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In this paper we will show that in a general framework of counting processes, the parametric bootstrap is
asymptotically consistent. Furthermore we will consider some applications in the context of software reliabil-
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1. Introduction

A lot of important software reliability models can be formulated in terms of counting processes,
counting the number of failure occurrences. In an earlier paper (Van Pul (1990)) we studied some
asymptotic properties of the maximum likelihood estimation method for parametric counting process
models. For a general class of intensity functions, it was proved that the maximum likelihood estima-
tors for the model parameters are asymptotically normally distributed. A novel aspect of our
approach is the fact that—in order to treat asymptotic theory—instead of increasing the time variable
or the number of data as is usually the case, we will (conceptually) increase one of the model parame-
ters itself. To illustrate the problem and to motivate our concepts, we will present here one of the
oldest and most elementary software reliability models, namely that of Jelinski-Moranda (1972), as an
example.

Example 1: the Jelinski-Moranda model. A computer program has been executed during a specified
exposure period and the interfailure times are observed. The repairing of a fault takes place immedi-
ately after it produces a failure and no new faults are introduced with probability one.

Let N the unknown number of faults initially present in the software. Let the exposure period be
[0,7] and let n(z), 1 €[0,7], denote the number of faults detected up to time ¢. Define T, := 0 and let
T;, i =1,2,...,n(7), the failure time of the i-th occurring failure, while #; := T,—T;_,, i=1,2,..,n(7),
denotes the interfailure time, that is the time between the i-th and the (i —1)-th occurring failure.
Finally we define t,(1)4 := 7—T),(s).

In the Jelinski-Moranda model, introduced in 1972 and a few years later generalized by Musa
(1975), the failure rate of the program is at any time proportional to the number of remaining faults
and each fault still present makes the same contribution to the failure rate. So if (/ —1) faults have
already been detected, the failure rate for the i-th occurring failure, A;, becomes:

A = [No - (i—l)], (1.1)

where ¢y is the true failure rate per fault (the occurrence rate) and N, is the true number of faults ini-
tially present in the software. In terms of counting processes we can write:
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AM@) = ¢ [No = h(t—)], t€[0,7), (12)

where A(¢), 1 €[0,7] denotes the failure rate at time z. The interfailure times #,i =1,..,n(7), are
independent and exponentially distributed with parameter A; given by (1.1).

By using the information obtained from the test experiment one can estimate the the parameters of
the underlying model. Mostly maximum likelihood estimation is used for this purpose. Now let us
look at the way we will treat asymptotic behaviour. It does not make sense to let 7, the stopping time,
grow to infinity. In the long run the estimate of the total number of faults will trivially be equal to the
true number of faults. It makes more sense to (conceptually) increase the number of faults in the pro-
gram. The idea is that then asymptotics should be relevant to the practical situation in which Ny is
large and n(7)/ N not close to zero or one. (End of example 1)

In an other paper (Van Pul (1991)) we studied—in the context of software reliability models—how
fast the asymptotic behaviour of the maximum likelihood estimators appeared in practice. It turned
out that convergence is rather slow and that empirical distributions of the MLE’s for small N, tend
to be very skew. This leads of course to systematic errors in the coverage percentages of confidence
intervals based on the classical normal test statistic. In Van Pul (1990, 1991) also confidence intervals
are constructed, based on another test statistic, namely the Wilks Likelihood Ratio Test (WLRT)
statistic, which can be proved to be asymptotically x>-distributed (see Rao (1973)). The coverage per-
centages of confidence intervals based on the WLRT statistic were much better. Upperbounds based
on the WLRT statistic for small N (that is, when the asymptotic normal behaviour has not occurred
yet) are often infinite and therefore in some sense less informative. On the other hand, the fact that
the data can not exclude the possibility of constant (or even increasing) failure intensity, could be
important to know in practical situations. Another idea is to apply a parametric bootstrap method on
a standardized and studentized version of the approximate normal test statistic or to estimate the
second order term in the Edgeworth expansion of the distribution of the MLE’s (Hall (1988)).

In the next section of this paper we will introduce the general framework of counting processes and
intensities as described in Van Pul (1990) and discuss how parametric bootstrap methods could be
applied. In section 3 we will show that in this general setting the parametric bootstrap ‘works’, that
is, is asymptotically consistent. The proof which makes use of the Skohorod-Dudley-Wichura
almost-sure-representation theorem (see for instance Pollard (1989)), will be based on stronger ver-
sions of the concepts of LAN and regularity. In the fourth and last section of this paper we will give
some applications of the developed theory in the context of software reliability. The bootstrap method
is applied on simulated data according to the model of Jelinski-Moranda, as described above.

