1991

M.C.J. van Pul

Simulations on the Jelinski-Moranda model of software reliability

Department of Operations Research, Statistics, and System Theory ~ Report BS-R9122 September

CWI nationaal instituut voor onderzoek op et gebied van wiskunde en informatica



CWI is the research institute of the Stichting Mathematisch Centrum, which
was founded on February 11, 1946, as a non-profit institution aiming at the
promotion of mathematics, computer science, and their applications. It is
sponsored by the Dutch Government through the Netherlands organization
for scientific research (NWQ).

Copyright © Stichting Mathematisch Centrum, Amsterdam



Simulations on the Jelinski-Moranda Model of Software Reliability

Mark C. van Pul

cwi
P.O. Box 4079, 1009 AB Amsterdam
The Netherlands

In software reliability theory many different models have been proposed and investigated. Some of these
models intuitively match better with reality than others. The properties of certain statistic estimation pro-
cedures in connection with these models, on the contrary, are also model dependent. In this paper we will
investigate how well the maximum likelihood estimation procedure behaves in case of the very well-known
software reliability model suggested by Jelinski-Moranda (1972). For this study we will make use of simu-
lated data.
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1. Introduction

Several investigators have built statistical models in order to estimate the evolution in reliability of
computer software during the debugging phase. We refer to Musa et al. (1987) for a complete over-
view. They all, more or less, consider the following test experiment.

A computer program has been executed during a specific exposure period 7 and the failure times
T;,i =1,2,... are observed. The repairing of a fault takes place immediately after it produces a failure
and no new faults are introduced. By using the information obtained from the experiment one can
estimate the parameters of the underlying model, especially N, the total number of faults initially
present in the software. We will use the maximum likelihood estimation (MLE) procedure for this
purpose.

In Van Pul (1990) theoretical results are derived for the asymptotic behaviour of the MLE-
procedure for a large class of software reliability models. In this paper we will study how well these
theoretical results appear in practice for a specific, very well-known software reliability model, namely
the Jelinski-Moranda model. The model is very popular, although practical application has often
been disappointing. We will not consider the question, how well the Jelinski-Moranda model matches
with reality, however, but we will study how well we can estimate the parameters of the this model
with the MLE-method, given some simulated data according to the Jelinski-Moranda model. We will
compute point estimates, (upper) confidence bounds and confidence intervals for the model parame-
ters and study their asymptotic behaviour. For the application of the Jelinksi-Moranda model (and
other models) to real data we refer to Moek (1983, 1984) and Andersen et al. (1991).

In the next section we will give a description of the Jelinski-Moranda model and give some back-
grounds on counting processes and martingale theory. In section 3 we describe the simulation experi-
ments and give the computations of some asymptotic expected variances. In section 4 we will discuss
the simulation results. We end this paper with some concluding remarks in section 5.
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2. The Jelinski-Moranda (JM) model

We start with some definitions. Let N be the unknown number of faults initially present in the
software. Let the exposure period be 7 and let n(?), ¢ €[0,7] denote the number of faults detected up
to time 7. Define T, := 0 and let T}, i =1,2,...,n(7) the failure time of the i-th occurring failure,
while ¢, := T,—T;_,, i =1,2,...,n(7), denotes the interfailure time, that is the time between the i-th
and the (i —1)-th failure. Finally, we define ;)1 := 7= Ty

In the Jelinski-Moranda model (1972) — introduced by Jelinski & Moranda and later generalized by
Musa (1975) — when a failure occurs, the corresponding fault is immediately removed with probabil-
ity one. The failure rate of the program is at any time proportional to the number of remaining faults
and each fault makes the same contribution to the failure rate. So if (i —1) faults have already been
detected, the failure rate for the i-th occurring failure A; becomes

N = g [No—(=D): @1

where ¢y is the true failure rate per fault (the occurrence rate) and N is the true number of faults ini-
tially present in the software. In terms of counting processes, we can write

M) = 4o [No=n(t—)]: | 22)

where A(7), #[0,7] denotes the failure rate at time t. See figure 1. The interfailure times #; are indepen-
dent and exponentially distributed

t ~ F(1), F() = Pr(;<t) = 1—e ™, 23)

where the parameter A; is given by (2.1).
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Figure 1: The estimated intensity function for the JM-model.



