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Abstract

By M(z) one usually denotes the function which counts the difference between

the number of squarefree positive integers < z with an even and those with an odd
number of prime factors. It is known that the boundedness of M (z)/+/z would imply
the truth of the Riemann hypothesis. Stieltjes was one of the very first who studied
M(z) and tried to prove the boundedness of M(z)//z.
This paper sketches the historical developments since Stieltjes which now point in
the direction of the unboundedness of this function. The best results proved so far
are that there exists an z for which M(z)/y/z > 1.06 and another z for which
M(z)/\/z < —1.009.
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1. Introduction

The Moébius function p(n) is defined as follows:

1, n=1,
p(n) == 0, if n is divisible by the square of a prime number,
(—1)*%, if n is the product of k distinct primes.

Taking the sum of the values of y(n) for all n < z, we obtain the function

M(z)= » p(n),

1<n<z

which is the difference between the number of squarefree positive integers
n < z with an even number of prime factors and those with an odd number
of prime factors.

In the ”Comptes Rendues de I’Académie des Sciences de Paris” of 13 July
1885, Stieltjes published a two-page note (Paper # XLIV) under the rather
vague title: ”Sur une fonction uniforme”. In this note he announced a proof
of the (now famous) Riemann hypothesis as follows: "I have succeeded to put
this proposition beyond doubt by a rigorous proof’. The only explanation
Stieltjes gave for this remarkable assertion was that he was able to prove that
the series

1 1 1 1 1 o u(n)
- —— - =+t -

”converges and defines an analytic function as long as the real part of z exceeds

3” (here, {(z) is the well-known Riemann zeta function). This indeed would

imply that all the complex zeros of {(z) have real part %

Stieltjes never published his ”proof”. In Section 2 we will quote from his
correspondence with his friend Hermite and with Mittag-Leffler [BB]. From
this we learn that Stieltjes believed that he could prove that the function
M(z)/+/z always stays within two fixed limits (possibly +1 and —1). This
was probably based on a table of values of M(n), for 1 < n < 1200, 2000 <
n < 2100, and 6000 < n < 6100, which was found in the inheritance of
Stieltjes. The Riemann hypothesis can be derived from the boundedness of
M(z)/+/z as follows. For 0 = Rz > 1, we have (by partial summation)
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since M(z) is constant on each interval [n,n + 1). The boundedness of
M(z)/+/x would imply that the last integral in the above formula defines
a function analytic in o > %, and this would give an analytic continuation of
1/¢(2) from ¢ > 1 to ¢ > 1. In particular, this would imply that ¢{(z) has no
zeros in o > %, which is, by the functional equation for {(z), equivalent to the
Riemann hypothesis. In addition, it is not difficult to derive from the above
formula that all the complex zeros of {(z) are simple (see, e.g., [OR, p. 141]).

After Stieltjes, many other researchers have computed tables of M(z),
in order to collect more numerical data about the behaviour of M(z)/+/z.
In Section § we will briefly survey these computations. The first one after
Stieltjes was Mertens [Mer] who, in 1897, published a paper with a 50-page
table of u(n) and M(n) for n = 1,2,---,10000. Based on his table, Mertens
concluded that the inequality

|M(z)| < V=, z>1,

is ”very probable”. This is now known as the Mertens conjecture. Some his-
torical notes about Mertens and his conjecture may be found in [Ri2].

In 1942, Ingham [Ing] published a paper which raised the first serious
doubts about the validity of the Mertens conjecture. Ingham’s paper showed
that it is possible to prove the existence of certain large values of |M(z)|//z
without the need to explicitly compute M(z). This stimulated a series of
subsequent papers until, in 1985, Odlyzko and Te Riele [OR] published a
disproof of the Mertens conjecture. This disproof is indirect, and does not
produce any single value of z for which |M(z)|/4/= > 1. In 1987, Pintz [Pin]
was able to show, on the basis of certain computations carried out by Te Riele,
that

- 64
12:8'5){)( |M(z)|/v/z > 1 for X = exp(3.21 x 10°%).

