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Abstract. We give a min-max theorem for the problem of finding the maximum number of
dipaths connecting two given vertices in a planar graph so that the internal vertices of distinct
dipaths are not adjacent. The theorem also yields a polynomial-time algorithm for finding such a
collection of dipaths. We also show that the result can be extended to the case where the internal
vertices of distinct dipaths are to be separated by a larger (directed) distance d > 1. This is an
extension of the work done in [5].
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Let D = (V, E) be a directed graph without loops, and let s,t € V. We denote by G =
(V, E) the underlying undirected graph of D. We identify G and D with their embeddings
in the 2-sphere S;. A d-path is a simple dipath of length at most d. We call two s — ¢
dipaths P’, P" d-separate if there are no d-paths in G\{s,t} connecting an internal vertex
of P! with an internal vertex P”. Note that P’ and P” being 0-separate is equivalent to
their being internally disjoint. We consider the problem of finding a maximum number of
pairwise d-separate s—t dipaths. Note that if each arc of D is contained in a digon, then this
is equivalent to disallowing undirected paths of length d between paths in the collection. In
particular for d = 1, this becomes the problem of finding a maximum number of s — paths
(in G) with no chords between them. Fellows [2] proved that for general graphs, deciding
if there exists a chordless circuit containing s and ¢ is NP-complete. This chordless circuit
problem is equivalent to determining whether there is a pair of 1-separate s—% paths. Hence
the d-separation problem is NP-complete for d = 1 (and in fact for d > 1).

We show that for planar graphs the problem can be solved in polynomial time. Moreover,
we give a good characterization based on the following concepts. We give somewhat precise '
definitions, however the reader may choose to omit this for the time being. Recall that a
(closed) curve is any continuous function C : §; — S2, where S; denotes a closed interval
[a,b] with a < b (respectively, unit circle in the complex plane). For any pair of curves
C, D a pair (z,y) is said to give an intersection if C(z) = D(y). We sometimes say that C
and D intersect at C(z). A pair of connected, closed sets (I,J) (in the domains) is said to
give a crossing if C(I) = D(J) and there are open neighbourhoods N;,N; of I and J such
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that the curves C|Ny and D|N; only intersect in I X J and C(Ny) contains points on either
side of D (relative to some fixed orientation of D). Intuitively, we say that the curves cross
along C(I) or D(J). When it is clear from the context we do not distinguish between a
curve and its image.

Let C be a closed curve not traversing s or . The winding number w(C) of C is, roughly
speaking, the number of times that C' separates s and ¢. More precisely, consider any curve
P from s to ¢, crossing C only a finite number of times. Let A be the number of times C
crosses P from left to right, and let p be the number of times C' crosses P from right to
left (giving C' a clockwise orientation with respect to s and orienting P from s to t). Then
w(C) = A — p. This number can be seen to be positive and independent of the choice of P.
We say a curve C traverses a path p if C follows p from one end vertex to the other.

We call a closed curve C' (with clockwise orientation relative to s) d-alternate if C' does
not traverse s or £, and there exists a sequence

(1) (007171’017172:027'--)PhCl)
such that

(i) p;: is a d-path of D\ {s, ¢} with endpoints s;,%; (1 =1,...,1);

(ii) C; is a (noncrossing) curve of positive length from ¢; to s;11 (if I = 0 we
take so = £; as point on Cp) and these are the only vertices of D that
C; intersects (i = 1,...,! and Co = C});

(2)

(iii) C traverses the paths and curves given in (1) in the described order;

(iv) C; may only cross arcs from right to left (relative to the orientation
derived from C) and none of these arcs corresponds to an arc of any

D;.

Informally, condition (iv) requires that any arcs crossed by C; must be directed towards s.
We prove the following theorem in which the alternating curves form the analogue of an
edge cut in Menger’s Theorem.

Theorem A.

(i) There ezist k pairwise d-separate s — t dipaths, if and only if I(C) > k - w(C) for each
d-alternate closed curve C'.

(ii) A mazimum number of pairwise d-separate s —t dipaths can be found in polynomial
time.

(iii) The curves C in (i) can be restricted to those with I(C) < |V|.

