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We discuss the approximate analysis of an M/G/1 queue where low priority customers may flow
over to become high priority customers due to impatience. The first approximation method
uses a standard M/G/1 priority queue in which the arrival rates are adjusted according to
an estimation of the fraction of overflowing customers. The second approximation method
consists of a brute force calculation of the equilibrium distribution of the queueing system
with phase type service time distributions, using the method of stages and truncation of the
state space.
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1 INTRODUCTION

In this paper we present a queueing model for corrective and preventive maintenance of a
large number of components in a technical installation like for instance a plant at an oil
refinery or an offshore platform. For such an installation an estimation of the maintenance
workload is made on the basis of, among other things, design information of the installation,
various repair strategies and operational regimes. This estimation should account for both
unplannable or emergency maintenance jobs and plannable or preventive maintenance. We
thus distinguish between these two different types of jobs, corrective maintenance (CM) and
preventive maintenance (PM). CM corresponds to repair of components that have broken
down, and PM is performed on a component to prevent it from breaking down.

The maintenance jobs are carried out by a maintenance crew. Since corrective maintenance
on a component is usually associated with unavailability of the installation, it is carried out
at a higher priority than preventive maintenance. The manning level of the maintenance
crew determines the waiting time of maintenance jobs, which is usually referred to as backlog.
This backlog should not become too large, since that may cause components that are waiting
for preventive maintenance to break down before the job is executed. A long backlog for
preventive maintenance may also lead to the violation of safety requirements, forcing an
immediate execution of the job at a priority comparable to corrective maintenance. When
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this happens, then the waiting time of other preventive maintenance jobs may increase, and
this can eventually lead to almost all PM jobs turning into CM.

A large backlog may thus have a significant impact on the balance between PM and CM,
and thus on the unavailability of the installation. Another reason to keep the backlog suffi-
ciently small is the fact that CM, as opposed to PM, is by its nature very ‘unplannable’ and
adjustments of the maintenance manpower may have a considerable impact on total costs.

For the performance of corrective and preventive maintenance we consider an M/G/1
queueing model with two priority classes. The high priority class corresponds to CM and the
low priority customers represent PM jobs. Both types of jobs are generated by two indepen-
dent Poisson sources. The maintenance crew is represented by a single server, whose speed
is proportional to the number of crew members. CM jobs are served with non-preemptive or
preemptive-resume priority over PM. Each PM job has a deadline associated with it. If the
deadline of a PM job expires before his service has begun, then the job becomes a CM job,
i.e. it leaves the waiting queue of PM and joins the CM queue.

The category of queueing models with impatient or reneging customers was first introduced
by PaLM [12]. In more recent literature we can classify two groups of papers on queueing
models with impatient customers. The first group deals with the evaluation of various per-
formance measures of queues with impatient customers, while the second group focuses on
optimal control problems in queues with impatient customers. Examples of the first group
are BACCELLI et al. [1], and STANFORD [15, 16]. They present a thorough analysis of for
instance ergodicity conditions and waiting time distributions. In BACCELLI AND TRIVEDI [2]
a transient analysis is presented of a system which stops as the first customer becomes impa-
tient. Many practically oriented papers in this group arise in situations involving impatient
telephone customers, especially in the area of overload control. Examples are DOSHI AND
HEFFEs [8], FAYOLLE AND BRUN [9], Forys [10] and SzE [17]. An early overview of various
queueing models with impatience can also be found in SaATY [14].

The second group of papers deals with various issues of optimal control of a queue with
impatient customers. DE WaaL [20], [21, Chapter 4] and BLANC et al. [5] discuss the
problem of optimal admission to a FCFS queue in order to maximize the discounted and
longrun average reward associated with the departure of successful customers. Another topic
in optimal control of queues with impatient customers concerns the scheduling of customers.
In fact DosHl AND HEFFEs [8] and Forys [10] already touch on this problem, since they
compare various scheduling disciplines as overload control mechanisms in telephone switches.
In PANWAR et al. [13] it is shown that the Shortest Time to Eztinction (STE) policy is optimal
for a class of continuous and discrete time nonpreemptive M/G/1 queues. Similar results are
presented in BHATTACHARYA AND EPHREMIDES [3, 4]. Typical for most of the models is
that reneging customers either leave the system or are allowed to be removed. In CHEN AND
TowsLEY [6] the optimal scheduling policy is given for a model in which all customers have
to be served eventually.

An important difference of the model in this paper with the existing literature is the fact
that a customer who reneges can affect the waiting time of other customers of the same
type including customers who arrived before htm. This phenomenon makes it, for instance,
impossible to derive a recursive formula for the virtual waiting time as in BACCELLI et al. [1]
or STANFORD [15]. Moreover, since deadlines may be random, even the order of PM jobs
that change into CM jobs is not necessarily preserved.
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FiGURE 1. The queueing system

In the case of exponentially distributed service times we can write down a set of functional
equations for the generating function of the joint queue length distribution. This set of
differential equations for the bivariate generating function involves a partial derivative due
to the impatience overflow. This problem can be reduced to a boundary value problem of
Riemann—Hilbert type, that we have not attempted to solve yet. Instead we have developed
two approximation methods for the computation of various performance measures. The first
method uses a standard M/G/1 priority queue without overflow where the overflow process
of the real model is approximated by adjusting the arrival rates. The second approximation
method, developed for the original model with phase type service time distributions, uses
brute force calculation of the equilibrium joint queue length distribution with a truncated
state space.