These developments will be sketched briefly in Section 4. There it will be-
come clear that since 1942 the evidence for the unboundedness of the function
M(z)/+/= has increased considerably, as opposed to what was believed about
100 years ago by skilled researchers like Stieltjes and Mertens.

The function M(z) is known to change sign infinitely often. Various rigor-
ous results about sign changes of M(z) can be found in [Pi3] and the references
given there. Dress [Dre| has written an interesting historical survey on oscil-
lating properties of M(z).
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2. Some correspondence between Stieltjes and Hermite,
and between Stieltjes and Mittag-Leffler, on the
boundedness of M (z)/+/z

In this section we shall quote some correspondence between Stieltjes and Her-
mite, and between Stieltjes and Mittag-Lefller, in order to clarify Stieltjes’
role in the history of the function M(z)//=.

Two days before the appearance of Stieltjes’ announcement in the ” Comp-
tes Rendues”, Stieltjes wrote a letter to Hermite (Lettre # 79 in [BB]) in which
he claimed to have a proof of the boundedness of the function M(z)//z. After
some preliminary remarks, Stieltjes writes’ (we translate into English):

Indeed, if, instead of 1: {(s) = [[(1 — p™*), I consider

1 1 1 1 = f(n
1:{(3):1—5;—3—’_.5;_{_6.;...—_—2&)_
1

there is this main difference, between the infinite product and the series, that
the latter converges for s > %, while, in the product, one must assume that
s > 1. Look how I demonstrate it: The function f(n) is equal to zero when n
is divisible by a square and for other values of n, it is equal to (—1)*, k being
the number of prime factors of n. Now, I find that in the sum

9(n) = F(1) + f(2) +--- + f(n),

the terms £1 compensate sufficiently well, so that g(n)/\/n always stays within
two fized limits, no matter how large n is (probably one can take +1 and —1
for these limits).

After deriving from the last statement that } f(n)n~* converges for s > 2
Stieltjes remarks:

You see that everything depends on an arithmetical study of that sum (1) +

f(2)+ -+ f(n). My proof is very painful; I will try, as soon as I will resume
these studies, to stmplify it.

Two days later, Hermite presented Stieltjes’ note, mentioned in the introduc-
tion, to the French Academy of Sciences. No doubt, it must have fascinated
many mathematicians. Mittag-Lefller immediately asked for details. This ap-
pears from four letters of Stieltjes to Mittag-Leffler given in an Appendix to
[BB]. In the fourth letter, dated April 15, 1887 [BB, pp. 449-452], Stieltjes
still claims the boundedness of M(z)//z:

Denoting by?

! Stieltjes writes f(n) for the Mdbius function p(n), and g(n) for M(n).
? Here, Stieltjes writes A(n) for p(n). 5
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Z A(n)n™*

the series which is obtained by ezpanding the infinite product
1:((s) = H(l -7°),

the convergence of the series for s > % 18 a consequence of the following lemma.
The expression {A(1)4+A(2)+---+A(n)}/+/n alway stays between two fized
limits. (See the theory of the series of this kind in the "Théorie des nombres”
of Lejeune-Dirichlet, Dedekind.)
But the proof of this lemma is purely arithmetical and very difficult and I
only can obtain it as a result of a whole series of preliminary propositions. I
hope that this proof can still be simplified, but in 1885 I already have done my
utmost both by looking at the problem tn some other way and by replacing this
lemma by another one which, however, is of the same nature.

3. Explicit computation of the function M ()

In this section we give a concise survey of explicit computations of M(z) car-
ried out after Stieltjes. These computations were motivated by the wish to
collect more numerical evidence for the possible boundedness - or unbound-
edness - of the function M(z)//z. Here, one should distinguish between the
systematic computation of M(n) (and of u(n)) for all » in a given interval
[1, N], and the computation of selected, isolated values of M(n). At first sight,
it seems necessary to know all the values of u(m), 1 < m < n, for the com-
putation of M(n). However, below we will encounter formulas where M(n) is
expressed in terms of M(j) with j < n/k, for some fixed k > 2 (these for-
mulas become more complicated as k increases). In this way it is possible to
compute M (n) for large isolated values of n, in order to get an impression of
the behaviour of M(z)/4/z in ranges where it is infeasible to compute all the
values of M(n).

