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Abstract

The collection of hereditarily finite sets is considered under the assumption of a
nonstandard axiom system, in which the axiom of foundation has been replaced by a
strong version of its negation, the anti-foundation axiom. An isomorphism is estab-
lished between this collection of hereditarily finite sets and a complete metric space
obtained as solution of a recursive domain equation (defined under the assumption
of ZFC, i.e., without the anti-foundation axiom). Thus nonwellfounded hereditarily
finite sets can be viewed as limits of Cauchy sequences of their wellfounded approxi-
mations.
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1 Introduction

A hereditarily finite set is a set that first, is finite, second, of which all elements are
finite, third, of which the elements of its elements are finite, and so on. Although this
description is rather intuitive, we all are familiar with many examples of such sets: the
natural numbers, defined as usual (0 = 0 and n+1 = {0,...,n}), all are hereditarily
finite.

Another way of trying to define this notion would be: A hereditarily finite set is a set
that, first, is finite and second, the elements of which are hereditarily finite. This reflexive
description suggests the following equation for the collection z of all hereditarily finite sets
to satisfy:

z="Pcu(z) (%)
Here Pco(z) is the set of finite subsets of z. This equation can readily be seen to have
a solution. Define Vo = 0, and given V;, let Viy1 = P(V;). Put HF = U; V.. Then
HF satisfies (). In fact it is the smallest solution (under ordinary set inclusion). An
interesting question now is the following: does it contain all hereditarily finite sets?
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The answer to this question depends on the axiom system one is working with. If
this is the usual Zermelo-Fraenkel set theory (ZFC) then the answer is affirmative: the
Axiom of Foundation (FA) provides us with the principle of € induction, which can be
straightforwardly used to show that HF is also the largest solution to (*).

The existence of a set a satisfying a = {a} is inhibited by the same FA: it is nonwell-
founded in the sense that it contains an infinite descending € chain. Hence such a set
cannot exist according to ZFC. Nevertheless, one can argue that it is just another example
of a hereditarily finite set: the assumption that it is, is consistent with all other axioms
of ZFC but for the FA. Clearly a is finite, and supposing a is hereditarily finite, also its
elements are.

Recently, an alternative axiom system is receiving more and more attention, in which
the FA is replaced by a strong version of its negation, a so-called Anti-Foundation-
Axiom (AFA). This is mostly due to Peter Aczel ([Acz88]), who developed an intuitive
theory and showed how nonwellfounded sets are of relevance to the study of computation
and communication. Aczel’s theory ZFA consists of ZFC - FA + AFA. An immediate
consequence of the AFA is the existence of nonwellfounded sets. For instance, the above
set a is in his approach an ordinary set like any other.

The formulation of the AFA uses the conception of sets as graphs. Every set z gives
rise to a graph by taking as nodes the transitive closure of z and as (directed) edges all
pairs (a,b) with b € a. This graph is called the canonical picture of z. Note that
wellfounded sets (which, by the way, still exist in ZFA) yield graphs of which all branches
are finite (corresponding to the finiteness of descending € chains). Conversely, one might
wonder whether there corresponds a set to every such (accessible pointed) graph. The
AFA states that this is the case, and that moreover this set is unique. Next a notion
that originally stems from the theory of computing is borrowed to describe an important
property of V, the collection of all sets under ZFA. It concerns the idea of bisimulation,
which was originally introduced by Park ([Par81]). In V any two sets that are bisimilar
(in a sense closely related to the original notion) are equal (and vice versa).

All this has a bearing on the equation (%) above. In ZFA, it turns out to have two
solutions, HF and in addition HF, the largest fixed point of (*). It will contain HF as a
subset and moreover nonwellfounded hereditarily finite sets like a.

The main characteristic of ZFA is that it allows sets to be nonwellfounded, hence coun-
tenancing self-membership. This makes it possible to give solutions to varying problems
involving self-reference and circularity (like, e.g., described in [BE88]). In the theory of
computing and more specifically, in the study of semantics of programming language se-
mantics, this leads to transparent descriptions of recursive behaviour. (See the last chapter
of [Acz88] and [Rut90].)

In the semantics of programming language semantics, infinite behaviour is tradition-
ally described with the use of domain theory of some kind, in which the meaning of a
recursive construct is obtained as the limit (in some sense) of the meanings of its finite
approximations. Examples of such domains are Scott domains, complete partial orders
and complete metric spaces.

A question already raised by Aczel himself is whether something similar could be done
with nonwellfounded sets; that is, would it be possible to view these sets as limits of their
wellfounded approximations?

