine grid nodes in cell-centered multigrid.

|

|

FIGURE 4.2. Coarse and fine grid nodes in vertex-centered multigrid.
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FIGURE 4.3. Numbering of nodes in vertex-centered multigrid.

Relaxation A=1 AF#1 Coupling
damped Jacobi (0.5) (7,) (7, ) -

point Gauss-Seidel (0,), (7,0) - -

line Gauss-Seidel - - -
red-black (7,0), (0,7), (m,) | (m,7) || (7,0) = (0,m)
x-line zebra (7,0) (7,0) || (m,7) = (0,7)
y-line zebra (0,7) 0,7) || (m,7) = (7,0)

TABLE 5.1. Elimination and coupling of high frequency error modes
for the model problem (5.1) by some standard smoothing operators.

A “ny
107% | 0.125
1072 | 0.121
107" | 0.095
10%° | 0.025
107" | 0.095
1072 | 0.121
1072 | 0.125

TABLE 5.2. Smoothing factor w/* of zebra-JOR relaxation for the model problem (5.1).



16

Cell-centered MG Vertex-centered MG

Ry Ry Ry Ry

A | A AL AL [ AR AV A,
1073 | 0.133 0.706 1.000 | 1.996 | 0.124 | 0.543 || 0.271
1072 | 0.144 0.693 1.000 | 1.962 | 0.116 | 0.534 [ 0.260
107! | 0.157 0.597 1.000 | 1.722 | 0.061 | 0.456 || 0.179
1079 | 0.202 0.357 1.000 | 1.423 | 0.111 | 0.212 || 0.111
107! | 0.157 0.431 1.000 | 1.414 | 0.694 | 0.982 || 0.179
10%2 | 0.144 0.490 1.000 | 1.414 | 0.961 | 1.359 || 0.260
10%3 | 0.133 0.499 1.000 | 1.414 | 0.996 | 1.408 || 0.271

TABLE 5.3. Spectral norm A}° and radius A} of the two-grid error amplification
matrix with a single zebra-JOR pre-relaxation sweep.

gate
oxide i
source I =1 10% \n=1x10%| drain
p=-—10x10"
substrate
FIGURE 6.1. Geometry of MOS-transistor.

v qy || 0.0 1.0 2.0 3.0 4.0 5.0
Cell-centered MG g% || 0.18 | 020 | 0.23 | 0.25 | 0.27 | 0.31
Cell-centered MG gk || 0.19 | 020 | 035 | 0.37 | 0.40 | 0.41
Vertex-centered MG | ¢% || 0.15 | 0.15 | 0.17 | 0.17 | 0.16 | 0.16
Vertex-centered MG | g || 0.16 | 0.16 | 0.16 | 0.15 | 0.16 | 0.19

TABLE 6.1. Average convergence factor p for different gate voltages ¥,
on 6480 grid (MOS-transistor).



gate
oxide polysilicon
source = == drain
n=2.0><10202/ \\ n=2.0x10%
n=2.4%10"8
p=-—10x10"
substrate
FIGURE 6.2. Geometry of LDDMOS-transistor.
qu || 00 1.0 | 20 3.0 4.0 5.0
Cell-centered MG gf || 020 | 052 | 0.63 | 0.74" | 0.65" | 0.74°
Cell-centered MG gi || 023 | 047 | 044 | 0.74° | 0.65" | 0.74"
Vertex-centered MG | ¢f || 0.13 | 021 | 0.40" | 0.80° | 0.90° | 0.91
Vertex-centered MG | ¢k || 0.14 | 034 | 024 | 023 | 021 | 022

TABLE 6.2. Average convergence factor p for different drain voltages V,
on 80X 80 grid (LDDMOS-transistor).

17
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0 — 80X80
N 160X 160
I I > 320X 320

logd® -5

-10

W-cycles

FIGURE 6.3. Convergence history of vertex-centered multigrid with g5 = g%
for LDDMOS-transistor, V; =5.0V.

grid time in s
40X 40 33
8080 129

160X 160 508
320320 1959

TABLE 6.3. Estimation of time per W-cycle on a SPARC station 1.
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