As already mentioned in the introduction, Mertens was the first [Mer] to
publish a table of u(n) and M(n) (forn =1,2,---,10000). He does not explain
how he computed this table. From the well-known formula

S [5|uo = (5) = @)

(where by |z| we mean the greatest integer < z) he derives the following
relation, which expresses M(n) in terms of M(n/2), M(n/3), ---, M(n/k),
M(k) and p(1), ---, p(k), where k = |\/n]:

32w+ 30 (2) - ey = 1. .

1=



6 History of M(z)/\/z

This served as a check, as Mertens writes on p. 763 of [Mer], during the
computation of his table. Moreover, Mertens derives a second relation, viz.,

k
M(n) =2M(k) — Y | =] ulr)u(s), k= [VR), (3.3)

r,8=1

which expresses M(n) in terms of M (k) and u(1),---,u(k). This allows to
compute M(n) without knowing the decomposition of the numbers k + 1 up
to m in their prime factors” [Mer, p. 764].

In the year that Mertens published his table, Von Sterneck started a series
of four papers presenting tables of M(n), for n = 1,2,-.-,150000 [St1], for
n = 150000(50)500000 [St2] and for 16 selected values of n between 5 x 10°
and 5 x 10° [St3, St4]. The latter values were computed by means of a refined
version of Mertens’ formula (3.2), viz.,

iwj (?)IL(%)+ZM(§)—w](k)M(k).—_O, k‘—“l_\/"_?'Ji j=0,1,"'7
=1 <k
B (3.4)

where w;(m) denotes the number of positive iniegers < m which are not
divisible by any of the first j primes and where ¢’ runs through all such positive
integers < k. For j = 0, (3.4) reduces to (3.2). Von Sterneck applied (3.4) for
j =1,2,3 and 4. For j = 4, e.g., i’ runs through the integers 1,11,13,17,--- so
that it is possible to compute M(n) from a table of M - values up to [n/11].
From his results, Von Sterneck draws the conclusion [St4] that the inequality
|M(n)| < +/n, for n > 200, "represents an unproved, but extremely probable
number-theoretic law”.

Fifty years after Von Sterneck, Neubauer [Neu] published an empirical
study in which all the values of M(n), 1 < n < 10, were computed. Neubauer
computed p(m) for a series of 1000 values of m: 1000n < m < 1000(n + 1), for
n =0,1,---,10° — 1, by means of a sieving process which strongly resembles
the well-known sieve of Eratosthenes for finding all the primes below a given
limit. This is considerably cheaper than computing p(m), p(m + 1), --- by
factoring m, m + 1, - -.. Neubauer checked the computations of Von Sterneck
in [St2, St3] and he found several errors in [St2] and errors in 9 of the 16
sample values of M(n) which Von Sterneck had published in [St3]. Neubauer
also computed many sample values of M(n) for several n between 10% and
10'%, by means of (3.4), j = 4. As a result, he found four values of n for
which M(n) > 3+/n (but none for which M(n) < —1,/n), the smallest being
no = 7,760,000,000 with M(no) = 47465 and M(ng)//me = 0.5388.... The
largest M(n)/y/n - value he found was 0.5572..., for n = 7,770,000, 000.

Yorinaga [Yor]| computed all the values of M(n) for n < 4 x 108, by
factoring all n < 4 x 108.

The most extensive systematic computations have been carried out by
Cohen and Dress [Coh]. Their purpose was to find the smallest n > 200 for
which M(n)/+/n > 3, knowing from Neubauer’s computations that this n is
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smaller than 7.76 x 10°. Without taking the trouble to mention their method,
they state that they have carried out their computations in one week on a
TI 980B mini-computer. They computed all the values of M(n) for » up to
7.8 x 10° and saved a table of M(n) for n = 107(107)7.8 x 10°. The smallest
n > 200 for which M(n)/y/n >  turned out to be no = 7,725,038,629 with
M(no) = 43947.

J. Schroder ([Scl], [Sc2], [Sc3]) has derived several rather complicated
formulas for computing M(z). As far as we know these formulas have never
been used for the computation of extensive tables of M(z).