A first solution to this problem is given by Mislove, Moss and Oles in their paper
[MMOB89]. The authors show how to interpret (hereditarily finite) nonwellfounded sets as



fixed points of continuous transformations of an initial continuous algebra. This continuous
algebra is obtained as the ideal completion of a preordered algebra closely related to HF'.
Its elements are called protosets, which can be seen as partially defined hereditarily finite
sets. Intuitively, the work in [MMO89] amounts to the construction of a domain (which
is later in their paper shown indeed to satisfy a domain equation) of finitely branching
tree-like structures.

In this paper, we follow the same approach but now with the use of complete metric
spaces as the basic mathematical tool, rather than the ordered structures mentioned
above. The theory of solving reflexive domain equations in a category of complete metric
spaces, as developed in [AR89] and initiated by [Niv79] and [dBZ82], is taken as a starting
point. It gives for a large collection of domain equations the existence of a unique solution.
This is applied to a variant of the above equation (*). The resulting domain contains
(representations of commutative) unlabelled trees, called processes, and comes with a
natural distance function (or metric): the distance between two trees is small if their
finite approximations (truncations) are equal at great depth. An edge in such a process is
related to an edge in the graph representations of hereditarily finite sets: it denotes the
membership relation. Next a mapping is defined that associates with every hereditarily
finite set a process, representing its canonical picture. Every nonwellfounded hereditarily
finite set is mapped onto the limit of the Cauchy sequence consisting of the values of its
wellfounded approximations. Thus this mapping is an ismorphism between HF; and a
subset of the collection of processes.

The model of [MMO89] makes use of a domain that is built up directly from HF. The
authors argue that this approach is preferable to starting with the solution of a domain
equation straightaway, since it provides more intuition. Moreover they indicate that it is
not completely clear to them what domain equation would actually be best.

Here we take the opposite approach by starting with the domain equation, which
is a variant of (*) above, for which a complete metric space is taken as the solution.
Interesting enough, the domain equation we use differs from both domain equations that
are mentioned in [MMO89].

The metric domain is technically speaking simpler, and hence yields a more transparent
model than its order-theoretic counterpart. This has three reasons. First, the use of
metrics in a situation where a notion of depth exists, as is the case with the canonical
pictures of hereditarily finite sets, leads to an intuitive model. Second, the theory of
[AR89] yields immediately a solution for domain equations like (a variant of) (*) above.
Third, the metric powerdomain constructor, which is used in that domain equation, is
simpler than its order-theoretic counterparts.

However, the simplification thus obtained has its price: in the metric framework de-
scribed above, one can only talk about completed elements; the notion of partial elements
does not exist. This is opposed to the domain of [MMO89], where such partial elements
do exist, the so-called protosets.

Finally we would like to mention some other related research. There is the work of
Abramsky ([Abr88]), which is mentioned in [MMO89] but has not yet been published, and
which compares several descriptions of finitary nonwellfounded sets. A similar remark
applies to the work of Boffa ([Bof88]). (See [MMOB89] for some discussion on the work
of both authors.) Finally, a kind of overview paper on this subject is in preparation
([Mos91]).

Acknowledgement: As mentioned, this work closely follows the approach of [MMOB89]



and owns therefore much to that paper.

2 Systems

In this section, the basic definitions concerning non-well-founded sets as developed in the
first two chapters of [Acz88] are reviewed (It closely follows a similar section in [MMOS89].)
For more motivation of the various definitions see [Acz88] or [BERS)].

A system is a pair § = (18], —) where | S| is a set or class whose elements are called

the nodes of §, and — e relation on [S|. We frequently omit subscripts

onoarrows. If 7 — y 1 ; a child of z. The Z”a“zif'«, of children of each node of

o
a system is required to [u: em S is small if S s a set. An accessible

-} is a small

pointed graph,, or &pg, 18 8 5 :
G, and every node of G is accessible from topg.
obtained by forgetting the diSuEEL‘thd node of

s
S is a system, and = € |S|, then the apg Sz = (|Sz], 5 ,T) is

ystem, topg is a dis

.o

an apg, Qﬁ'ﬁuuﬁ i

obtained by letting |Sz| be the set of nodes of S accessible from z via —, and by letting
— be the restriction of —s to |Sz|.

* We mention three impg rtant examples of systems. First, the class ¥V of all sets can
be turned into a system V by taking as nodes the class V itself, and as edges the arrows
z — y when y € z. A second system. S, is obtained by taking as nodes all accessible
pointed graphs and by requiring G —~—>H iff H = G"n for some child n of topg. Finally,
let S be any system and z a node of . Then we can form first the apg Sz and then forget
the top to get the subsystem of § deﬁged by z: (Sz)*.