2. The general framework

Let a counting process n(t) be given. Only during a specific time interval [0,7], are jumps of the
counting process n(t) observed. In this paper we will assume that the intensity function associated
with the counting process exists and is a member of some specified parametric family, that is:

M) := AN, t€[07), NEN, ye¥, YCR ! .10

for an integer p. Let N and ¢ be the true parameter values. Typically the parameter N represents
the scale or size of the problem (sometimes No=n(c0)), while y; is a nuisance vector parameter. We
will be interested in estimation of Ny and ¢ as Ng—co. We assume that the model is also meaning-
ful for non-integer N. For instance the intensity function (1.2) of the Jelinski-Moranda model can be
generalized to

MMy = ¢[N - n(t—)] Hn@) < N}, 1€[0,1], 2.2)

where I{.! denotes the indicator function. As we are particularly interested in the parameter



estimation when N is large, we will introduce a series of counting processes n,(t), t €[0,7],»=1,2,...
and let N conceptually increase. Let N = N, — oo for » - oo0. By the reparametrization

N, =, 23)
with a dummy variable y,, we can denote the associated intensity functions by
My 1= Mesevy), tE[01], YERT, YEY, v=12,.. 24

Now we consider the estimation of y and ¢ as v—oo. If the real-life situation has »=N,, then
Y=v0=1 and Yy=q. It is rather unorthodox to increase a model parameter itself, in this case N. This
complication is solved by estimating y. We will assume that the maximum likelihood estimators
(Y,»¥,) for (vo,¥0) exist. Typically, (,»¥,) is a root of the likelihood equations

9 oy — _
m")- logL,(v,§;7) = 0, »=12,.., 2.5)

where the likelihood function at time ¢ L,(y,y;?) is given by (see Aalen (1978)):
t t
L,(v51) := exp | [log A(s3v,¥) dny(s)— [A(s;v.¥) ds|. (2.6)
0 0

We define for »=1,2,... the stochastic process x, () by:
x,() := v~ 'n,@t), t€[0,7]. Q2.7

In most practical situations, this sequence of stochastic processes converges uniformly on [0,7] in pro-
bability to a deterministic function x¢(z) as r—oo (Kurtz (1983)). We assume that the counting
processes n, are generated by associated intensity functions A,(¢), satisfying:

A@) = vB@E;6:x,( ), 28

for an arbitrary non-negative and non-anticipating function B:[0,7]X©XK — R* where the model-
parameter 6=(y,y) consists of the parameter of most interest y and a nuisance parameter vector y.
Under classical smoothness and boundedness conditions on the function S (see for instance Borgan
(1984) or Van Pul (1990)), we have the following result:

Theorem 1:
(i)  Consistency of ML-estimators: With a probability tending to 1, the likelihood equations (2.5) have
exactly one consistent solution 6,. Moreover this solution provides a local maximum of (2.6).

(i) Asymptotic normality of the ML-estimators: Let 0 be the consistent solution of the maximum llkelt-
hood equations (2.5), then

Vv(6,—8,) — MOZ"Y), oo, (2.9)
where the matrix 2={0;;(6)} wzthfor i,j €{12,..p}, 0€0O: is given by

80 ,B(S,0X0) ,B(S,0 XO)

o;;(0 ds. 2.10

L 10

(i) Local asymptotic normality of the model: There exist a sequence U,,v=1,2,... such that for all
hER?:

1 k. nT Lps 5 2.11

og aP, - u, + Eh h — 0, v—>o0, (2.11)

_1 D
where 8,=0y+v *hand U, — M0,Z), = given by (2.10).
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(iv) Asymptotic efficiency of the ML-estimators: 8, is asymptotically efficient in the sense that the limit
distribution for any other regular estimator 8, for 6, satisfies:
~ D(6,)
Ve@,—8) - Z + Y, 2.12)

where Z ~4 MO,27 "), Z and Y independent. (For a definition of the regularity of an estimator we
refer to Van der Vaart (1988).)

This theorem and its proof can be found more thoroughly in Van Pul (1990).

Simulations of the Jelinski-Moranda model showed (see Van Pul (1990,1991) that asymptotic conver-
gence to the normal distribution is appearing very slowly and that for values of » not extremely big
the empirical distribution functions of the components of 6, can be significantly skew. Hence,
confidence intervals based on approximate normal test statistics turned out to be disappointing. One
solution, which is already suggested in Van Pul (1990), is to make use of the Wilks Likelihood Ratio
Test Statistic, which can be proved to be asymptotically x* distributed. Another way to deal with
deviations from normality is to make use of bootstrap methods. Suppose we want to construct
confidence intervals for a one-dimensional real parameter 6. The concept of parametric bootstrapping
in the context of software reliability consists of simulating a so called bootstrap counting process
according to the failure intensity A(z,), where 6 is the maximum likelihgod estimator for 6. Repeat-
ing this simulation experiment, say M times, we get bootstrap estimators §;,i =1,...,M. Defining