The joint pdf of the interfailure times 7,25, . . . , 4,z ln(r+1 1S given by (see Aalen (1978)):

n(t)

L(Ng,¢9 | t1, - -« stym+1)= [H Ji@)

[ Fn(1)+l(tn(7)+l)]

n(r) n(r)+1
= li];[] }\,]exp [— '§] )\itlw.

1

With (2.1), the log-likelihood function is
n(r)+1

n(r)
logL(No.¢o) = = log oWo—i+1) = 2 ¢o(No—i+1i;

hence the likelihood equations become
A A "(‘r) 1 ,\
o 0BLW.9) = 2 ——— — ¢7 = 0;
Bt '—1 N—i+1
3 A A n 1') n(r)+1 L .
—— logL(N,¢) = J—A - 2 (N—-i+Dhy =0.
9o ¢ i=1
If we define
n(@)+1

c(n) := 1 3 @G-y,
T i=1
we get from (2.6)—(2.7):
"<*> 1 __n(

g(N) ] = = 0;
iISIN—i+1 N—c(n)
6 = _n(®m
(N—c(n)r’

2.4)

2.5)

(2.6)

2.7

(2:8)

29

(2.10)

It is easy to see that n(r) and c(n) are sufficient statistics in the statistical sense that we can calculate
all likelihood based quantities from n(7) and ¢(n) only. Given the numbers n(7) and c(n) as the out-

comes of a simulation (or as real life data), we can solve

g) =0

@.11)

numerically and then compute ;5 with (2.10). Moek (1983) showed that there exists a unique solution

of (2.11) if and only if

c(n) > ﬂl’z_u

2.12)

To make this intuitively more likely, note that for large values of N, g(N) can be approximated by:

g = 28N N—c(n)

_ 9| W —e(m) = (N=i+])
(N —i +1)(N —c(n))

i=1

~ ]\;2 nET [1 —1—c(n)]

2.13)
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In figure 2 we have illustrated this criterion.
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Figure 2: Moek’s criterion.

In Van Pul (1990) the asymptotic behaviour of the ML-estimators N and ¢ was investigated when N,
is large. An important novel concept is the way in which asymptotics is treated. It does not make
sense to let 7 the stopping time, grow to infinity. In the long run the estimate of the total number of
faults will trivially be equal to the true number of faults. It makes more sense to (conceptually)
increase the number of faults in the program. The idea is then, that asymptotics should be relevant in
the practical situation in which N is large and n(7)/ Ny is not close to zero or one.

We therefore introduce a sequence of counting processes n,(t), 1 €[0,7], »=1,2,... and let N con-
ceptually increase. Let N =N, — oo for v — 2. By the reparametrization

N, =y, (2.14)

with a dummy variable y, we can denote the associated intensity functions by

MEY9) 1= Mrvrd) = 6 [ry=n (-], (2.15)
We define the stochastic processes
x,(1) 1= v In, (1), 1€[0.7] (2.16)
and we further define:
A(t:y.9)
B@iy.¢:x,) := -

=% [vv—ny(t—)]

=¢ﬁ—x4vﬂ} @.17)

It is shown (Kurtz (1983), van Pul (1990)) that under weak smoothness and boundedness conditions
on the function S, the sequence of stochastic processes x, converges uniformly on [0,7] in probability



as v—>o0 to a deterministic function x, which is the solution of

x(t) = [B(s:vo,$03x)ds. (2.18)
0

In case of the Jelinski-Moranda model, it is easy to show that this deterministic function x, is given
by:

xo(t) 1= vo(1—e™*). (2.19)

