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Abstract

This report presents an overview of geometric constraint satisfaction techniques and
a new incremental approach that is suitable for interactive design. This approach
categorizes solutions into so-called quanta. A quantum is a range of solutions with
uniform geometric characteristics. Using this approach a system can keep the inter-
mediate solutions in the geometric domain, so that new geometric constraints can
be interpreted on the same high level of abstraction. Propagation of information is
performed by ‘propagation of known states’, and the information itself results from
‘solution set inference’, where a solution set is represented in geometrical form by
unions and intersections of quantum labels.

This approach leads to a number of advantages, including graceful handling of
under-constrained specifications, the ability to perform satisfaction locally and incre-
mentally, support of constraint inference and geometric reasoning, and preserving the
declarative semantics of constraints.
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1. Introduction

Constraints specify dependency relations between objects which must be satisfied and
maintained by a system. Constraint systems are used in a wide range of applications, in-
cluding user interfaces [Szekely and Meyers, 88], simulation [Steele Jr. and Sussman, 79),
animation [Badler and Kamran, 87], and geometric modeling. Geometric constraints can
fix one or more degrees of freedom for positioning, orientation and dimensioning. For
example, when a circle of fixed radius is constrained to be tangent to a fixed line segment,
the position of the circle center is restricted to two line segments parallel to the given one,
at a distance equal to the radius.

A constraint satisfaction system relieves some of the burden of its users: problems can
be solved by specifying constraints, users need not specify how to solve the constraints.
It is easier to state constraints than to satisfy them. But even if a system cannot satisfy
all constraints that can occur in a given domain, it can free its users from the error-prone
process of solving the many little but time-consuming simpler problems.

Incremental satisfaction of constraints arises naturally in geometric design applica-

tions. A good deal of work has already been done on constraint satisfaction in general
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[Mackworth, 77] [Leler, 88], and constraint satisfaction in the geometric domain in par-
ticular [Sutherland, 63] [Borning, 81] [Nelson, 85] [Rossignac, 86] [Arbab and Wang, 89
[Emmerik, 90] and [Ruttkay, 91]. Both areas are known to be difficult and no robust
methods exist for sufficiently general applications.

Incremental satisfaction of geometric constraints poses additional complications in con-
straint problem solving. There are two important factors that set incremental satisfaction
of geometric constraints (in the context of computer aided design or geometric modeling)
apart from other constraint satisfaction methods:

e The constraint satisfaction system must perform useful work and provide meaningful
feedback to its users, especially, in under-constrained situations.

e The feedback provided by the system must be primarily geometric.

While a design is in progress, it is natural to expect under-constrained situations to be
predominant: often not enough information is available to make solutions more specific.

Geometric reasoning and constraint satisfaction are facilities that can be part of a basic
layer of a design system, but this layer in itself is not an application system. It provides a
good basis for CSG modeling and Euler operators [Méntyl4, 88], feature-based modeling
[Pratt, 87], and intelligent human-computer interaction interfaces [Helander, 88].

The next sections are about the following topics:

> in Section 2 we provide an overview of satisfaction techniques and specific constraint

systems.

in Section 3 we present some problems that motivated our research.

in Section 4 we introduce the quantum approach.

in Section 5 we give a formal model of the quantum approach.

in Section 6 we present the underlying propagation algorithm.

in Section 7 we analyze the termination properties of the propagation algorithm.

in Section 8 we discuss implied constraint inference.

in Section 9 we discuss completeness.

in Section 10 we illustrate the quantum approach by two non-trivial examples in 2D

and 3D.

> in Section 11 we discuss the relationships between constraints and both the imper-
ative nature and the information hiding principle of object-oriented programming.

> in Section 12 we give some concluding remarks.
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2. Quverview

We can classify satisfaction techniques into structured and unstructured methods. An or-
thogonal classification can be made into numerical computation and deductive techniques.
Structured deductive techniques can exploit several methods for propagation of results.

In the Section 2.1 we describe these techniques in more detail, and in the Section 2.2
we mention some constraint systems that use these techniques.

2.1. Satisfaction techniques

2.1.1. Unstructured methods

Unstructured methods do not group dependent constraints into sets, and do not solve the
independent sets separately. Solving the overall set of equations comprising all constraints



is perhaps the simplest way of constraint satisfaction. One way to solve the overall set of
equations is by relaxation, see the following subsection.

Among the unstructured deductive systems are algebraic manipulation, logic program-
ming, and term rewriting. Algebraic manipulation or symbolic algebra systems are able
to solve complex sets of algebraic constraints at a symbolic level [Davenport et al., 88].
They are usually slow.

Logic programming can be classified into functional programming, based on equational
logic (e.g. LISP), and relational programming, based on Horn clause logic (for example
Prolog).

Augmented term rewriting as developed by [Leler, 88] supports three features in ad-
dition to term rewriting: abstract data types, typing of variables, and binding of values
to variables. Abstract data types are defined by rules. The strong ties with equational
logic gives augmented term rewriting a solid theoretical foundation. As a consequence the
control mechanism is separated from the problem solving rules.

Obvious drawbacks of unstructured techniques are their computational complexity
and their inefficiency for interactive applications: each single change leads to re-solving
the whole set of constraints.

2.1.2. Structured methods

Structured methods impose a structure on the set of constraints by grouping them into
sets of dependent constraints. These sets are satisfied independently.

Numerical computation of a local set of constraints is often done by relaxation. Nu-
merical relazation makes an initial guess at the values of the variables in an equation,
and estimates the error by some heuristic. The guesses are adjusted accordingly and the
new errors are estimated. This repeats until the error is minimized. A disadvantage of
this method is that it converges to only one of the roots of an equation. Moreover, which
root is found depends on the initial value of the variable. This makes the solution unpre-
dictable in an under-constrained situation. Numerical relaxation is also computationally
expensive, and can be used only in continuous numeric domains. A form of relaxation
is the Newton-Raphson iteration technique for finding the root of a function. It is faster
than general numerical relaxation.

A set of dependent constraints can be represented as a network of constraints. Struc-
tured deductive systems use some method to assimilate results of the inference process
throughout the network. We mention two such methods.