Before continuing, we point out the significance of forbidding an alternate curve to cross
arcs which are contained in the p;’s (see 2 (iv)). For convenience, we say that such a curve
does not cross its graphical components. If this were not the case, then Figure 1 displays
a graph which has an s — ¢ dipath, however the curve C has length one which is less than



w(C) = 2. The curve C is not a proof, however, that there is no collection of size one.
This is because we allow the dipaths in our collections to have chords themselves. Thus
considering curves which do cross their graphical components gives a condition which is
too strong.

Figure 1: The curve C traverses a single arc e.

We will need the following notion in our proof. Let X be a subset of Sa\ {s,#}. A dipath
or a curve p is called a singel (relative to X ), if every curve from s to £ either intersects X
or p.

Proof of Theorem. Consider the universal covering surface (ref. [3]) U of 53 \ {s,t},
with projection mapping 7 : U — Sz \ {s,%}. The inverse 7 1[D \ {s,t}] of D \ {s,t} is
an infinite graph on U. (The universal covering surface is obtained from $; by puncturing
holes at s and ¢ and then cutting between the holes to form a rectangular surface. Copies
of this rectangle are glued together to form the covering surface which then contains an
infinite number of copies of S, \ {s,t}.) For a point v € U, we denote by v’ the lifting of
w(v) which occurs next to the right of v. If @ is a lifting of a path P in S5, then @’ denotes
the next lifting of P to the right of Q.

I. Necessity in (i). Without loss of generality ¥ > 0. Let C be a d-alternate closed
curve and let Pi,..., P, be pairwise d-separate s — ¢t dipaths. Without loss of generality
we assume that the dipaths are simple. First suppose that k¥ = 1. It is clear that G¢ can
be decomposed into circuits Ry, Ry, ...R,, such that the first w(C) correspond to curves
with winding number one. Furthermore, any such curve must have length at least one since
Py must cross it in the forward direction (i.e., cross the curve from right to left). Hence
1(C) > w(C).

Now suppose that £ > 1. Clearly each P; crosses C in the forward direction at least
w(C) times. It is not the case that any dipath must intersect at least w(C) paths p; in (1)
(an example can be obtained for d = 2 by modifying Figure 1 by adding a vertex of D at
the non-simple point in the image of C'). We shall see this is true for dipaths which are not
singels relative to a any orange segment. Note that since k£ > 1, no P; can be such a singel
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and hence each path in the collection must intersect w(C') of the d-paths p;. Since distinct
P; and P; are d-separate, this shows that there are at least k-w(C) p;’s, i.e., [(C) > k-w(C).
So it is enough to show that any dipath which is not a singel must intersect C' sufficiently
many times. We must introduce some tedious concepts before stating a more general result.
A bicolouring (O, B) of a closed curve C is any partition of its range into two sets: an
orange set whose inverse image consists of a finite number of closed sets (of the unit circle
in R?) and a blue set whose inverse image consists of a finite number of open sets. An
orange segment of C' is any maximal subcurve of C' whose image is contained in O. Here we
mean maximal by set inclusion of the image. We call a simple curve @ from s to ¢ regular
(with respect to the bicolouring) if it only crosses C in the forward direction along orange
segments of C.
Claim. Let C be a closed curve not traversing s and ¢ and let (O, B) be a bicolouring of
C. Then each regular curve @ from s to ¢ either intersects at least w(C) distinct orange
segments or is a singel relative to some orange segment.

Proof of Claim: Let C = C10C;...0Cy (), where C1,...C, ) are closed curves each
of winding number at least one. Consider any lifitng L, o Lgl) ...0 L‘(‘:‘(’(C(’;)_l) of C such that

L; is a lifting of C; and L{); denotes the i** lifting to the right of L;1;. Then any lifting
L of @ must cross each L; at least once in the forward direction. Hence L crosses liftings
(not necessarily distinct) O4, ..., 0.(c) of orange segments of C' such that O; intersects L;.
Hence if O; = Oj, then it follows that there is a completely orange subcurve of C' which
has winding number one and so @ is clearly a singel. Thus we assume that the O;’s are
distinct. Hence either @ crosses at least w(C') distinct orange segments of C, or we have,
say, that 01 and O are distinct liftings of the same orange segment. But then there is a
point v in the image of O such that there is a curve P from v to v’ (the lifting to the right)
which follows O and then a subcurve of L and then a subcurve of Q5. Therefore, Q is a
singel with respect to 7(01). The proof of the claim and necessity in the theorem are now
complete.