In the real-life situation we have »=N; and yo=1. It is further shown in Van Pul (1990), that the
normalized ML-estimators (\/17(?,,—}'0), \/;(¢,,—¢0)) in the Jelinski-Moranda model are consistent
and asymptotically normal with asymptotic mean zero and asymptotic covariance matrix

-1

.l.(e%f -1)
Yo T
S = . (2.20)

.YO — T
—(l=e ™)
3

From this it follows, that we can define centered and normalized quantities X and Y, satisfying:

N j\}—-—N D AT %
X - 0 1—e

= ~ N|oO, » , 221
VN e e P —gdrr—2 @20

R R D 2 %7_1
Y := /No(é—dy) — N |0, du(e” — ) (2.22)

e e M —pirr —2 '

as Ny—o0. For more details, see Van Pul (1990).

3. Description of the simulations and computaﬁons

In our experiments we will keep the exposure period 7:=1, the sample-size K:=10000 and one of
the model parameters, namely the true occurrence rate ¢: =1 fixed. In the simulations we will vary
the other model parameter No, the number of faults initially present in the software:
Ny € { 50,500,5000 ;. These three cases should represent very small, normal and very large com-
puter programs.

We define for i =1,2,...,Ny:

>\,:¢0(N0"‘I+1):N0_1+1, (31)
F@):=1—e ™, t€[0,1]. (32)
We simulate interfailure times 1, ~F, t;~F, . . ., Ly~Fp, ty+1~F, 4+ until
m
.21’i<"’ (3.3)
i=
m+1
_EI ;= (34
i=
Then we set

m
bn+1 °= T__glti' (35)
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The characteristic quantities of each simulation are n = n(r), the number of faults detected up to
time 7, and ¢ = c¢(n), given by (2.8), which is a measure for the change of the occurrence rate in time.
Since n(7) and c(n) are sufficient statistics, we can spare a lot of memory space during sampling.

Repeating the above described simulation K|, times, yields two Kq-vectors: 7@ := (n), . . . ,ng,) and
T:=(cy,...,ck,). Given these simulated vectors 77 and T, we restrict ourselves to those simulations
for which Moek’s criterion is satisfied, which induces the existence and uniqueness of the solution of
the ML-equations (2.6) —(2.7). We define

K:=#{i:2¢—n—1>0} (3.6)

We now solve g(]cl ) = 0 (see (2.9)), with a variant of binary search. Then we compute the estimator
¢ with (2.10). Hence this procedure yields two K-vectors of ML-estimators: N = (N, . ..,Ng) and
¢ = (¢, -, 9k)

We will construct upper confidence bounds and two-sided confidence intervals for N, based on the
ML-estimator N. For this purpose, we will make use of an approximate normal test statistic z and of
a likelihood ratio test statistic w. From (2.21) it follows directly that we have approximately

N—N,
z = — ~ N (0,1), 3.7
6 VN
where the asymptotic variance o® is given by
-
N 1—e (3.8)

o L _—ar_ 2 ;
e e —gdrt—2

o can be estimated consistently by using either the expected information matrix 2 (see 2.20), which

yields
172
8 L 1 _e_m
EXP * 7
e +e T —¢ 1 —2
. (;2 , -2
= [(e"—1) u (3.9)
{ 1—e "
or by using the observed information matrix 7 (see Van Pul (1990)), which yields
aD Any 1172
Sops 1= | NS — ! _ Ner (3.10)
ISL(N—i+1) n(7)

Let k, and k,,,, « €[0,%], be quantiles of the standard normal distribution, such that:

Pr(|z | <k,) = 1—aq, (3.11)

Pr(|z |<k,n) = 1—a/2 (3.12)
If 6 denotes either ogyp OT 6ops an approximate (1 —a)-upper-bound U,ommal is given by

Unomal 1= N+k VN (3.13)
and (LB ormal» UB hormar) 18 an approximate (1 —a) confidence interval where:

LB ormal := N—ky, 26 VN, (3.149)

UB orma := N+ky 6 VN, (3.15)