A bisimulation is a relation = on the nodes of a system such that z = y implies
that for each child a of z there is some child b of y such that a = b, and for each child
b of y there is some child a of z such that @ = b. A bisimulation is not necessarily an
equivalence relation. For every system S, there is a maximal bisimulation =g on §
which includes all bisimulation relations. The maximal bisimulation on a system is an
equivalence relation. Two nodes z and y of a cvster‘ S are bisimilar if z =¢ 7.

Suppose S and T are systems. A map f:|S| — |T] is a system map from S to T
provided that f preserves the sets of children. That is, for all nodes z of S,

() i oy} = {z « fle) =z}

Every function f : |§| — [T induces an equivalence relation =; on its domain. Ex-
plicitly, z = y iff f(z:) = f(y). ff : S — T is a system map, then =; is a bisimulation.
A system map f : § — T is a strongly extensional quotient of S if f is surjective
on nodes and =y is exactly =g. Every system has a strongly extensional quotient. If
f:8— Tandf :8§— T are two strongly extensional quotients of S, then 7 and 7"
are isomorphic systems.

A system S is called strongly extensional if two nodes of S are bisimilar if and only
if they are equal; in other words, if =g, equality on S, and =g, bisimilarity on S, are the
same. This terminology can be explained by the observation that a strongly extensional
system has a trivial strongly extensional quotient, namely itself.

If G is an apg, then a decoration of G is a system map d : G* — V, and we say G
is a picture of the set d(topg). If = is a set, then the apg Vz is called the canonical



picture of z because the inclusion function d : [Vz| — |V| is a system map from (Vz)*
to V such that d(z) = =.

3 The Anti-Foundation Axiom

The Anti-Foundation Axiom (AFA) states that for every apg G there is a unique system
map dg : G* — V. An important consequence of the AFA is the fact that V is strongly
extensional.

Theorem 3.1 V is strongly extensional.

Proof See [Acz88], Proposition 2.10. -

Next consider the mapping e : S — V defined by, for all G, e(G) = dg(topg), where
dg is the unique decoration of G. The AFA implies that it is a strongly extensional
quotient of S.

Theorem 3.2 The mappinge : S —V is

(1) a system map (2) a strongly eztensional quotient

Proof Part (1) of the theorem is trivial. For (2), one has to prove
ES

Trivially, we have =¢D=,. Conversely, let G =5 H. Because e is a system map this
implies e(G) =y e(H). The fact that V is strongly extensional implies e(G)=e(H). H

For each function f : X — Y and each subclass Z of X, let f [Z] denote the image of
Z under f. The following definitions and theorem are introduced in [MMOB89]; they will
be used in the next section.

Definition If § = (|S|,—s——>) is a system, then a subsystem of S is a system T =
(|7, —;—») where |T| C |S| and - =5N (|T| x | T]). A transitive subsystem of S
is a subsystem T = (|T|,—T—>) also satisfying the property that, if z € |T|,y € |S| and
z =, then y € |T|.

Theorem 3.3 If T is a transitive subsystem of S and f : S — S! is a system map, then
the restriction f|r : T — f[T] is a system map. Iff : § — S' is a strongly eztensional
quotient, then so is f|7 : T — f[T].



4 Hereditarily Finite Sets

A hereditarily finite set is a finite set, of which all the elements are finite, and so on.
A way of defining this notion more precisely is to consider the following equation. The
collection of all hereditarily finite sets should satisfy

z=Pcu(z) (%)

Here P, (z) is the set of finite subsets of z. It is an instance of a so-called class operator,
which takes a class z as an argument and yields another class P, (z).

Aczel showed for a large collection of class operators, namely the so-called set-continuous
ones, that they have a smallest and a largest (with respect to set inclusion) fixed point.
(See [Acz88]and [AMS9].)

For our particular example of hereditarily finite sets, one need not resort to this general
result. Assuming the axioms of set theory (notably Pairing, Union, Infinity, and some of
the Replacement Axioms, but neither Foundation nor Choice), it is not difficult to show
that the smallest fixed point of (x), denoted by HF, exists. It can be constructed in the
following way: Define V =8, and given V;, let Viy; = P(V;). Then HF = |J; V;.

In contrast to this, the largest fixed point of (x), to be denoted by HF; cannot be
shown to exist as a set without some Axiom of Foundation or Anti-Foundation. If we
assume the usual Axiom of Foundation, we can straightforwardly show HF; = HF by
€-induction. But without this axiom we have no principle of proof by €-induction. In
fact, under the AFA, HF is a proper subset of HF;.