IL. Algorithm. We next describe an algorithm finding for any k, either k pairwise d-
separate s — ¢ dipaths or a d-alternate closed curve C' with I(C) < k- w(C). We assume,
without loss of generality, that there is no arc connecting s and .

First we introduce some notation and terminology. We think of D being embedded on
the 2-sphere S3. For a noncrossing, closed curve C, R(C) denotes the region encircled by
C in a clockwise orientation. Let P', P be two arc-disjoint s — ¢ dipaths without crossings.
We denote by R(P’, P") the region R(P'- (P")). We call the pair (P, P") internally
d-separate if R(P’, P") is an open disc not containing a dipath which is a singel, relative to
R(P', P"). Note that even if (P, P") is internally d-separate, P’ and P" can have a vertex
v # s,t in common. Moreover, P’ and P” are d-separate if and only if both (P/, P”) and
(P", P') are internally d-separate.

The proof of sufficiency (i.e., the algorithm) works by induction on d. The case d = 0
follows from the directed vertex version of Menger’s Theorem. So suppose that d is positive.

For k = 1 the algorithm is trivial: either there exists an s — ¢ dipath, or there exists a
closed curve C' with w(C) = 1 such that C' does not intersect any vertices of D and only
crosses arcs from right to left. Thus implying I(C) =0 < 1 -w(C).



Suppose now that k > 1, and that we have found k — 1 pairwise d-separate s —¢ dipaths
Py, ..., P._1. In the special case that k = 2 we assume that there exist two (d - 1)-separate
s —t dipaths P,Q. If no such pair exists, then (by induction) we can find an appropriate
(d — 1)-alternate curve. Hence for k¥ = 2 we may choose P; to be P.

We may assume that the first arcs of Pi,..., P occur in this order clockwise at s.
Let P, be a dipath ‘parallel’ to the left of P;. That is, we add to each arc traversed by P; a
parallel arc at the left hand side (with respect to the orientation of P;), and Pj follows these
new arcs. Note that we may (implicitly) add parallel arcs without changing our problem.
Note also that in the case k = 2 we have chosen P; so that (Py, P;) is internally d-separate.
Then the first arcs of P;, ..., P occur in this order clockwise at s, and each pair (P;_1, F;)
is internally d-separate (i = 2,...,k).

Now for n = k,k + 1,k + 2,... we do the following. We have pairwise arc-disjoint
s — t dipaths P,_gy1,--.,Pn, without crossings, so that the first arcs of Pr_gy1,.--,Pn
occur in this order clockwise at s, and each pair (P,_1, P;) is internally d-separate (i =
n—-k+2,...,n).

If also the pair ( Py, Po—k+1) is internally d-separate, then P, g1, ..., Py are pairwise
d-separate, and hence we have our desired set of k s — ¢ dipaths. If (P, Pp_g4+1) is not
internally d-separate, let P, be the dipath in R(P,—g+1, Po—k+2) (the closure) such that
(Pyn, Pny1) is internally d-separate and such that R(P,y1, Pa_k42) is as large as possible.
Then reset n := n + 1, and repeat.

ITII. Correctness and running time. Suppose we do |V| iterations without finding
k d-separate paths. Let I := k + |V|. Consider the universal covering surface (ref. [3]) U
of S \ {s,t}, with projection mapping 7 : U — S, \ {s,t}. The inverse #~1[D \ {s,%}] of
D\ {s,t} is an infinite graph on U. :

For noncrossing dipaths (or paths) @, and @ in U with @, to the left of Q, we denote
by R(Qa,@s) the bounded region between the two paths. Hence R(Q, Q') contains no other
lifting of w(Q).

By our construction, there exist liftings @1, ..., Q@ of Pi, ..., P, respectively, so that @,
is to the right of @,_1 (possibly touching) for n = 2,...,1, and such that Qn_z42,...,@n
are contained in R(Qn_k_ﬂ,Q;_kH) forn=k,k+1,...,L

Foreachn =k +1,...,1let T, # Qny1 be an s — ¢ dipath of #=1(D) such that T}, is
contained in B(Q_j,1,@nt1), (Pn,7(Th)) is not internally d-separate and subject to this
R(Q!,_r41,Tn) is maximized.