Another way of constructing upper-bounds and confidence intervals for N can be done by making



use of the Wilks likelihood ratio test (WLRT) statistic
w := 2[max log L(N,$)—max log L(No,$)], (3.16)
¢ ¢
where the log-likelihood function log L is given by (2.5). As indicated in Van Pul (1990), the WLRT
statistic w is asymptotically chi-squared distributed with one degree of freedom. Let ¢, and c,,

denote the (1—a) and (1—2a) quantiles of the x*(1)-distribution. Then an alternative (1 — a)-upper-
bound Uy is the largest solution x of

G(x) = 2max log L(N,¢)—max log L(x,$)] = cq (3.17)
[

and if LBw;y, and UBv;ys are the solutions of

G(x):= 2[m§1x log L(]:f,¢)—~m‘§1x log L(x,9)] = €24 (3.18)

with LB wﬂks<]:/' <UBwiis,> then (LBwins, UBwins) is an alternative (1 —a)-confidence interval for the
parameter of most interest N. See figure 3.
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Figure 3: The function G(x).

The computation of approximate normal upper confidence bounds and confidence intervals is much
easier, but those calculated from the WLRT statistic will be much more satisfying. To spare computer
time in the latter case we will approximate sums (with 500-5000 terms) by standard integrals with
well-known primitives.

The empirical coverage probability or hitting percentage (hit%) of a confidence interval is defined to
be the fraction of the K constructed confidence intervals, which contain the true number of faults N.
The miss-under percentage (mu%) is the fraction of confidence intervals whose upper-bound is lower
than Ny. In an analogous manner we define the miss-over percentage (mo%).
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4. Discussion of the results of the experiment

Once again, we mention the fact that during the simulation experiment we will keep the exposure
period 7=1 and the true occurrence rate ¢y =1 fixed. As we have studied some theoretical properties
of the ML-estimators as Ng—o0 in Van Pul (1990), we are very interested for which size of N this
asymptotic behaviour appears in practice. Therefore, we do the simulations and computations,
described in the last section for various values of N in the range from 50 to 5000. Simulations with
values of N, essentially bigger then 5000, were not possible (and not interesting) with the available
computing facilities. For each value of N, we repeat the experiment Ky =10000 times.

In table 1 we give the number of the finite estimators. That is, the number of estimators which
corresponding simulation characteristics n(7) and c(n), satisfy Moek’s criterion (2.12). In fact this
number K is the realized number of replicates. In table 2 means and mean square errors for the ML
(point-) estimators N and ¢ are given. In table 3 means and variances of the centered and normalized
quantities X and Y are given. In tables 4 we compared the approximate normal and Wilks likelihood
ratio upper confidence bound for N, at various values of the confidence level a. Using the same
simulation data as in tables 1 —3, we computed the realized hitting percentages. In table 5 we did the
same for two-sided confidence intervals derived from the approximate normal and the Wilks ratio
likelihood test statistics. '

No K
50 | 9027
500 | 9996
5000 | 10000

Table 1: Number of finite estimators.

A ~ N ~
No EN E¢ | E(;—— D’ | E@—g0)’
0
50 48.3947 | 1.3095 0.0909 | 0.3982
500 | 506.1666 | 1.0228 0.0194 0.0406
5000 | 5008.0997 | 1.0015 0.0015 0.0039

Table 2: Means and mean square errors of the MLE’s N and <E>

Ny EX VarX EY Var Y

50 | -0.2270 | 4.4943 | 2.1886 | 15.1202
500 | 0.2758 | 9.6089 | 0.5100 | 20.0434
5000 | 0.1145 | 7.4131 | 0.1071 | 19.7273

0 0.0000 | 7.3365 | 0.0000 | 19.9423

Table 3: Means and variances of centered and normalized quantities X and Y.