Definition An apg G is finitely branching if each node of G has finitely many children.
G is the subsystem of & whose class of nodes consists of all finitely branching accessible
pointed graphs.

Proposition 4.4 Assume AFA. Then HF is the set of all sets whose pictures are finitely
branching accessible pointed graphs; i.e., HF; = e[|G]|].

Proof This result is implicit in [Acz88]. A direct proof can be found in [MMO89]. It
shows that e[ |G| ] is a set rather than a proper class, that e[ |G| ] is a fixed point of (x),
and that every other fixed point of () is contained in e[ |G]]. -

Theorem 4.5 HF; is a strongly extensional quotient of G.

Proof By Theorem 3.3 the restriction of e : S — V to G, which is a strongly extensional
quotient of S, is again a strongly extensional quotient. Now the theorem is implied by
Proposition 4.4. -

5 Metric Processes

Next we introduce a complete metric space, P, that will serve as a co-domain for a system
map for G, to be constructed in the next section. The domain P is defined as the solution
of a reflexive domain equation. (Everything one needs to know about metric spaces can
be found in the first appendix. Those interested in the details of solving domain equations



with the help of complete metric spaces are referred to the second appendix, which gives
a brief abstract of [AR89].)

Definition Let (P, d) be the unique complete metric space satisfying
P o Pco(idl/z(P))

Here Po(idy/2(P)) is the collection of all compact subsets of id; /2(P); the latter space is
like P but with a different metric, namely, 1/2-d. The elements of P are called processes,
and will be indicated by the symbols z,y, X, Y, p, g. The symbol = should be read as “is
isometric (isomorphic) to”. That is, there exist unique distance-preserving mappings

p: P — Pe,(idyja(P))

v Pco(idlﬂ(P)) — P

such that
pov=1id, vou=:1d

Usually we omit p and v and identify P and Pc,(id;/5(P)). The metric d : P x P — [0, 1]
is defined implicitly by the above equation; it satisfies, for all X, Y € P,

d(X,Y) = (1/2- d)r (u(X), x(Y))

Here (1/2 - d)g is the so-called Hausdorff metric on subsets of P, induced by the metric
1/2-d on P.

The metric d on P has a very intuitive characterization.
Lemma 5.6 Let for X € P and n > 0 the n-th truncation X|[n]| of X be defined by
X[0]=0

X[n+1] ={z[n]: z € X}

Then forall X,Y € P,
d(X, Y) — 2—sup{k:X[k]=Y[k]}

Proof For a formal proof one has to be precise about the use of 4 and v. The definition
of X[n + 1] should actually be

X[n+1] =v({z[n] : z € p(X)})

Now the lemma follows from the defining equation for d. -

Example
As usual let the natural numbers be defined by

0=0, n+1={0,...,n}



Then for all n, k,

kE ifk<n
"[’“]‘{ n ifk>n
as can readily be shown by induction. Hence for all n, m,

g-min{n,m} if p #m
d(n,m)—{o fn=m

The metric space P is a system by taking as edge relation

P 59="F g € u(p)

(We shall, again, often omit p and write ¢ € p.) The system (P, T), again indicated by
P, has the interesting property that it is strongly extensional.

Theorem 5.7 P is strongly ertensional, i.e., for all p,q € P,

p=pqifandonlyif p=gq

Proof Let p,q € P with p =p q. We show that p = g, the reverse implication being
trivial. Let R C P x P be a bisimulation relation with pRg. Define

e=sup{d(X,Y): X,Y € PA XRY}

We prove that € < 1/2- ¢, which implies € = 0. Hence d(p, ¢) = 0 and thus p = gq.
Let z,y € P with XRY. By the definition of the metric d on P, which implies that
d equals (d'dllz(p))}[, it is sufficient to show that, for all z € X, d(z,Y) < 1/2-€. Let

1

z € X. Because XRY there exists y € Y such that zRy. We have
d(:l:, Y) = yi,g{;/{didl/g(P)(z) yl)} < 1/2 ' d(x) y) < 1/2 "€

Hence e < 1/2-e. 4

6 Processes Associated to Graphs

Recall that G is the subsystem of S consisting of all finitely branching apg’s (accessible
pointed graphs). In this section, we shall associate to each finitely branching apg G (i.e.,
G € |G|) a process in P. To this end, first a sequence (n;); of processes is associated to
every node n in G.