Propagation of known states, or just local propagation, can be performed when there
are parts in the network whose states are completely known (have no degrees of freedom).
The satisfaction system looks for one-step deductions that will allow the states of other
parts to be known. This is repeated until all constraints are satisfied or no more known
states can be propagated. If not all constraints can be satisfied, the remaining constraints
must be resolved by, for example, numerical relaxation. Most constraint satisfaction sys-
tems use some form of local propagation.

Propagating degrees of freedom amounts to discarding all parts of the network that can
be satisfied easily and solving the rest by some other method. This method identifies a
part in the constraint network with enough degrees of freedom so that it can be changed
to satisfy all its constraints. That part and all the constraints that apply to it are then
removed from the network. Deletion of these constraints may give another part enough
degrees of freedom so as to satisfy all its constraints. This continues until no more degrees
of freedom can be propagated. The part of the network that is left is then satisfied by



some other method, if necessary, and the result is propagated towards the discarded parts,
which are successively satisfied (propagation of known states).

The above techniques are two methods of propagation, independent of what is actually
propagated. We distinguish the following types of information inference and propagation.

Solution set inference makes deductions on the set of possible solutions, which are
restricted by the constraints. Most frequently used are discrete value sets, or intervals of
numerical values, see [Davis, 87].

In single solution inference, constraint variables get assigned a single value, often nu-
meric. The operational approach [Rossignac, 86], [Arbab and Wang, 89] performs single
geometric solution inference. It satisfies constraints sequentially by performing opera-
tions (translation, rotation, etc.) on the geometric objects involved. An already satisfied
constraint either tolerates an operation on one of its operands, or must propose a transfor-
mation to satisfy the constraint again. In this way operations can be propagated through
a constraint network until all operations are tolerated.

Local algebraic expression inference is a means to deal with loops in propagating nu-
meric values. [Steele Jr. and Sussman, 79] used powerful algebraic manipulation, but
found that these techniques are not powerful enough to solve many interesting problems
that people can solve. The way people usually solve these problems is by organizing the
solution so that simple canned algebraic solutions suffice.

In constraint inference, implied constraints are derived and explicitly added to the
network. Implied constraints can be recognized by a unification mechanism or by the use
of multiple redundant views [Steele Jr. and Sussman, 79]. Finding implied constraints can
be used to avoid extensive manipulations in cases where local propagation does not suffice.
Stating constraints in a different way with the same meaning can help the system to solve
the constraints locally. Otherwise it may have to resort to techniques such as relaxation.

2.2.  Constraint systems

Some systems that deal with geometry and some general purpose constraint languages are
mentioned below in chronological order.

Sketchpad [Sutherland, 63] was the first constraint-based drawing system. It satis-
fies constraints using propagation of degrees of freedom. When this fails, it resorts to
relaxation.

Variational geometry [Lin et al., 81] translates dimensional constraints into an overall
system of equations, which is solved numerically by the Newton-Raphson method. The
dimensional constraints are defined by equations on coordinates of characteristic points.
Each time a dimensional value is changed, the whole system of equations must be solved.

ThingLab [Borning, 81] enlarges the possibilities of Sketchpad with extensibility and
object-oriented techniques, so that new classes of objects and constraints can be defined.
It uses both propagation of degrees of freedom and propagation of known states.

Juno [Nelson, 85] is a simple system based on one geometric primitive: the point. It
uses a Newton-Raphson iteration technique to solve constraints. The user must supply an
initial value to start the iteration.

[Rossignac, 86] presents an operational interpretation of constraints in CSG modeling.
Constraints are specified by the user in terms of relations between boundary features, and
are transformed by the system into rigid motions of parts of the CSG tree. An under-
constraint situation can simply not occur. The user must specify the order of evaluation,
and is responsible for solving conflicts.

Real general purpose languages for constraint logic programming (CLP) can be used
in a wide range of applications, but are usually limited in their satisfaction power in each

4



specific domain. Most constraint languages are biased to a more specific domain: CLP(ID)
[Cohen, 90]. For numeric constraints this yields CLP(IR) over the domain of real numbers
[Heintze et al., 87]. This is not a symbolic algebra system; it uses no unification, but
numeric deductions.

Bertrand [Leler, 88] is a rule-based system that uses augmented term rewriting. It has
a form of abstract data types, which allows to define new types and constraints. It is a
general purpose constraint language, but deals primarily with numeric constraints.

OTP (Operational Transformation Planning) [Arbab and Wang, 89] also provides an
operational interpretation of constraints. It exploits solution reduction, one solution is
presented in an under-constrained specification (single solution inference). The satisfaction
process is planned through symbolic reasoning on the geometric level, that is, by geometric
reasoning [Arbab and Wing, 85]. This can also involve the inference of implied constraints.

In [Emmerik, 90] constraints relate coordinate systems. Constraints between degrees
of freedom (for example between the x- and y-coordinate because of a distance constraint)
are evaluated after lower-order constraints (for example one that uniquely determines the
x-coordinate). This is a form of delayed satisfaction. Selection among alternative solutions
to constraints (single solution inference) is based on the minimal resulting disturbance.
So, a single solution is derived for each constrained variable.

[Ruttkay, 91] presents a co-operative, or intelligent, graphical editor for constrained
graphical objects. Solutions for the positions of the objects are represented in numerical
form by a single range of values (numerical solution set inference). An explicit network of
constraints and variables is derived from a symbolic representation when needed.

[Owen, 91] presents a system with single numeric solution inference, in which the nu-
merical solutions are derived by algebraic methods. The propagation mechanism employed
is ‘propagation of degrees of freedom’.

3. Motivation

In this section we mention some problems that motivate our current research.

Objects can be related to each other by constraints, without logically being involved
in a part-whole relation. We do not want to be forced to create an artificial whole con-
sisting of parts, in order to be able to express a constraint, as in ThingLab. Specifying
constraints has a declarative flavor, and somewhat conflicts with part-whole hierarchies
and information hiding, which are the hallmarks of object-oriented systems. The relation
between constraints and objects is discussed in Section 11.

Many systems detect over-constrained situations, but cannot handle under-constrained
cases. Indeed numerical methods cannot solve a set of under-constrained equations. A
CLP system for solving numeric constraints returns a set of deduced equations that con-
stitutes the solution. In a geometric context, however, we prefer a geometrical form of
the solution. The operational approach and selection of alternatives based on minimal
disturbance yield only one of the solutions. This may give rise to two problems:

e The proposed solution is as it was intended, but the user is not aware of the ambiguity
of the specification. This may cause problems for post-processing.

e The solution is not as intended, and the user must interfere because the system
cannot propose alternative solutions.