For small values of N, we see in table 1 that K <<K,. When N, increases, K/K converges quickly
to 1. For small values of N the variation in n can be relatively large. So possibly a number of simu-
lations will exist, which doesn’t satisfy Moek’s criterion: 2¢c —n —1>>0. On the other hand we have as
N0—>oo .

n P _
—N—O— d xo('r) = 1—e 1, (41)
£ _ ._1._II(T§)}+1(i—1)ti = —l—}n(s—)ds i }xo(s)ds = }(l—e_f)ds =e L 4.2)
NO NO i=1 NO 0 0 0
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Hence n/¢ — e—1 as Ny — oo and Moek’s criterion will be satisfied with a probability tending to

one, when N grows larger. N .
For small values of N, we see in table 2, that N<<<N, and ¢$>>¢;. As N increases, we find how-
ever, by looking at the mean square errors, confirmation of the theoretical results:

NP
TV]YO_ S, 43)
A P
¢ —do = 1, 4.4

derived in Van Pul (1990). The under-estimation of Ny can be explained by the fact that for small
values of N, K is smaller than K, and the biggest estimates for N are omitted. In the same way the
over-estimation of ¢ by ¢ can be explained, because o¢~1/N (see (2.9)).

The distribution of N is even for large values of N not symmetric at all, but has a very long tail on
the right. The skewness of the distribution of N is related to stability problems of the numerical
approximation procedure. A vertical perturbation of the curve of the likelihood function would only
cause a small deviation of the solution N to the left, but easily cause a large one to the right. See
figure 2. This skewness disappears slowly as N increases. We see in table 3 that the that the conver-
gence of X and Y to normal distributions with means zero and asymptotic variances as expected (in
(2.21) and (2.22)) is rather slow. The difference in the asymptotic behaviour of N and ¢ is illustrated
by the histograms and qg-plots given in figures 4 and 5. Both tables and figures give the same
impression, namely that the distribution of N shows a severe skewness and that the distribution of ¢
is rather biased for small Ny. Both defects slowly disappear as N increases.

We will know consider the construction of confidence intervals for No. For the construction of
confidence intervals based on the approximate normal test statistic we estimated the asymptotic vari-
ance with use of the expected information (see (3.9)). If the observed information had been used, the
results would not have been significantly different. As the distribution of N is skew, however, the cov-
erage percentages of confidence intervals based on the asymptotic normal statistic could be expected
to be disappointing. In table 4 we compare these percentages with those based on the Wilks test
statistic (3.18). In table 4 we see that at the 50% confidence level the approximate normal and the
Wilks likelihood ratio upper-bounds both are equal to the maximum likelihood estimator N. For
higher confidence levels «, the Wilks upper confidence bound is larger than the corresponding approx-
imate normal one. The same will then of course hold for the coverage probabilities. All these observa-
tions are clearly understood by the way of constructing the upper-bounds. As the Wilks confidence
intervals are larger, shifted to the right (and hence not symmetric around No) in comparison with the
approximate normal confidence intervals, for high levels of confidence the Wilks intervals are
significantly better and have less skew coverage probabilities, than the approximate normal ones.
Note that the sample-size K= 10000. :

Finally, we consider two-sided confidence intervals. In table 5 we observe a skewness in the hitting
probabilities, which appears to be significantly larger in case of the approximate normal confidence
intervals for Ng. This skewness decreases with decreasing confidence level a and with increasing Nj.
The size of an approximate normal confidence interval, which is by definition symmetric around N,
increases of course with increasing a, but it is also proportional to N. This explains the extreme skew-
ness of the hitting probabilities of the approximate normal confidence intervals. Wilks confidence
intervals behave better for two reasons: they are bigger and shifted to the right in comparison with
the approximate normal confidence intervals. In table 5 we can see that for high levels of confidence
the Wilks confidence intervals are significantly better and less skew than the approximate normal
ones.
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normal Wilks
a hit% E( Ulwrm) hit% E( UWiIks)
0.50 34 48 35 49
0.55 39 50 38 51
0.60 44 53 44 55
0.65 48 56 49 60
0.70 52 59 55 72
0.75 56 62 61 0
0.80 60 65 68 o0
0.85 64 69 75 )
0.90 69 74 82 o0
0.95 75 82 90 0