Definition Let G € |G| and let n be a node in G. We define for all nodes at the same
time a sequence (n;); of processes as follows:

ng=0, niy1={m:n—-m}

(Here n — m means there is an edge from n to m.)



Lemma 6.8 The sequence (n;); is Cauchy.

Proof The following fact can be easily proved: for all i and k,

P k<1t
"“[’“]“{ n k>

Together with Lemma 5.6 this implies, for all ¢ and 7, d(ns, nj) < g—min{ij} -

This lemma justifies the following definition, specifying a function that associates to
every finitely branching apg a process as follows.

Definition Let 6 : |G| — P be defined, for G € |G|, by

§(G) = lim (topg):

The mapping § has the following properties.
Theorem 6.9 The mapping 6 : |G| — P is

(1) a system map (2) a strongly extensional quotient

Proof We identify apg’s G € |G| with their top nodes n.
(1) 6 is a system map: We have to show

{8(m) : n —om} = {p: &(n) 7-p}

This equality follows from the two inclusions C and 2, which we show next.

The following general fact can be conveniently used. Let (M, d) be a complete metric
space. Consider (Pnc(M), dgr), where dy is the Hausdorff metric induced by d. Let (X:):
be a Cauchy sequence in Pp.(M). Then

lim X; = {lim z;: z; € X; and (x;); is a Cauchy sequence in M}
1—00 1—00
In particular, we have
6(n)(= lim n;) =) {lim z; : = € n; and (z;); is a Cauchy sequence in P}
1—00 1—00

C: We have

{6(m):n —g—yrn} {lim m;: n 'é_’m}
= {lim mj_1: mj—1 € n;}

1—00

N

{lim z;: z; € n; and (z;); is a Cauchy sequence in P}

(by (%) 8(n)

{p: 8(n) —=p}



D: We show: if p € §(n) then there is a node m such that n 5™ and §(m) = p. Let
p € §(n). By (*) there exists a Cauchy sequence lim;_, z; with z; € n; and p = lim;_, o ;.
Since we consider finitely branching graphs, n has only finitely many sons n —m, say
{my,...,m¢}. Because n; = {(m1)i-1,...,(mg)i=1}, and z; € n; for all i, there exists
[, 1 <1<k, such that m; occurs infinitely often in lim; o z;. Let f : N — N be a
monotonic function such that zf(;y = (m)f(;)-1, for all i. Then

pP= _lim T; = _lim zf(i) = _lim (mz)f('-)__l = 5(m1)

and 6(n) T)5(m1).

(2): § is a strongly extensional quotient: We have to show =g==;. Trivially, we
have =gD=;. Conversely, let n =g m. Because § is a system map this implies §(n) =p
6(m). Now the fact that P is strongly extensional (Theorem 5.7) implies §(n) = §(m). -

Finally, we can formulate the main result of our paper.
Theorem 6.10 HF; and §[ |G| ] are isomorphic.

Proof This is immediate from the fact that both HF; and 8] |G| | are a strongly
extensional quotient of G (Theorem 4.5 and Theorem 6.9). -

References

[Abr88] S. Abramsky. A cook’s tour of the finitary non-well-founded sets. Technical
report, 1988. Unpublished notes.

[Acz88] P. Aczel. Non-well-founded sets. Number 14 in CSLI Lecture Notes. 1988.

[AM89] P. Aczel and N. Mendler. A final coalgebra theorem. In D.H. Pitt, D.E. Rye-
heard, P. Dybjer, A. M. Pitts, and A. Poigne, editors, Proceedings category
theory and computer science, Lecture Notes in Computer Science, pages 357—

365, 1989.

[AR89] P. America and J.J.JM.M. Rutten. Solving reflexive domain equations in a
category of complete metric spaces. Journal of Computer and System Sciences,

39(3):343-375, 1989.

[BE88] J. Barwise and J. Etchemendy. The Liar: An Essay in Truth and Circularity.
Oxford University Press, 1988.

[Bof88] M. Boffa. Finite approximations of sets. Technical report, 1988. Unpublished
notes.

[dBZ82] J.W. de Bakker and J.I. Zucker. Processes and the denotational semantics of
concurrency. Information and Control, 54:70-120, 1982.

[Eng77] R. Engelking. General Topology. Polish Scientific Publishers, 1977.

[Mac71] S. MacLane. Categories for the Working Mathematician, volume 5 of Graduate
Texts in Mathematics. Springer-Verlag, 1971.