We distinguish several types of alternative solutions:



Figure 1: Simultaneous evaluation of mutually constrained circles.

1. Several objects meet a specification of a variable involved in a constraint, and one
or more of them must be addressed. For example, any circle or all isosceles triangles
are constrained.

2. A constraint can have several discrete solutions. For example a circle through two
points, and with a fixed diameter greater than the distance between the points, can
have two positions.

3. A constraint can have a continuous range of solutions. For example the locus of a
point having a fixed distance to a fixed point, is a circle.

Whether or not the first type of alternative solutions can be handled depends on the
programming environment, and is not within the scope of this report.

Some systems mentioned above deal only with numeric constraints. Most graphics-
oriented constraint systems directly translate the (geometric) constraints into a set of
numeric constraints or equations. Often only linear equations can be solved. Instead, we
want to solve constraints at a high level of geometric abstraction. This allows powerful
reasoning which can avoid some of the problems that occur with numeric constraints:
recall that even a simple distance constraint results in a quadratic equation.

Simultaneous evaluation of mutually constrained objects is a difficult problem. Look
at Figure 1 for an example. Each of the two circle centers must lie on a line segment; then,
the circles are constrained to be tangent to each other on the outside. It is too complex for
an operational technique to translate both circles along the line segment simultaneously
to let them touch. Delayed evaluation is then preferred to relaxation in order to deal with
a geometrically meaningful representation as long as possible.

In this report we focus on providing ranges of solutions and discrete alternative solu-
tions in under-constrained situations by means of a quantum approach. In combination
with geometric reasoning and delayed satisfaction, this gives a more powerful problem
solving capability than usually provided by constraint systems.

4.  Quantum approach

We first give an informal presentation, but the main ideas are formalized in the subsequent
sections.

Constraints work on constraint variables, which are geometric primitives such as a
point, a line (segment), or a circle.

Our approach to geometric constraint satisfaction is based on reduction of both prob-
lem complexity and solution domain complexity by geometric simplification. Problem
complexity reduction is achieved by expressing geometric primitives in terms of charac-
teristic parts. For example, the position of a circle is reduced to the position of a point:
the circle center. Constraint solving amounts to recording the solution of the constrained
geometric primitives, in terms of their characteristic parts.

The unit of the solution domain is a ‘quantum’, which is itself a geometric primitive:
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Figure 2: Quanta resulting from the constraints distance(p, l1,d) and on(p, l).

A quantum is a geometric primitive describing a part of the solution set with
uniform geometrical characteristics.

We use the term quantum because it captures both ‘interval’ and ‘region’, and is more
descriptive than ‘solution set’. The nature of a quantum is that it describes a sharply
bounded quantity of some phenomenon, in our case the geometric properties of a solution
set. Note that quanta are not indivisible, nor need they be disconnected.

For example, the locus of a point p having a fixed distance to a line segment [; consists
of the union of two line segments and two half circles, see Figure 2. This solution is split
into the quanta g1, ..., g4, representing the two line segments and two half circles. These
quanta represent alternative sets of solutions. If p is further constrained to lie on a line
lo (another quantum), the final solution is restricted to the intersection of I with all the
alternative solutions so far. Since calculating the intersection of a line and a circle differs
from intersecting two lines, we take advantage of the subdivision into quanta g1, ..., g4.

Some simple constraints (with a fixed second operand) and the associated quanta are
listed below:

primitive | constraint primitive quanta

point distance point circle

point distance line segment | 2 line segments
+ 2 half circles

point left /right of | line half-plane

circle tangent line 2 lines

circle tangent circle 2 circles

The same principle can be used in 3-space. In general, however, a solution set may
not be representable with a fixed set of geometric primitives, especially in 3-space. In that
sense the set of constraints and geometric primitives should agree with each other. A set
of useful constraints in 3D is listed below and illustrated in figure 3 (again the second
operand is fixed):

primitive | constraint | primitive || quanta
1 | line angle line cone
2 | line angle plane plane
3 | point distance point sphere
4 | point distance line cylinder
5 | line distance line cylinder
6 | sphere tangent line cylinder
7 | sphere tangent sphere 2 spheres
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Figure 3: Quanta involved with 3D constraints.

In Section 10 we give an example using 3D constraints.

A set of constraints and geometric primitives can be represented as a network, such
that the constraint node is connected to its variables. The network can be disconnected, in
which case the variables in one connected component and the variables in other connected
components are not related by constraints. Constraints are represented in rectangular
boxes, geometric primitives in circular nodes. A quantum for a variable v, consistent with
constraint ¢(...,v,...), can be considered as a label on an edge between @ and .
Being a geometric primitive, a quantum is represented as a circle but with the edge that
it labels drawn through.

In order to represent unions and intersections of quanta, the special Boolean set op-
eration nodes <U] and <<Ql are used. These nodes are operators whose operands are
the quantum labels of edges coming in at the flat sides of the nodes and whose results are
the quantum labels of the edges going out at the sharp ends of the nodes. If there are
no quantum labels on the edges going out, these quanta are not (yet) computed. Simi-
larly, if there are no quantum labels on the incoming edges, they are not yet generated or
computed. In both cases, the logical relation between these forthcoming quanta is already
incorporated in the network.

Between a constraint and an associated variable is a sequence of (zero or more) quanta
interleaved with Boolean set operation nodes, on a path of edges. In the direction from the
constraint to the variable each quantum includes the next one. Figure 4 shows a network
that corresponds to the example of Figure 2. The network shown is an intermediate result
in the satisfaction process.

Our approach to geometric constraint satisfaction is thus based on solution set infer-
ence, and performs propagation of known states (see the next section).
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5. Formal model

Our model consists of a set of constraints C, a set of constraint variables V, a set of
quanta @, a quantum generating function G, and a function Tolerate(c) that satisfies a
constraint ¢ and performs propagation. The constraint variables and quanta are geometric
primitives.