Consider D’, the digraph obtained by restricting 7=1(D) to the region R(Tn, Q@n+1)- It
follows that D’ contains precisely two s —¢ dipaths: T, and Q,+1. (Otherwise we contradict
either the definition of T}, or @n41.) This implies that R(T,, @n+1) is an open disc F. For
each n > k, let V,,.1 denote those internal vertices of Q.41 which lie on the boundary of
this disk and let V} denote the internal vertices of Q. For each v € V41, there is some
Uy ¢ Vpy1 which lies on the boundary of F' and some uy of @, such that there is a d-path
p, (in #71(D)) from u; to up. For any such v we choose uy,us so that p, is of minimum
length. Furthermore, we can choose our T;’s so that uy € V,,.

Now consider C7 the vertices which occur before u; and v on T;, and Q,+1, and C; the
vertices appearing after u; and v, then we have:

(3) there is no dipath in D’ — {uq, v} from C; to Cs.



It follows that there is a a curve C, oriented from u; to v which does not intersect
7~ (V) — {u1,v} and only traverses arcs of #~*(D) from right to left. If u; = v, we simply
choose C, to be a loop - so that (3) will hold.

Now choose v,, € V,, and foreachn = m—1,m—2,.. .k, let v, be the starting vertex of
Doy, - Since I = k+ |V, there exist n/,n" with I > 2" > n’ > k such that 7(v,w) = 7(va).
Let R be the curve

Pogiy, - Cv,,;_,_, “Pogiy, Cv,,_:+2 teeePuy C-u,.u ’

and let C' be the projection w o R of R to Sa (where each Po; starts at some v;_; on
Qj-1)- Thus C is a d-alternate curve as long as no 7(C,,,,) crosses an arc of some 7 (py,,, )-
Suppose that such an arc is crossed. and let Q; and T; be the liftings (of P; and = (T}))
which intersect py,,,. Note that (3) implies that neither Q; nor T; intersects the region
R(T,,Qn+1). By the same reasoning, we also have that p,, 41 intersects at most one of T,
or Qn+1, say it intersects T),. This is egivalent to saying ¢ < n (see Figure 2).

0"11-}-1

Figure 2:

It follows that T} is contained in R_(Q,-, T,) and hence T; intersects an internal vertex of
Pu;, - But then we could have chosen p,; to have shorter length, a contradiction. Hence C
is a d-alternate closed curve with I(C) = n” — n’. We now show that k - w(C) > n" — n/,
proving sufficiency in (i).

For any lifting Q of any simple s — ¢ dipath P and any i > 0, let Q(*) be the ith lifting
to the right of Q. That is, Q(®) = @ and Q(+1) = (QWY.

Let u := [™7%|. We must show w(C) > u. If u = 0, then w(C) > u = 0 since
U £ V. If u > 0, then v, is strictly to the right of @7, _, and Q/ _g is to the right of

Qs:f) (since @»_g is to the right of Q,(:,‘—l), as n'' —k > n'+ (u—1)k). So v,» is strictly to

the right of Qf:f). Therefore, w(C) > u.
O



This algorithm can also be extended to show that for any fixed surface S and any fixed
k, there exists a polynomial-time algorithm for the problem of finding k pairwise d-separate
s — t paths in any graph embedded on §.

We consider the following problem: given a planar undirected graph G and collection
T = {T,...,Tm}, of subsets of the edges each of which induces a connected subgraph of
G, find a maximum collection of vertex-disjoint paths such that there is no path which is
contained in some 7; and connects internal vertices of distinct paths in the collection. Such
a collection we call 7-separate. We define a curve to be 7 -alternate in a fashion similar to
before except that now each p; is simply a subpath of one of the T; and that each C; is a
curve passing through a face of G. Using the previous theorem and the above method of
proof, one can show the following.

Theorem B.

(i) There ezist k pairwise T -separate s — t dipaths, if and only if I(C) > k- w(C) for each
T -alternate closed curve C.

(ii) A mazimum number of pairwise T -separate s — t dipaths can be found in polynomial
time.

(i) The curves C in (i) can be restricted to those with I(C) < |V|.
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