10



[MMO89] M.W. Mislove, L.S. Moss, and F.J. Oles. Non-well-founded sets obtained from

[Mos91]
[Niv79)]

[Par81]

[Rut90]

ideal fixed points. In Proc. of the Fourth IEEE Symposium on Logic in Com-
puter Science, pages 263-272, 1989. To appear in Information and Computa-
tion. '

L.S. Moss. Personal communication. Technical report, 1991.

M. Nivat. Infinite words, infinite trees, infinite computations. In J.W. de Bakker
and J. van Leeuwen, editors, Foundations of Computer Science III, Part 2,
volume 109 of Math. Centre Tracts, pages 3—-52, 1979.

D.M.R. Park. Concurrency and automata on infinite sequences. In Proceedings
5th GI conference, volume 104 of Lecture Notes in Computer Science, pages
15-32. Springer-Verlag, 1981.

J.J.M.M. Rutten. Nonwellfounded sets and programming language semantics.
Technical Report CS-R9063, Centre for Mathematics and Computer Science,
Amsterdam, 1990. To appear in the proceedings of Mathematical Foundations
of Programming Semantics, Pittsburgh, March 1991.

11



A Metric Spaces

We assume the following notions to be known (the reader might consult [Eng77]): metric
space, ultra-metric space, complete (ultra-)metric space, continuous function, closed set,
compact set. In our definition the distance between two elements of a metric space is
always between 0 and 1, inclusive.

An arbitrary set A can be supplied with a metric dg, called the discrete metric, defined
by

0 ifz=
dA(zay)——_{ 1 if.’l:;éz

Now (A, dy) is a metric space (it is even an ultra-metric space).
Let (M, d1) and (Ma, dp) be two complete metric spaces. A function f: M; — M, is
called non-expansive if for all z,y € M;

dz(f(I),f(y)) < dl(x’ y)

The set of all non-expansive functions from M to Ms is denoted by M; 4 M,. A function
f: My — M, is called contracting (or a contraction) if there exists an € < 1 such that for
all z,y € M

b(f(2), f(y)) L e di(z,y)

(Non-expansive functions and contractions are always continuous.)

The following fact is known as Banach’s theorem: Let (M,d) be a complete metric
space and f : M — M a contraction. Then f has a unique fixed point, that is, there exists
a unique z € M such that f(z) = z. This = can be obtained by taking the limit of f*(zp)

for any arbitrary @ € M (where f%(y) = y and f**'(y) = f(f*(¥))).
We call M; and M, isometric (notation: M; = Mp) if there exists a bijective mapping

f : My — M, such that for all z,y € M
dy(f(2), f(9)) = di(z,y)
Definition Let (M,d), (M, d1),...,(Mn, d,) be metric spaces.

1. We define a metric dr on the set M; — Mp of all functions from M; to M3 as follows:
For every fi,fo € M} — My we put

dr(fi, o) = sup {&(fi(z), fo(2))}

This supremum always exists since the values taken by our metrics are always be-

tween 0 and 1. The set M; N M, is a subset of M; — My, and a metric on M; 4 My
can be obtained by taking the restriction of the corresponding dp.

2. With M; O- - -0OM, we denote the disjoint union of Mj,..., M,, which can be defined
as {1} x My U---U {n} x M,. We define a metric dy on M; U---U M, as follows:
For every z,y € M; U--- U M,,

) di(z,y) ifz,ye{j}xM;1<j<n
dy(z,y) = { 1 otherwise

If no confusion is possible we often write U rather than U.
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3. We define a metric dp on the Cartesian product M; X --- x M, by the following
clause: For every (z1,...,2n), (¥1,.--,¥n) € My X -+ X My,

dp((z, .- 3, (31, 9)) = max{di (i, i)}

4. Let Py(M)={X : X C M AX is closed }. We define a metric dg on P(M), called
the Hausdorff distance, as follows: For every X, Y € Pa(M),

dp(X,Y) = maX{igg{d(m, Y)}, :gg{d(y,X)}}

where d(z,Z) = inf,cz{d(z,2)} for every Z C M, ¢ € M. (We use the convention
that sup® = 0 and inf@ = 1.) The spaces Peo(M)={X : X C M A X is compact }
and Pn.(M) = {X: X C M A X is non-empty and compact } are supplied with a
metric by taking the restriction of dy.

5. For any real number € with 0 < e <1 we define
d((M,d)) = (M,d")

where d'(z,y) = €- d(z,y), for every z and y in M.