A constraint is a relation between a number of variables from V. A constraint can
involve any number of variables, depending on its type. Constraints are multi-directional
in the sense that each of the involved variables constrains the others. In contrast to many
other systems, many variables may be undetermined. Constraints are specified incre-
mentally, so that every variable in V is involved in an ordered set of constraints. Each
constraint can be either restrictive or alternative. A restrictive constraint further restricts
the degrees of freedom of the involved variables. An alternative constraint provides alter-
natives to the solution of previously specified constraints on that variable. Considering a
single variable and only constraints on that variable, the constraints thus form an expres-
sion of the form

((c; AND/OR c3) AND/OR ...) AND/OR c.

A constraint expression like (¢; OR c¢3) AND (c3 OR c4) for example is not possible in this
scheme.

The quantum generating function G : (¢, v;) — (g1, ..., qn) generates the set of quanta
for v; that are consistent with the constraint c(vi,...,vx) and all the variables vj, j =
1,...,k, i # j, with their current quanta, regardless of the current quanta of v;. Note that

not all combinations of types of constraints and variables are geometrically meaningful; G
is defined only for a finite number of combinations. The generation of the quanta involves
geometric reasoning, taking into account the nature of the constraint and the current
quanta of the variables. Figure 5 illustrates the addition of a constraint to a network and
the subsequent generation of quanta. Only the part of the network in the neighborhood
of variable v is depicted.

When a new constraint is added to the network, the quantum generating function
is applied to each constrained variable. For a single variable, the union of the resulting
quanta, U(qi, . .., qn), is the solution to that one constraint. If the constraint is restrictive,
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q1,---,9, must be intersected with the variable’s current quanta. If it is an alternative
constraint, we take the union of the new and the current quanta. In this way we get an
expression of quanta, which is the solution set of the constraints so far. In general, this
quantum expression is of the form B(ges,...,qgen), where B is one of the Boolean set
operators union or intersection, and each ge; is a quantum expression.

After addition of a new constraint, generating new quanta qi, ..., gy, the solution set
becomes B'(B(ge1,...,qem),U(q1,...,qs)). For a restrictive constraint B’ is N, for an
alternative constraint B’ is U. This expression is simplified according to the following
network transformation rules:

L UU(g1,..-,qn)) = U(g1,- -, qn)

2. N(U(g1,---,02)) =U(g1,-- -+ qn)

3. UU(ger,---,qem),U(q1,- .., 4qn)) = U(ge1,---,q€m,q1,- - -, qn)

4. U(N(qe1,---,qem),U(q1,--.,4qn)) = U(N(ge1, ..., qem),q1,- - -, qn)
5. N(U(get,...,gqem),Y(

q1,. .. 7Qn)) = U(Qz N qe])
2y

n
6. N(N(ge1, ..., gem),U(q1,-.,q2)) = U N(ge1, ..., gqem, )
i=
Rules 1 and 2 apply when the constraint is the first one connected to v;.
Each ge in the other rules is either a single quantum or an intersection of other qe-
s, because of the effect of rule 3. Any intersection g; N ge; on the right-hand sides of
equations 5 and 6 that can be computed, is evaluated into a union of quanta: g; N qe; =
U(g1,---,q;)- It may be difficult to compute the intersection, for example if one of the
quanta is a circle that can float around. In that case we leave the intersection unevaluated
(see also Section 9). This is why a ge; can be an intersection of quanta or other ge-s:
qe; = N(gel, ..., qel).
The right-hand side of equation 6 may be split into an intersection that can be com-
puted and a part that remains unevaluated.

Figure 6 shows the network transformations that correspond to the evaluation rules.
€
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6. Propagation

Let S; = G(c,v;). We let the procedure Evaluate(v;, S;) compute intersections, transform
the network accordingly as described in the previous section, and return EMPTY if the
resulting solution set of v; is empty, CHANGED if it has been changed, and UNCHANGED
if it is unchanged. We can call G(c, v;) and apply Evaluate(v;, S;) for each variable of c.

If one of the variables gets assigned an empty solution set, the constraint expression
is inconsistent — the specification is over-constrained. If the solution set of a variable v;
has been changed and v; is involved in another constraint ¢/, the other variables of ¢’ need
also be updated. These variables must therefore be recorded. The following procedure
Revise(c) updates all variables of ¢, and returns the set of variables whose solution set is
changed (adapted from [Davis, 87]):

Revise (c)
{
Changed = 0
for each v; of ¢
S,; = G(C, ’l)i)
for each v; of ¢
case Evaluate (v;, S;)
{
EMPTY: Report (OVER-CONSTRAINED)
CHANGED: add v; to Changed
UNCHANGED: // do nothing
}

return Changed

}

When a new constraint is specified, it must be added to the network, and the resulting
changes must be propagated to related constraints. This may cause new changes which in
turn must be propagated, and so on. This is performed by the following algorithm:

Tolerate(c)
{
Fifo = [c] // first-in-first-out queue
while Fifo £ 0
{
¢’ = FirstElementOf (Fifo)
remove ¢’ from Fifo
Changed = Revise (c)
for each v € Changed
for each ¢” # ¢’ having v as parameter
add ¢” to Fifo

}
}

Revise(c) makes the solution set of every variable of ¢ consistent with ¢ and its other
variables using their current quanta. That is, the solution is made locally consistent.
When Tolerate(c) terminates (see next section), and an over-constrained case has not been
detected, the solution sets of all variables are locally consistent (this is equivalent to arc
consistency in [Mackworth, 77]).

12



When only restrictive constraints are added to a network, Tolerate(c) amounts to the -
propagation algorithm of [Waltz, 72], filtering the solution sets to get subsets which are
locally consistent.

Because constraints that have variables with changed quanta are placed in a first-
in-first-out queue (as opposed to an unordered list), they are guaranteed to be revised
again, whether the propagation is finite or infinite. This is called a fair propagation in
[Giisgen and Hertzberg, 88].

7. Termination

This section discusses termination of the propagation in Tolerate(c). We treat the cases
where c is a restrictive or an alternative constraint separately.

7.1. Restrictive constraint

When ‘4 restrictive constraint ¢(vi,...,vs) is added to the network, the solution sets of
variables do not get larger. More formally, Evaluate(v;, G(c,v;)) is then monotonic in the
following sense: let {[S1,..., Sk|Evaluate(v;, G(c,v;))} denote the solution set of v; after
applying Evaluate(v;, G(c, v;)) with S; the current solution set of v;, j = 1,...,k. Observe
that:

1. {[S1,..., Sk]Evaluate(v;, G(c,v;))} C S;

2. if S, C S;,j=1,...,k, then
{[S1, ..., Sy]Evaluate(v;, G(c,v;))} C {[S1,..., Sk]Evaluate(v;, G(c,v;))}.