Table 4a: Ny =50.

normal Wilks
a | hith | E(Uum) | hit% | E(Upwins)
0.50 46 506 46 507
0.55 51 514 51 514
0.60 56 523 56 523
0.65 60 532 61 534
0.70 65 541 66 545
0.75 69 551 71 558
0.80 73 562 76 575
0.85 78 575 82 596
0.90 33 591 88 627
0.95 88 615 94 685

Table 4b: N,=500.

normal Wilks
a hit% E( Unarm ) hit% E( UWiIks )

050 | 49 5008 49 5009
0.55 54 5032 54 5032
0.60 59 5056 59 5057
0.65 64 5082 64 5084
0.70 | 69 5109 69 5112
0.75 74 5138 75 5144
080 | 79 5170 80 5180
0.85 84 5208 85 5222
0.90 88 5255 90 5278
0.95 93 5326 95 5364

Table 4¢: Ny=5000.

Table 4: Hitting percentages and mean upper-bounds of one-sided confidence intervals.
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normal Wilks
a mu% | hit% | mo% | E(LBuym) | E(UByoy) | mu% | hit% | mo% | E(LBixs) E(UBwins)
0.50 44 56 0 34 62 39 52 9 39 0
0.55 42 58 0 32 64 36 57 7 39 0
0.60 40 60 0 30 65 32 62 6 38 00
0.65 38 62 0 29 67 29 67 4 37 00
0.70 36 64 0 26 69 25 72 3 37 0
0.75 34 66 0 24 72 22 76 2 36 0
0.80 31 69 0 21 74 18 81 1 36 0
0.85 28 72 0 18 78 14 85 1 35 00
0.90 25 75 0 14 82 10 90 0 34 0
0.95 22 78 0 7 88 6 94 0 33 0
Table 5a: Ny =50.
normal Wilks
o mu% hit% mo% E(LBnorm) E( UB,,O,.,,,) mu% hit% mo% E(LB Wilks) E( UB Wilks)
0.50 31 51 18 461 551 28 51 21 466 588
0.55 29 56 15 456 556 26 55 19 462 566
0.60 27 61 12 450 562 23 60 17 458 575
0.65 25 66 9 444 568 20 65 15 454 585
0.70 22 72 6 437 575 18 70 12 449 596
0.75 20 71 3 430 582 15 75 10 445 610
0.80 17 82 1 421 591 12 80 8 439 627
0.85 14 86 0 410 602 9 85 6 433 650
0.90 12 88 0 397 615 6 90 4 426 685
0.95 9 91 0 376 636 3 95 2 415 780
Table 5b: Ny =500.
normal Wilks
a mu% hit% mo% E(LB norm) E( UBnorm) mu% hit% mo% E(LB Wi[ks) E( UB Wilks)
0.50 26 51 23 4877 5138 26 50 24 4883 5143
0.55 24 44 21 4862 5154 23 55 22 4869 5160
0.60 21 61 18 4845 5170 20 60 20 4854 5179
0.65 19 66 15 4827 5188 18 65 17 4837 5199
0.70 16 71 13 4807 5208 15 71 14 4820 5221
0.75 14 76 10 4785 5230 12 76 12 4801 5247
0.80 12 81 7 4760 5255 10 80 10 4779 5247
0.85 9 86 5 4729 5286 8 85 7 4753 5314
0.90 7 90 3 4690 5326 5 90 5 4721 5363
0.95 4 95 1 4629 5386 3 95 2 4672 5441
Table 5c:

Table 5: Hitting/miss-percentages and mean lower/upper-bounds of two-sided confidence intervals.
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5. Concluding remarks

In this paper we have only made a beginning with the study of the behaviour of the ML-estimators
(in practice), computed from simulated data. As stated before, it was not our intention to prove or
disprove the validity of the Jelinski-Moranda model for real data sets. We wanted to get some more
insight in the asymptotic behaviour of the ML-estimators, assuming the model is correct. The simula-
tion results discussed in the previous section, confirm the consistency and asymptotic normality of the
maximum likelihood estimators (as derived in Van Pul (1990)), but also show that asymptotic conver-
gence in distribution is appearing very slowly and that for small values of N, the distribution of N
can be very skew. On the other hand, asymptotic confidence intervals, constructed with the Wilks
likelihood test statistic, have coverages probabilities close to the corresponding confidence levels, even
at low sample-sizes.