Liouville’s function A(n) is defined by the equation A(n) = (—1)" where r
is the number of prime factors of n, multiple factors counted according to their
multiplicity. Lehman [Leh] has published a method to compute the function

L(z) = > A(n)

n<lz

at isolated values of z in O(z2/3+¢) bit operations. According to Lehman, a
similar method (with the same amount of work) can be derived from (3.1)
for the computation of M(z). As far as we know, this method has never
been implemented. An analytic method of Lagarias and Odlyzko [LO] for
computing m(z) (i.e., the number of primes < z) can be adapted to obtain
a method for computing M(z) that requires on the order of O(z/2t€) bit
operations. However, this method is not likely to become practical in the near
future [Opc].

4. Evidence for the unboundedness of M (x)/\/=

In Section 2 of [OR] an extensive historical survey is given of the work on the
Mertens conjecture. Various reasons are discussed why this, and the weaker
conjecture

|M(z)| < Cy/z for any given C > 0, z > zo(C), (4.1)

are believed to be false. Here, we shall mainly discuss the developments which
have led to the disproof of the Mertens conjecture, and to the belief that the
function M(z)/+/z is unbounded.

We write ¢ = e¥, —0c0 < y < 00, and we define
m(y) := M(z)z"1/? = M(e¥)e™¥/?,

and
m :=limsupm(y), m :=liminfm(y).
y—oo

y—oo

Then we have the following ([Ing], [JP], [Jur], [OR])

Theorem 1. Suppose that K(y) € C*(—oc0,0), K(y) > 0, K(—y) = K(y),
K(y) = O0((1+4%)™!) as y — oo, and that the function k(t) defined by
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k) = [ K@ ay,

satisfies k(t) = 0 for |t| > T for some T, and k(0) = 1. If the zeros p = B+ iy
of the zeta function with 0 < 8 < 1 and |y| < T satisfy B = 3 and are simple,
then for any yo,

m < hk(yo) <,

where

ha(y) =Y k(v)%-

From an almost-periodicity argument it follows that any value hx(y) is ap-
proximated arbitrarily closely, infinitely often by M(z)/+/z.

The simplest known function k(t) that satisfies the conditions of Theorem
1 is the Fejer kernel used by Ingham:

_J1-J/T, |t LT,
k() = { 0, |{>T. (4.2)
This yields '
’ ly[\ e
)= ¥ (1-2) -5
S T ) p¢'(p)

(4.3)

_ 7\ cos(vy — ¥4)
22 7)o

where
Py = argp('(p).

It is known that ) |p('(p)| ™" diverges, so that the sum of the cos-coefficients
in (4.3) can be made arbitrarily large by choosing T large enough. If we could
manage to find a value of y such that all of the yy — 1., were close to inte-
ger multiples of 27, then we could make hx(y) arbitrarily large. This would
contradict, by Theorem 1, any conjecture of the form (4.1). If the 4’s were lin-
early independent over the rationals, then by Kronecker’s theorem (see, e.g.,
[HW], Theorem 442) there would indeed exist, for any € > 0, integer values of
y satisfying
vy — ¢y — 2mrm.| < €

for all v € (0,T) and certain integers m,. That would show that hx(y), and
hence M(z)//x, can be made arbitrarily large. A similar argument can be
given to imply that hx(y), and hence M(z)//z, can be made arbitrarily large
on the negative side, assuming again the linear independency of the 4’s over
the rationals.

No good reason is known why among the 4’s there should exist any linear
dependencies over the rationals. Bailey and Ferguson [BF] have shown that if
there exists any linear relation of the form Zle civ7i = O wherec; € Z and v; is
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the imaginary part of the :-th complex zero of the Riemann zeta function, then
the Euclidean norm of the vector (c;) exceeds the value 5.1 x 1024, Bateman et
al. [Bat] have shown that if m(y) is bounded then there exist infinitely many
non-trivial relations of the form Zﬁl ¢iv; = 0, where ¢; = 0, 1, or +2, and
at most one of the ¢; satisfies |c;| = 2. Bateman et al. [Bat] also showed that
there are no such relations for N < 20. Their numerical results did not give
any evidence for the possible existence of such relations for N > 20.