Proposition A.11 Let (M,d), (M, dy),...,(My,dn), dp, dy, dp and dy be as in Defi-
nition A and suppose that (M, d), (My, d1),...,(My,d,) are complete. Then

(My — My, dp) (My > My, dp) (a
(MO U M, dy) (

(Ml Ko X Mn,dp)

(Pa(M),dn) (Peo(M),dr) (Pne(M),dn) (d

ide((M, d)) (e)

—

C

\
<}

)
)
)

are complete metric spaces. If (M, d) and (M;, d;) are all ultra-metric spaces, then so are

these composed spaces. (Strictly speaking, for the completeness of My — My and M; EN iy
we do not need the completeness of My. The same holds for the ultra-metric property.)

Whenever in the sequel we write M; — My, M; N My, Mi G- O M,, My x - x M,
Pua(M), Peo(M), Pre(M), or ide(M), we mean the metric space with the metric defined
above.

The proofs of Proposition A.11(a), (b), (c), and (e) are straightforward. Part (d) is
more complex. It can be proved with the help of the following characterization of the

completeness of (Pci(M), di).

Proposition A.12 Let (Py(M),dn) be as in Definition A. Let (X;); be a Cauchy se-
quence in Py(M). We have

lim X; = { lim «; : z; € X;, (z;); a Cauchy sequence in M }

1—00

Proofs of Propositions A.11(d) and A.12 can be found in, for instance, [Eng77]. The proofs
are also repeated in [dBZ82].
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A Metric spaces as solutions to domain equations

We show how one can use metric spaces to solve so-called reflezive domain equations of,
e.g., the following form:

P~ F(P)
(The symbol 2 is defined below; it says that there is a bijection from P to F(P) that
respects the metric defined on the spaces.) Here F(P) is an expression built from P

and a number of standard constructions on metric spaces (also to be formally introduced
shortly). A few examples are

P = AU(BxP) (1)
P = AUP.,(BxP) (2)
P = AU(B—P) 3)

where A and B are given fixed complete metric spaces. De Bakker and Zucker have
first described how to solve these equations in a metric setting [dBZ82]. Roughly, their
approach amounts to the following: In order to solve P = F(P) they define a sequence
of complete metric spaces (P,), by: Pp = A and Pp41 = F(P,), for n > 0, such that
Py C P; C ---. Then they take the metric completion of the union of these spaces P,,
say P, and show: P = F(P). In this way they are able to solve equations (1), (2) and (3)
above.
There is one type of equation for which this approach does not work, namely,

P = AU(P G(P)) (4)

in which P occurs at the left side of a function space arrow, and G(P) is an expression
possibly containing P. This is due to the fact that it is not always the case that P, C
F(P,).

In [ARB9] the above approach is generalized in order to overcome this problem. More-
over, it provides a more precise description of the solutions of domain equations and their
metrics.

The family of complete metric spaces is made into a category C by providing some
additional structure. (For an extensive introduction to category theory we refer the reader
to [MacT71].) Then the expression F is interpreted as a functor F : C — C which is (in a
sense) contracting. It is proved that a generalized version of Banach’s theorem (see below)
holds, i.e., that contracting functors have a fixed point (up to isometry). Such a fixed
point, satisfying P & F(P), is a solution of the domain equation.

We shall now give a quick overview of these results, omitting many details and all
proofs. For a full treatment we refer the reader to [AR89]. The basic definitions and facts
of metric topology that we shall need can be found in the first appendix.

We introduce a category of complete metric spaces and some basic definitions, after
which a categorical fixed point theorem will be formulated.

Definition Let C denote the category that has complete metric spaces for its objects.
The arrows ¢ in C are defined as follows: Let M;, My be complete metric spaces. Then
M, —* M denotes a pair of maps M; =; My, satisfying the following properties:

1. 7 is an isometric embedding,
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2. j is non-expansive,
3. joi=idp.

(We sometimes write (i)j for ..) Composition of the arrows is defined in the obvious way.

We can consider M; as an approximation to Mp: In a sense, the set Mp contains more
information than Mj, because M can be isometrically embedded into M. Elements in Mp
are approximated by elements in M;. For an element mp € M its (best) approximation
in M, is given by j(my). Clause 3 states that My is a consistent extension of M;.

Definition For every arrow M; —* Ma in C with ¢ = (i)j we define

5(¢) = dup—y (i 04,idngy) (= sup, {du, (i 0 j(m2), m2)})

This number can be regarded as a measure of the quality with which M3 is approximated
by Mi: the smaller §(¢), the better My is approximated by M.
Increasing sequences of metric spaces are generalized as follows:

Definition We call a sequence (D, tn)n of complete metric spaces and arrows a tower
whenever we have that Vn € N D, —‘* D11 € C. The sequence (Dy,tn)n is called a
converging tower when the following condition is also satisfied:

Ve >03IN € NVm > n > Nb6(tnm) <€

where tpm = tm—10-** 0ty : Dy — Dp,.