Because of the monotonicity of Evaluate(v;, G(c,v;)), and the fairness of propagation
in Tolerate(c), results from [Giisgen and Hertzberg, 88] (adapted to our context) apply: if
there exists some terminating propagation resulting in a locally consistent solution, then
Tolerate(c) will find it. Moreover, the solution is unique.

Still, the propagation in Tolerate(c) need not terminate. A simple example is where
two line segments are related by a constraint that requires their lengths to be equal, and
a constraint that sets one length to half the length of the other (a pure num: ric analogue
is the case of two constraints = y and z = 2y). This can lead to an infinite locp halving
each line segment in turr. .

A loop occurs when a constraint is revised more than once, in one invocation of Tol-
erate(). When this happens, it is not clear whether this is the prefix of an infinite loop
or not, but we must break the loop after a finite number of times. One possibility is to
terminate propagation by force when a constraint is addressed a fixed number of times. A
more sophisticated approach is tu break a loop when there are no more substantial changes
made to the solution set. Specifically, when none of the quanta of a variable change type
(for example change from a line segment into a point), and nu quantum changes more
than a certain ‘geometric margin’, we can break a loop. After a loop has been cut-off, the
current quanta of the variables in the loop form a super-set of the real solution. There are
several things we can do with such a super-set:

1. present the super-set to the user, which is still better than many grephics systems
can provide,

2. compute the solution set numerically, using the super-set to obtain initial values and
bounds, if necessary,

3. compute a single solution from the solution set,
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4. test whether a solution exists instead of computing a solution (set).

7.2. Alternative constraint

If an alternative constraint is added to the network, the solution sets of variables may get
larger. This can more easily lead to an infinite loop than when the solution is restricted.
When a variable involved in a circular chain of constraints gets assigned alternative quanta,
these constraints may produce alternative quanta for their variables ad infinitum. Again,
a loop need not be the prefix of an infinite loop, but propagation must be stopped. A
loop can be stopped after a constraint is addressed a fixed number of times, or when the
increase of the solution set exceeds a certain ‘geometric margin’.

A (possibly infinite) increase of the solution may not have been the intention of the
user, and the system can ask whether the alternative must be redrawn. In any case, after
a loop has been cut-off, the current quanta of the variables in the loop form a sub-set of
the real solution. We can use this result to:

1. present the sub-set to the user, which is still better than many graphics systems can
provide,

2. try to generate a super-set of the solution, and proceed with propagation in order
to restrict the solution.

8. Implied constraints

Our system uses geometric simplification, for example by shrinking a circle to a point, and
regarding the radius as a distance. In this way the constraint that a circle c; is tangent to
another circle ¢, is regarded as the constraint that the shrinked ¢; has a distance to the
shrinked co that is equal to the sum of their radii r; + ro. That is, ¢; lies on the circle ¢;
with radius 71 + 72, and concentric with cs.

In order to simplify geometric reasoning, we exploit implied constraints: constraints
that can be derived from other constraints and variables. Implied constraints can operate
on variables and quanta. Indeed a quantum is a geometric primitive, and can thus act as
a constraint variable, while it still represents a solution to another constraint. The user
has no direct access to these implicit constraints.

See Figure 7 for a situation where two tangent circles and their corresponding network
explicitly represent some useful implied constraints. The quanta ¢; and go are circles
concentric with ¢y and c;, respectively. As ¢; moves around, for example along line [, so
does ¢s.

An implied constraint is derived from other constraints and variables, and so it does
not introduce new facts. Its purpose is to ease the problem solving by an extra simplifi-
cation. In our example, the coincidence of the centers of ¢; and g2 causes changes to c; to
mechanically carry over to gs.

The type of an implied constraint (restrictive or alternative) must be consistent with
the constraint(s) it is derived from, otherwise it would provide incorrect restriction or
alternatives. Again, this introduces no more restrictions or more alternatives to the vari-
ables of the implicit constraint. For example if parallel(l;,l3) AND parallel(ls,l3), then
parallel(ly, I3) is implied, and must also be restrictive.

14



o e

M — concentri N
(M — concentrig N

Figure 7: Implied constraints concentric(cy, g2) and concentric(cs, q1).

9. Completeness

Completeness of our constraint system depends on the set of geometric primitives, the
allowable constraints, the power of geometric reasoning behind the quantum generating
function, and the system’s competence to intersect quanta. This last aspect is illustrated
by the example in Figure 7. As the circle ¢; moves along line [, go moves accordingly,
thus sweeping out a whole area of solutions. Although the area has a simple shape, its
definition in terms of a swept circle makes intersection with subsequent quanta non-trivial.
In this example the intersection is clearly computable, but a particular system may not
be able to perform this intersection.

When we cannot compute an intersection of two quanta, we leave the intersection
unevaluated, and represent it with a <<Q] node in the network. A following intersection
may resolve the problem, as the following extension of our example illustrates. If ¢y is
further constrained to lie on line segments m; and mo, and the intersection of m; with
the swept circle g is left unevaluated, the next intersection (g N'm1) Nmg is transformed
into (g2 N'm2) N (m1 Nmy). If my N'mgy = O, so is the final solution. If m; N'my is a point,
it is easier to test if it is included in (g2 N m2) than to compute (go N m2) itself.

In this way, delayed satisfaction of constraints is handled uniformly, thereby enhancing
the satisfaction capabilities of the system.

In our examples, we used only points, lines, and circles as geometric primitives, and tan-
gent(), parallel(), on(), and distance() as constraints. With these collections of primitives
and constraints, we can compute the solution sets when the system gets into trouble, by
turning the geometric information into equations and solve them algebraically [Owen, 91]
or numerically.

In the case of more general primitives and constraints, the system may resort to some
analytical method or simply specify to the user what caused the problem.
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Figure 8: A four-bar linkage; A and B are fixed.
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10. FExamples

10.1. Planar linkage

Consider the four-bar linkage of Figure 8 (top left), involving points A, B, C, D, and M.
The points A and B are fixed and a distance d; apart. The constraints on C, D, and M
are the following:

constraint 1: the distance between A and C is dy;
AND constraint 2: the distance between B and D is dp;
OR constraint 3: the link BD is vertical;
AND constraint 4: the distance between C and D is dj;
AND constraint 5: M is the midpoint of C' and D;
AND constraint 6: the line through A and C has a fixed slope.