For Ny=50 we have further modified the estimated coverage probabilities for two-sided Wilks
confidence intervals by taking into account also data-points (n(7),c(n)) where Moek’s criterion is not
satisfied. This corresponds with N =oco (see figure 2). Note that the Jelinski-Moranda model has as a
special case the Poisson model (with constant failure intensity Ag); this is the limit-case letting Nq— o0
and ¢y—0 such that Ag: =¢yN is a constant. We can easily derive and maximize the (log) likelihood
function for this special case. Using (3.20) we have constructed confidence intervals of the form
(lower-bound, infinity) and considered them as two-sided confidence intervals for N,. In table 6 we
give the original values P, (see table 5a), correction terms P4, and the corrected values P, for
the estimation of the coverage probabilities. We computed P,,,,, from

K K
Prow="—""Poa+(1—=)Pssiites 5.1
new KO old ( KO ) infinite ( )
where K =9027 and K, =10000 are respectively the number of finite estimators (see table 1) and the
sample-size. The figures of table 6 show that the new hitting percentages are a little bit worse than
the old ones; the miss-rates mu% and mo%, however, are more symmetrically distributed. Probably

the old values P, (totally ignoring infinite estimators V) were (a bit) too optimistic.

P old P infinite P new
« mu% | hit% | mo% || mu% | hit% | mo% || mu% | hit% | mo%

0.50 39 52
0.55 36 57
0.60 32 62
0.65 29 67

15 85 35 49 16
17 83 32 54 14
21 79 29 58 13
27 73 26 63 11

SO = = NWHArANIVO
SO OO OO OO OO

0.70 25 72 33 67 23 68 9
0.75 22 76 42 59 20 73 7
0.80 18 81 49 51 16 78 6
0.85 14 85 61 39 13 83 4
0.90 10 90 72 28 9 88 3
0.95 6 94 89 11 5 94 1

Table 6: Corrected hitting and miss percentages of two-sided confidence intervals for No=50.

We plan to investigate various ways of improving the asymptotic approximation. In Van Pul
(1991) we studied the asymptotic behaviour of parametric bootstrap methods. We have proved that the
parametric bootstrap (in the context of counting processes) works, that is, is asymptotically consistent.
- Computer simulations showed that with a studentized version of the parametric bootstrap we can con-
struct one-sided confidence intervals with hitting percentages even better than those constructed with
Wilks LRT statistic. For two-sided confidenced intervals, constructed with a studentized version of
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the parametric bootstrap, we obtained less satisfying figures. We are trying to improve this. With use
of Edgeworth expansions we can probably determine the second order term of the limit distribution of
N. .

Another direction for further research seems to be the investigation of certain functions of the model
parameters. Using the delta-method (Gill (1989)) we can derive immediately asymptotic results (con-
vergence to normal distribution) for decent functions of the parameters N and ¢. Entities like 1/N
and A: =¢(N —n) behave already for small values of N remarkably well: they have smaller variances,

are less skewed in comparison with N and converge faster to normality (see table 7 and figures 6 and
7).

Ny | VarN | VarA

50 225 183
500 4804 2028
5000 | 37066 | 20395

Table 7: Comparison of the variances of N and A: = (N —n).

Of course, we can use asymptotic results of for instance 1/N to construct alternative confidence inter-
vals for N. It is, however, perhaps even more interesting to study and estimate quantities like A that
have a clear interpretation, also when the assumed underlying model is not true.
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