A special case of a converging tower is a tower (Dp,tn)n satisfying, for some € with
0<e<],
Vn € N6(tnt1) < e-6(tn)

Note that
6(tam) < 8(tn)+ -+ 8(tm-1)
S En'a(L0)+"'+Em_1 '6(1-0)
< ¢ -5(L0)

1—c¢

We shall now generalize the technique of forming the metric completion of the union of
an increasing sequence of metric spaces by proving that, in C, every converging tower has
an initial cone. The construction of such an initial cone for a given tower is called the
direct limit construction. Before we treat this direct limit construction, we first give the
definition of a cone and an initial cone.

Definition Let (Dp,tn)n be a tower. Let D be a complete metric space and (Yn)n
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a sequence of arrows. We call (D, (vn)n) a cone for (Dp,tn)n whenever the following
condition holds:
Vn € ND, - DeCAYn="n410tn

Definition A cone (D, (yn)n) for a tower (Dn,tn)n is called initial whenever for every
other cone (D', (4)n) for (Dp, tn)n there exists a unique arrow ¢ : D — D' in C such that:

Vn € Nioy, =7,

Definition Let (Dp,tn)n, With tp, = (in)jn, be a converging tower. The direct limit of
(Dnytn)n is a cone (D, (Yn)n), With yn = (gn)hn, that is defined as follows:

D ={(za)n :Yn > 02y € Dp A ju(@n41) =z }

is equipped with a metric dp defined by

dD((mn)m (yu)n) = Sup{an(xm yn)}

for all (z,), and (yn)n € D. The mapping g, : Dy — D is defined by gn(z) = (&),
where
Jm(z) fk<n
T, =<(.z ifk=n
ink(:t) ifk>n

and h, : D — D, is defined by h,((zk)x) = Zn.

Lemma A.13 The direct limit of a converging tower (as defined in Definition A) is an
initial cone for that tower.

As a category-theoretic equivalent of a contracting function on a metric space, we have
the following notion of a contracting functor on C.

Definition We call a functor F : C — C contracting whenever the following holds: There
exists an €, with 0 < € < 1, such that, for all D —»* E € C,

6(F(v)) < €-6(2)

A contracting function on a complete metric space is continuous, so it preserves Cauchy
sequences and their limits. Similarly, a contracting functor preserves converging towers
and their initial cones:

Lemma A.14 Let F : C — C be a contracting functor, let (Dy,tn)n be a converging tower
with an initial cone (D, (yn)n). Then (F(Dy), F(in))n is again a converging tower with
(F(D),(F(vn))n) as an initial cone.
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Theorem A.15 Let F be a contracting functor F : C — C and let Dy —* F(Dy) € C.
Let the tower (Dy,ty)n be defined by Dypy1 = F(Dy) and tny1 = F(ty) for alln > 0. This
tower is converging, so it has a direct limit (D, (yn)n). We have D = F(D).

In [AR89] it is shown that contracting functors that are moreover contracting on all hom-
sets (the sets of arrows in C between any two given complete metric spaces) have unique
fixed points (up to isometry). It is also possible to impose certain restrictions upon the
category C such that every contracting functor on C has a unique fixed point.

Let us now indicate how this theorem can be used to solve Equations (1) to (4) above.
We define

F(P) = AUidl/z(B x P) (5)
Fo(P) = AUPu(B x idys(P)) (6)
F3(P) = AU (B —idyy(P)) (7)

If the expression G(P) in Equation (4) is, for example, equal to P, then we define Fy by
Fy(P) = AUid;(P > P) 8)

Note that the definitions of these functors specify, for each metric space (P, dp), the metric
on F(P) implicitly (see Definition A).

Now it is easily verified that Fy, Fy, F3, and F4 are contracting functors on C. In-
tuitively, this is a consequence of the fact that in the definitions above each occurrence
of P is preceded by a factor id;/5. Thus these functors have a fixed point, according to
Theorem A.15, which is a solution for the corresponding equation. (We often omit the
factor idy/; in the reflexive domain equations, assuming that the reader will be able to fill
in the details.)

In [AR89] it is shown that functors like Fj to F4 are also contracting on hom-sets,
which guarantees that they have unique fixed points (up to isometry).

The results above hold for complete ultra-metric spaces too, which can be easily veri-

fied.
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