These constraints are specified in the given order, and we are interested in the position
of C, D, and M.

This problem can be solved algebraically by computing the locus of C, D, and M each
time a constraint is specified. As an illustration, set A to (0,0) and B to (0,d;), without
loss of generality, and ignore constraint 3 for the moment. Then the locus of M = (z,y)
just after specifying constraint 5 is given by a polynomial of degree six. If dy = d3 this
polynomial reduces to:

16(z* +y*) + 3222y2 — 16d; (z° + zy?) — (12d% + 4d3) (2 + y?) + (843 — 4d1d3)z = d3d} — 4d?

(see [Chou and Gao, 89]).
This equation can be derived by an algebraic manipulation system, but that is of little
use here because it does not interact in a simple way with the subsequent constraint.
Alternatively, our constraint management system comes up with the following quanta:

by constraint 1: C is restricted to a quantum that is the circle cc; centered at A and
having radius di;

by constraint 2: D is restricted to the circle c¢p 1 centered at B with radius dy;

by constraint 3: D is resiricted to the vertical line [ through D;

by constraint 4: for C: a circle cc2 with radius d3 which has no fixed position, but is
centered at D; similarly for D: a circle cp s concentric to C, having radius ds;

by constraint 5: because M is the midpoint of two points whose positions are unknown,
no quantum is generatea yet for M,

by constraint 6: since the line through A and C must have a fixed slope, another quantum
is associated to C: line Is.

The quanta cc 1, cp,1, ¢p,2, lc, and [p are shown at the top row of Figure 8, where the
two possible cases induced by the alternative constraint are depicted in separate columns.

The quanta resulting from constraint 4, cc2 and cp 2, are not fixed but can move
around. Consequently, it is difficult to intersect these quanta with the other quanta cc 1,
¢p,1, and Ip. The intersection remains unevaluated, but is represented in the network:
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The next quantum for C, I¢, must be intersected with the current quanta. Application
of rule 6 (with n = 1) gives N(N(cc,1,cc,2), lc) = N(ec,co2, lo):

(<@ - (<K

Intersection lc N cc,1 can be computed and gives two points pc,1 and pc 2, the inter-
section with c¢ 2 is delayed:

(<a

This intermediate result must be propagated to objects related to C. Because C is
now restricted to at most pc,; and pc 2, the movable quantum cpo of D is replaced by
two circles cp 3 and cp 4 centered at pc1 and pc o respectively. These circles can be seen
as two specific instances of cps. Also, since M is the midpoint of C and D, it is now
restricted to two circles cp 1 and cpr 2, concentric with cp 3 and cp 4 but with half their
radius. The new quanta are depicted in the second row Figure 8.

Quanta cp 3 and cp 4 are intersected with cp ; and Ip:
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Application of rule 5 gives \(U(cp,1,Ip),U(cp,3,¢cp,4)) = U(N(ep,1,¢p,3), N(cp,1,¢p.4),
N(lp,cp3), N(Ip),cp,4), which can be computed, yielding pp 1,...,pp.4-

Again this intermediate result must be propagated. Since D is now restricted to
PD,1s---,PD,4, the quanta pc 2 and cpy,o are deleted, and cypy,; is replaced by pas,1 and pay 2.
The four possible solution configurations are shown in the two lower rows of Figure 8.

10.2.  Articulated structure in space

The application in this subsection is illustrated in figure 9. The 3D scene in this exam-
ple contains a plate P, a spherical source of radiation R, and an articulated structure
supporting P, consisting of two arms A; and Ag, having balls B; and Bj respectively at
their endings. P, R, A; and B; are totally fixed. The constraints on Ay and B, are the
following:

constraint 1: A, must have a fixed angle o with respect to Ay;
AND constraint 2: B, must be at a fixed distance d from R;
AND constraint 3: B must be tangent to P at the bottom side.

Figure 9: Articulated structure in 3D.
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The constraints are incrementally specified in this order. We want to know the allowable
positions of ball Bjs.
The center of By is restricted to the following quanta:

by constraint 1: a cone C with its top at the center of Bh;
by constraint 2: a sphere S, concentric with R, having radius d.
by constraint 3: a plane P’ below P, at a distance equal to the radius of By;

Intersecting these quanta in this order gives (C'NS) N P'. In general, however, the
intersection of a cone with a sphere is not a simple primitive object. Applying delayed
evaluation again results in the actual intersection of (C' N P’), an ellipse, with (S N P'),
a circle. Assuming that both intersections are not void and the ellipse is non-degenerate,
the intersection of the circle and the ellipse gives two, one, or no solutions, depending on
the actual positions and orientations of R, P, and A;.

11. Constraints and objects

The geometric representation of the constraint variables and quanta naturally corresponds
to object-oriented graphics concepts. On the other hand, relationships between objects
other than ‘is-a’ and ‘part-of’ hierarchies, such as constraints, cannot be suitably repre-
sented by message passing.

We distinguish two possible incompatibilities between constraints and object-oriented
concepts:

e a constraint solver looks at, and sets, the constraint variables’ internal data, which
conflicts with the information-hiding concept in the object-oriented paradigm;

e object-oriented programming is imperative, while constraint programming is declar-
ative.

If one is to use object-oriented methods to manage complexity in a geometric mod-
eling system, and also wants to provide constraints to its users as a tool to manage the
complexity of problem solving, then constraints and objects must be friends. However,
message passing for constraint handling, as in [Laffra and van den Bos, 90], is either lim-
ited to constraint maintenance, or against the object-oriented philosophy: providing all
objects subject to constraints with interface methods to get and set their internal data,
grants every other object to get and set their values.

One way to restrict this, is to have an object allow value setting only when its internal
constraints remain satisfied, see [Rankin, 91]. By contrast, access to private data can be
limited to constraint-objects (or the constraint solver-object) only. For example C++
provides the ‘friend’ declaration to grant functions access to the private part of objects,
see Section 11.1. This is also comparable to [Cournarie and Beaudouin-Lafon, 91], where
special variables (slots) are accessible by constraints only.