G, := Law, [\/u_ (?9”—00)] 2.13)
and

G: := Law [\/17 @, —?9,)], 2.14)
we will say that the parametric bootstrap ‘works’ (or is asymptotically consistent) if and only if

sup | G,(x) — G,(x) | 2 0. (2.15)

See also Bickel & Freedman (1981) and Singh (1981). This result will be derived in the next section.
Note that, as G, converges to a continuous distribution function, a consequence of (2.15) is that
confidence intervals for 8 based on G, will have asymptotically the right coverage probabilities, i.e.:

p [?9, 12z (1 —a/2) < Gy < 6, — v-”?—z,(a/z)] s l—a v > ®, (216
where Z () := G, ~'(a). In practice one often uses studentized versions of (2.13) and (2.14),

V(6,6

GST = Lawy, (2.17)
ol'
and
Vo(@, -
G = Lawp v(h,,* r) , (2.18)

g,

expecting the second order terms of the Edgeworth expansions to be the same too (see for instance
Helmers (1991)). In this paper we will determine o, and o, simply by substituting respectively 6, and
6, for 6y in the expected information matrix Z, given by (2.10).



An alternative way to estimate o consistently, is to make use of the observed information matrix
82
IO, := WL,,(H,’T). (2.19)

3. Asymptotic consistency of the parametric bootstrap

Supposing we are in the software reliability situation, sketched in section 2, we can prove (2.15). The
following two lemma’s will be very useful:

Lemma 1: Under the conditions of theorem I, we have SLAN (strong local asymptotic normality), that is:
there exist a sequence U,,v=1,2,... such that for all h ERF:

dPy, 1 Fa
log 2Py, - nTu, + —z—hTEh - 0, vr—>o0, (3.1
where U, —; #M0,Z), 2 given by (2.6), but now with
0,=0,+v " h+o(@ 2. (3.2)

Lemma 2: Under the conditions of theorem 1, asymptotic normality and SLAN imply S-regularity (strong
regularity), that is:
D(9,)

Vo, - 8] > NO=Y (3.3)
for all sequences 8, of the form (3.2).

The proofs of lemma’s 1 and 2 are slight modifications of the proofs of Theorem 1 (iii)&(iv), given in
Van Pul (1990), and are therefore omitted here. We are now able to formulate the main result of this

paper:

Theorem 2: The parametric bootstrap is asymptotically consistent.
Proof of theorem 2: The asymptotic normality of the MLE yields:

lim sup | G,(x) — G(x) | =0, (3.4)

y—00 X

where G(x) := N(0,=7!). So to prove (2.15) it is sufficient to show that for all e>0:

fim P[ sup | Gy(0) = G(x) | > ] _ (3.5)

V—>00

Defining Z, : = \/;(@,,——00) the asymptotic normality assures that:
D
zZ, - Z (3.6)

where Lawy (Z) = G = N (9,2"’). The almost-sure-representation theorem (see for instance Pol-
lard [4]) states that there exist Z, =; Z,and a Z =, Z such that:

~ as.

zZ, - Z 3.7
As (for fixed ») 6, and V are constants, Z, is only a function of g’,,. So, we can write
Z, = Vr@,—6) - Z (3.8)

for some 6, ER?, that is



8, := 6, + y V27 4+ o 1?), as. 3.9)
Now the S-regularity of @,, gives under P(b,):

v [9, - 79,] 2 6 as (3.10)
or in other words

G, := Law [\/17(?):—79,)] Z e G.11)
But this is to say

sup | &) — Gx) | = 0, (3.12)
which implies

sup | G,(x) — G(x) | o (3.13)

xX€

Because E},, is a function of l;,, (or equivalently 2,,) only, and because 2,, =, Z,, we have
G, =, G, and can conclude from (3.13) that

Py
sup | Go(x) — G(x) | = O (3.14)
So we have derived (3.5) and theorem 2 is proved completely. O

Remark 1: The result of theorem 2 also holds for studentized versions of the parametric bootstrap.

4. Some applications

Recently we made the beginning with the study of the behaviour of the ML-estimators in practice,
computed from data simulated according to the Jelinski-Moranda model. We compared the estimated
coverage probabilities of confidence intervals for N based on the approximate normal and on the
Wilks likelihood ratio test statistic. From the simulation results, presented by Van Pul (1991), we can
draw several conclusions. Firstly, they confirm the asymptotic theory as derived in Van Pul (1990) for
large Ny (~5000). For medium large No (~500) the simulation results show that the asymptotic
theory does not occur yet, but also shows that the Wilks likelihood ratio test statistic provides
confidence intervals which are much better. Finally, for small Ny (~50) we found that confidence
intervals based on the WLRT statistic still have reasonable estimated coverage probabilities; the
upperbounds of those confidence intervals can be extremely large and sometimes even be infinite,
however. There is a clear interpretation of the model and its likelihood when N =oco; we are then
namely in the special case of a Poisson process with constant intensity.