The method which actually led to a disproof of the Mertens conjecture
is based on finding values of y for which hg(y) is large in absolute value.
Spira [Spi] was the first to follow this approach. He started to compute hx(y)
according to (4.3) for T' = 100 for a fine grid of values of y € [0,1000], and
subsequently he computed hi(y) for T' = 200, 500 and 1000 for a selection of
y-values. In this way Spira showed that m > 0.5355 and m < —0.6027.
Jurkat et al. [JP] realized that the size of the sum hg(y) is determined largely
by the first few terms, since, numerically, the numbers (p('(p))~! typically
appear to be of order p~!. Therefore, they looked for values of y such that

cos(my —m1) =1

and
cos(v;y — m;) > 0.9 (say), fori =2,---,N +1,

N being as large as possible. This gives an inhomogeneous Diophantine ap-
proximation problem, for which Jurkat et al. [JP] devised an ingenious al-

gorithm. Moreover, they used a somewhat better kernel than (4.2), viz.,
k(t) = g(t/T) where

g(t) = { 1- |t|)cos(1rt)0:1— w1 sin(7|t]), }:: § i, (4.4)

By applying their algorithm with N = 12 they found that m > 0.779.

Jurkat and Peyerimhoff used a programmable desk calculator to carry out
their computations. Te Riele [Ril] implemented the J.-P. algorithm (together
with a few small improvements) on a high speed computer and proved that
m > 0.860 and m < —0.843.

A remarkably efficient new algorithm of Lenstra, Lenstra and Lovész [LLL]
for finding short vectors in lattices was applied by Odlyzko et al. [OR] to the
above mentioned inhomogeneous Diophantine approximation problem. It was
estimated that N = 70 would be sufficient, in order to disprove the Mertens
conjecture. Any value of y that would come out was likely to be quite large,
viz., of the order of 107° in size. Therefore, it was necessary to compute the
first 2000 v’s to a precision of about 75 decimal digits (actually, 100 decimal
digits were used). The best lower and upper bounds found for 7= and m were
1.06 and —1.009, respectively.

Recently, Mdller [Mol] carried out a numerical study on the Mertens conjecture
along the lines of Jurkat et al [JP]. By means of a Z80-microcomputer system
he found that 7 > 0.875, which slightly improves Te Riele’s result [Ril].
Table 1 summarizes the results obtained by various authors for M(z)/+/z.
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The method used here is ineffective in that it does not give a precise value, or
an upperbound for z where M(z)/+/z becomes large (resp. small). Recently,
Pintz [Pin] gave an effective disproof of the Mertens conjecture, based on the
following theorem. Let

_ - cos(’yy—"""»b'v)]
hi(y, Tye) : 20<72T [ le¢'(e)l  1°

Theorem 2 (Pintz [Pin]). If there ezists a value of y € [67,65x104] with
|h1(y,1.4 x 10%,1.5 x 107%)| > 1 + ™*°
then

= e¥tVv¥
1]5113‘5}(X|M(z)|/\/;>1 for X =e .

Let

ha(y,T) := 2 1 coslyy = mhy)
D=2 3 9(7) = a0

where g is defined by (4.4). A good candidate for y in Theorem 2 is naturally
any positive value of y in the given range for which |h2(y,T")| > 1. Such a value
yo ~ 3.2097 x 10%* was given by Odlyzko and Te Riele on line 21 of Table
3 in [OR]. The present author verified that h;(yp,1.4 x 10%,1.5 x 107%) =
—1.00223... so that from Theorem 2 it follows that |M(z)//z| > 1 for some
z with 1 < z < exp(3.21 x 10%*).

Table 1. Results on M(z)/+/z obtained by means of Theorem 1

author(s) m = limsup,_, , M(z)//= > m = liminfa_,co M(2)/\/z <
Spira [Spi] 0.535 —0.602

Jurkat et al. [JP] 0.779 —0.638

Te Riele [Ril] 0.860 —0.843

Odlyzko et al. [OR] 1.060 ~1.009

Msller [Mol] 0.875
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