One can argue that the encapsulation is still violated (and specifically that a C++
friend is not intended to change the state of an object). Alternatively one can see con-
straints more as a means to access information in an orderly and restricted way, than that
they violate the information hiding principle. At least the responsibility for integrity is
shifted from the constraint user to the constraint implementer. A problem that remains
is the difficulty of debugging a constraint system, due to the global effects of constraints.

Object-oriented languages are imperative, and thus use a notion of state, particularly
represented by objects. On the other hand, pure constraint languages are declarative, and
thus specify one single timeless state: the solution to the specified problem. However, both
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paradigms can be combined as in [Freeman-Benson, 90], where an imperative assignment
to a variable sets a value at one moment in time, and a declarative constraint dictates
a value from that moment on. However, if the solution depends on the order in which
constraints are solved, the declarative semantics is destroyed. The constraint satisfaction
with quantum labels finds whole solution sets. An intermediate result may be a sub-set
or a super-set of the true solution set, but the final solution does not depend on the order
of satisfaction, so that delayed satisfaction has no side effects. As a result, the declarative
semantics of constraints are preserved.

11.1. Implementation

We distinguish the following relevant objects classes: GeometricPrimitive, Quantum, and
Constraint. Instances of objects are created upon user demand, typically via a graphics
interface.

A quantum can be designed as a polymorphic object which refers to a line, circle,
polygon, etc. An alternative in environments supporting multiple inheritance is to let a
quantum object inherit properties from geometric primitives, as well as additional prop-
erties that are specific for quanta.

The exact geometric primitive type of each individual quantum object must be known
to enable correct use of the primitive. The primitives provide this type-information by
means of the method whatami(). When using an object-oriented curve intersection method
such as [Rankin and Burns, 90], primitives also provide a method nearestpoint() which
returns the point on the curve that is nearest to a given point. A draw() method typically
calls the drawing method of the geometric primitive after a drawing style is specified, to
distinguish a quantum from a design primitive.

All constraints are subclasses of the base class Constraint, and have methods draw()
and satisfy(). The draw() method visualizes the constraint by connecting the operands
with an arc that is labeled with a corresponding constraint icon.

The system is currently being implemented in C++ [Stroustrup, 86] and Quintus Pro-
log [Quintus, 90], which provides an interface with C. Class methods, in particular the
constraint method satisfy(), may contain assertions and goals in Horn clause logic. This
provides a way to exploit the geometric context of the constraint and var.. bles, and to
make the system more intelligent by geometric reasoning.

In a typical C++ implementation the above ment.oned functions are virtual, to inaicate
that the base (super) class has a general version, ana 11 > derived classes can have different
own versions:

class GeometricPrimit ve
{
friend class Constraint; // grant access to private data
private:
Frame frame; // modeling coordinate system
Color color;
/] ...
public:
virtual GPType whatami(); // geometric primitive type
virtual Point nearestpoint();
virtual void draw();

/] ...
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This is only one of the many possible ways to implement the quantum approach, ex-
ploiting both object-oriented concepts and relational logic. The alternatives include an ex-
tension of (Concurrent) Prolog with object -oriented features, see for example [Zaniolo, 84],
[Shapiro and A.Takeuchi, 83], and the language Oar [Arbab and Wang, 89]. Objects can
also be combined with a functional language, see for example Common Lisp Object Sys-
tem (CLOS) [Moon, 89]. All these languages specify objects, hierarchies, and methods in
a declarative way.

12. Concluding remarks

Operations on a variable, such as translate, scale, mirror, and project, can be handled by
performing proper corresponding operations on its quanta. These new quanta must then
be propagated through the network.

For interactive CAD purposes, a constraint must also be removable. In our system,
deletion from the network, involves removal of the constraint and the sequence of quanta
and Boolean set operation nodes towards its involved variables. Sequences from other
constraints to the same variables must be ‘repaired’ by intersecting the proper quanta.
The resulting new quanta must be propagated through the new network. Note that the
explicitly represented implied constraints must also be removed.

The quantum approach can also be applied to pure numeric constraint problems. In-
stead of geometric variables and quanta, intervals are concerned. Algebraic reasoning then
takes the place of geometric reasoning.

More research is needed to further exploit the capabilities of geometric reasoning. In
particular implicit constraints (relations between quanta to which the user has no direct
access) can be used by the satisfaction system to solve complex constraints more directly.

Acknowledgements

This research is part of the IIICAD project, supported by NWO (Dutch Organization for
Scientific Research) under Grant NF-51/62-514.

References

[Arbab and Wang, 89] Arbab, F. and Wang, B. A geometric constraint management sys-
tem in Oar. In ten Hagen, P. J. W. and Veerkamp, P. (editors), Intelligent CAD Systems
IIT - Practical Experience and Evaluation (Proceedings 3rd Eurographics Workshop on
Intelligent CAD Systems, 1989). Springer-Verlag, 1989, 231 — 252.

[Arbab and Wing, 85] Arbab, F. and Wing, J. M. Geometric reasoning: A new paradigm
for processing geometric information. In Yoshikawa, H. and Warman, E. A. (editors),
Design Theory for CAD (Proceedings of the IFIP W. G. 5.2 Working Conference, 1985).
Elsevier Science Publishers, 1985, 145 — 165.

[Badler and Kamran, 87] Badler, N. I. and Kamran, H. Articulated figure positioning
by multiple constraints. IEEE Computer Graphics & Applications (special issue on
articulated figure animation, 7(6), 1987, 28 — 38.

[Borning, 81] Borning, A. The programming language aspects of ThingLab, a constraint-
oriented simulation laboratory. ACM Transactions on Programming Languages and
Systems, 3(4), 1981, 353 — 387.

22



[Chou and Gao, 89] Chou, S.-C. and Gao, X.-S. A collection of 120 computer solved geom-
etry problems in mechanical formula derivation. Technical Report TR-89-22, University
of Texas, Department of Computer Science, 1989.

[Cohen, 90] Cohen, J. Constraint logic programmmg languages. Communications of the
ACM, 33(7), 1990, 52 — 68.

[Cournarie and Beaudouin-Lafon, 91] Cournarie, E. and Beaudouin-Lafon, M. Alien: a
prototype-based constraint system. In [Laffra and Blake, 92].

[Davenport et al., 88] Davenport, J. H., Siret, Y., and Tournier, E. Computer Algebra —
systems and algorithms for algebraic computation. Academic Press, 1988.