In this section we will therefore concentrate on the case that N is small (say 50) and compare esti-
mators obtained from parametric bootstrapping methods with the estimators (based on the approxi-
mate normal and on the WLRT test statistic) constructed earlier. For a full description of the simula-
tion experiments according to the Jelinski-Moranda model and for remarks on the construction of
confidence intervals based on the approximate normal and WLRT statistic, we refer to Van Pul
(1991). To construct bootstrapped confidence intervals we used a set consisting of 1000 ML-
estimator-pairs (N;,¢;), i =1...1000, simulated according to the Jelinski-Moranda model with Ny=50
and ¢p=1. For each estimator-pair (N;,¢;) we now constructed 1000 bootstrapped estimator-pairs
(Nij,¢), j=1...1000 and used formulas analogous to (2.16) to construct one- and two-sided
confidence intervals for N.
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In table 1 we compared the estimated coverage probabilities of upperbounds (for various levels of
confidence &) constructed with use of the approximate normal test statistic (AN), the Wilks likelihood
ratio test statistic (WLR), (non-studentized) bootstrapping (B) and studentized bootstrapping (SB).
An asterisk (*) denotes that upperbounds were sometimes infinite.

Analogously in table 2 hitting and miss percentages of two-sided confidence intervals are given. In
each entry (x;:x,:x3) in table 2, x; corresponds with the miss-under percentage (that is the percen-
tage of the confidence intervals with upperbound smaller than Nj), x, denotes the hitting percentage
and x; represents the miss-over percentage. Again an asterisk (*) denotes that upperbounds were
sometimes infinite.

I—a | 050 | 0.55 | 0.60 | 0.65 | 0.70 | 0.75 0.80 0.85 0.90 0.95

AN | 035 ] 039 | 044 | 047 | 051 | 0.55 0.59 0.63 0.69 0.75
\ 037 | 0.39 | 044 | 049 | 0.55 | 0.62* | 0.68* | 0.75* | 0.81* | 0.89*
B 0.44 | 046 | 048 | 0.51 | 0.53 | 0.57 0.58 0.63 0.67 0.71

SB 0.47 | 0.51 | 0.55 | 0.62 | 0.66 | 0.72 0.76 0.80 0.86 0.90

Table 1: Hitting percentages of one-sided confidence intervals.

l—a 0.50 0.55 0.60 0.65 0.70

AN | 0.45:0.55:0.00 0.43:0.57:0.00 0.41:0.59:0.00 0.38:0.62:0.00 0.37:0.63:0.00
A\ 0.39:0.52:0.09* | 0.35:0.58:0.07* | 0.32:0.63:0.05* | 0.28:0.68:0.04* | 0.25:0.72:0.03*
B 0.43:0.31:0.26 0.42:0.34:0.24 0.41:0.37:0.22 0.40:0.40:0.20 0.38:0.45:0.17
SB 0.28:0.45:0.27 0.27:0.47:0.26 0:25:0.52:0.23 0.22:0.56:0.22 0.21:0.58:0.21

l—a 0.75 0.80 0.85 0.90 0.95

AN | 0.34:0.66:0.00 0.31:0.69:0.00 0.28:0.72:0.00 0.25:0.75:0.00 0.22:0.78:0.00
w 0.22:0.76:0.02* | 0.19:0.80:0.01* | 0.14:0.85:0.01* | 0.11:0.89:0.00* | 0.07:0.93:0.00*
B 0.36:0.49:0.15 0.34:0.53:0.13 0.33:0.56:0.11 0.30:0.61:0.09 0.26:0.68:0.06
SB 0.18:0.62:0.20 0.16:0.66:0.18 0.12:0.71:0.17 0.10:0.75:0.15 0.07:0.81:0.12

Table 2: Hitting and miss percentages of two-sided confidence intervals.

From table 1 and table 2 we may conclude the following:

1 Non-studentized bootstrap results are poor.

2 Studentizing has proved to be very fruitful.

3 Hitting percentages of one-sided confidence intervals based on a studentized bootstrap method, are
comparable to those based on the WLRT statistic (and much better than those based on the
approximate normal test statistic).

4 Hitting percentages of two-sided confidence intervals based on a studentized bootstrap method, are
comparable to those based on the approximate normal test statistic (and significantly worse than
those based on the WLRT statistic).

5 (Studentized) bootstrap upperbounds are, in contrary to the WLRT ones, always finite.
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6 (Studentized) bootstrap results have the advantage (in comparison with the approximate normal
and WLRT results) that the miss percentages are more symmetric distributed.

Except perhaps for 4, all observations confirm the developed theory. It is not clearly understood,
however, why the studentized bootstrap results for two-sided confidence intervals are less promising
than expected.
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