[Davis, 87] Davis, E. Constraint propagation with interval labels. Artificial Intelligence,
32, 1987, 281 — 331.

[Emmerik, 90] Emmerik, M. J. G. M. v. A system for interactive graphical modeling with
3D constraints. In Proceedings CGI ’90. 1990.

[Freeman-Benson, 90] Freeman-Benson, B. N. Kaleidoscope: Mixing objects, constraints,
and imperative programming. (ECOOP/OOPSLA 90 Proceedings) SIGPLAN Notices,
25(10), 1990, 77 — 88.

[Giisgen and Hertzberg, 88] Giisgen, H.-W. and Hertzberg, J. Some fundamental proper-
ties of local constraint propagation. Artificial Intelligence, 36, 1988, 237 — 247.

[Heintze et al., 87] Heintze, N. C., Michaylov, S., and Stuckey, P. J. CLP(IR) and some
problems in electrical engineering. In Lassez, J.-L. (editor), Proceedings of the 4th
International Conference on Logic Programming. MIT Press, 1987.

[Helander, 88] Helander, M. (editor). Handbook of Human-Computer Interaction. North-
Holland, 1988. .

[Laffra and Blake, 92] Laffra, C. and Blake, E. (editors). Advances in Object-Oriented
Graphics II (Proceedings of the second Eurographics Workshop on Object-Oriented
Graphics, Tezxel, The Netherlands, June 1991), EurographicSeminars Series. To be pub-
lished by Springer-Verlag, 1992.

[Laffra and van den Bos, 90] Laffra, C. and van den Bos, J. Propagators and concur-
rent constraints. In Proceedings of the Object Based Concurrent Systems workshop at
ECOOP/OOPSLA ’90, Ottawa. 1990.

[Leler, 88] Leler, W. Constraint Programming Languages, Their Specificatior. and Gener-
ation. Addison-Weslev, 1988.

[Lin et al., 81] Lin, V. C., Gossard, D. C., and Light, R. A. Variational geome’ ‘v in
computer-aided design. Proceedings SIGGRAPH o1, Computer Graphics, 15(3), 1981,
171 - 177.

[Mackworth, 77] Mackworth, A. K. Consistency in networks of relations. Artificial Intel-
ligence, , 1977, 99 — 118.

[Mantyla, 88] Méantyld, M. An Ttroduction to Solid Modeling. Computer Science Press,
1988.

[Moon, 89] Moon, D. A. The common lisp object-oriented programming language. In Kim,
W. and Lochovsky, F. (editors), Object-Oriented Concepts, Dairbases, and Applications.
ACM Press/Addison Wesley, 1989.

[Nelson, 85] Nelson, G. Juno, a constraint-based graphics system. Proceedings SIG-
GRAPH ’85, Computer Graphics, 19(3), 1985, 235 — 243.

[Owen, 91] Owen, J. C. Algebraic solution for geometry from dimensional constraints. In
Proceeings of the ACM Conference on Solid Modeling. ACM Press, 1991, 397 — 407.
[Pratt, 87] Pratt, M. J. Form Features and their Applications in Solid Modeling, Tutorial

SIGGRAPH ’87. ACM, 1987.
[Quintus, 90] Quintus (1990). Quintus Prolog User Manual. Quintus Computer Systems,
Inc.

23



[Rankin, 91] Rankin, J. R. A graphical object oriented constraint solver. In
[Laffra and Blake, 92].

[Rankin and Burns, 90] Rankin, J. R. and Burns, J. Coordinate frames and geometric
approximation in graphics object oriented programming. In Blake, E. and WiBlkirchen,
P. (editors), Advances in Object-Oriented Graphics I (Proceedings of the Eurographics
Workshop on Object-Oriented Graphics, 1990), EurographicSeminars Series. Springer-
Verlag, 1990, 131 — 148.

[Rossignac, 86] Rossignac, J. R. Constraints in constructive solid geometry. In Crow, F.
and Pizer, S. M. (editors), Proceedings of the 1986 ACM Workshop on Interactive 3D
Graphics. ACM Press, 1986, 93 — 110.

[Ruttkay, 91] Ruttkay, Z. A co-operative graphical editor based on dynamically con-
strained objects. In [Laffra and Blake, 92].

[Shapiro and A.Takeuchi, 83] Shapiro, E. and A.Takeuchi. Object-oriented programming
in concurrent Prolog. New Generation Computing, 1(1), 1983, 25 — 48.

[Steele Jr. and Sussman, 79] Steele Jr., G. L. and Sussman, G. J. CONSTRAINTS. APL
Quote Quad, 9(4-Part 1), 1979, 208 — 225.

[Stroustrup, 86] Stroustrup, B. The C++ Programming Language. Addison Wesley, 1986.

[Sutherland, 63] Sutherland, I. Sketchpad: A man-machine graphical communication sys-
tem. In Proceedings of the Spring Joint Computer Conference (IFIPS). 1963, 329 —
345.

[Szekely and Meyers, 88] Szekely, P. and Meyers, B. A user-interface toolkit based on
graphical objects and constraints. In Proceedings of the 1988 ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications. ACM, 1988, 36 —
45.

[Veltkamp, 91a] Veltkamp, R. C. A quantum approach to geometric constraint satisfac-
tion. In [Laffra and Blake, 92].

[Veltkamp, 91b] Veltkamp, R. C. Geometric constraint management with quanta. In
Brown, D. C., Waldron, M., and Yoshikawa, H. (editors), Proceedings of the IFIP
TC5/WG@G5.2 Working Conference on Intelligent Computer Aided Design, Columbus,
Ohio, September 1991). To be published by North-Holland.

[Veltkamp and Arbab, 91] Veltkamp, R. C. and Arbab, F. Geometric constraint propa-
gation with quantum labels. In Preliminary proceedings of the Eurographics Workshop
on Computer Graphics and Mathematics, Genova, Italy, October 1991.

[Waltz, 72] Waltz, D. L. Generating Semantic Descriptions from Drawings of Scenes with
Shadows. PhD thesis, MIT, 1972.

[Zaniolo, 84] Zaniolo, C. Object-oriented programming in Prolog. In Proceedings of the
IEEFE International Symposium on Logic Programming. IEEE, 1984, 265 — 270.

24