This paper is organised as follows. In Section 2 we give a description of the model. The two
approximation methods are introduced in Sections 3 and 4. Numerical results are presented
in Section 5 and conclusions and future research directions are sketched in Section 6.

2 DESCRIPTION OF THE MODEL

Consider the queueing system as depicted in Figure 1. We distinguish two types of customers,
type C denoting corrective maintenance tasks and type P denoting preventive maintenance
tasks. We assume that tasks are generated by two independent Poisson processes with arrival
rates A¢ and Ap, respectively.

The service times of customers are independent and they may have a distribution of arbi-
trary type. Let Bo and Bp denote the distribution functions of the service times of types
C and P. We also introduce B¢ and Bp as the Laplace-Stieltjes transform of Bg and Bp.
Furthermore we let B¢ and Bp denote the mean service times and ﬁ(g ) and ﬁg) the second
moments.

Customers are handled by one server that works according to either a non-preemptive or
preemptive resume priority rule, where type C has a higher priority than type P. Customers
of the same priority are served in the order of arrival.

As was described in the Introduction preventive maintenance tasks are indeed served at a
low priority provided that their service is not delayed for too long. When the waiting time of
a preventive maintenance task exceeds some threshold, however, then the execution of that
task becomes urgent and it should thus get high priority. We model this as follows. The
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value of the threshold, which we shall call deadline, is assumed to be a random variable D,
that has distribution function Fp and mean 3p. Deadlines of type P customer are mutually
independent and independent of the interarrival and service times. Consider now an arbitrary
customer of type P who arrives at time ¢ and has deadline D. If the service of this particular
customer has not commenced at time £ + D, then at that time the customer will leave the
queue of low priority customers. Subsequently he joins the high priority queue at the end,
i.e. behind all the customers that are already present there. He will there become a regular
type C customer, so his service time will have distribution function Be. This switching of
type will be called impatience overflow or simply overflow.

3 APPROXIMATION METHOD I

In this section we suggest a method to approximate the stationary fraction of type P cus-
tomers whose service is delayed for too long and who thus become type C. We denote this
fraction as ¢, the overflow probability. The key idea behind the approximation method is
that some aspects of the stationary behaviour of the model of Section 2 resemble those of
an ordinary M/G/1 priority queue without deadlines, where the overflow process is replaced
by an additional Poisson source with rate gAp. More precisely, the approximate model will
be an ordinary M/G/1 queue with (preemptive resume or non-preemptive) priority and the
same service time parameters as the original model, but with arrival rates A;; and A\p chosen
as

IC =Ac + q)‘Pv
Ap = (1-¢)Ap.

For convenience we shall denote this queueing model as M,, reflecting the dependence of the
arrival parameters on ¢. Of course the Poisson assumption for the overflow process is an
approximation, but we expect it to provide good approximations for a system that is only
lightly loaded. We shall come back to this in the discussion of numerical results in Section 5.

Thus remains the problem of finding a good choice for ¢. For this we need some additional
notation. Let W, denote the (stationary) waiting time for type P customers in model M,,
Fw, its distribution function and let Fw, denote the Laplace-Stieltjes transform of Fy,.
Furthermore let € be a sufficiently small positive number. The approximation for ¢ will be
computed by the following iterative procedure. Let ¢; € [0,1] be the i-th approximation for
g. In model M, we compute the fraction ¢;; of type P customers whose waiting time is
larger than the deadline D, ie. ¢;41 = P(W, > D). If ¢;41 is sufficiently close to g;, i.e.
|¢i — ¢i+1]| < €, then we take ¢; as an approximation for ¢, otherwise we repeat the same
procedure with ¢; replaced by ¢;41.

ALGORITHM
0. Let go € [0,1],2:= 0.

1. Compute in the M/G/1 priority queueing model M,:

g1 1= P(Wy > D).



2. If |¢; — ¢;11] < €, then STOP, else ¢; := ¢;4+1,7:=i+ 1, and go to 1.

We conclude the description of the approximation method with the details on the compu-
tation of P(W, > D). This is presented for the case where D has an Erlang distribution.
A similar procedure can be constructed along the same lines for hyperexponential distribu-
tions, or mixtures of Erlang and hyperexponential. For deterministic deadlines we can use
the approximations for the waiting time percentiles of T13Ms [19].

Assume that D has an Erlang-k distribution with mean fp = %, for some k € N, > 0, so

The computation of P(W, > D) is now straightforward:

o0

1-P(W,> D) = A (1 - Fp(t))dFy, (1)

Note that the stationary waiting time W, — the time between the moment of arrival and the
beginning of service — has the same distribution for both the non-preemptive and preemptive
resume priority discipline. Furthermore, §w, is well known from literature and can be found
in many queueing theory textbooks, e.g. COHEN [7, p.450]:

(L—a)p+ (A —Ce(p,1))/ac]ap

_ 2
Swall) = e + Bp(a + (1= Co(p, 1))/ac) ¥
where
o — 1
C — Alcv’
ap — 1
P — AIP’

a is the workload

a= ICﬁC + }\}’ﬁpa

and (c(p,1) is the zero z, with the smallest absolute value, of

z=Bo(p+(1-2)/ac),



i.e. (c(p,1)is the L.S.T. of the busy period of an M/G/1 queue with mean interarrival time
ag and service time L.S.T. B¢.

Note that this approximation method cannot be used to compute waiting time characteris-
tics. Of course we can compute the moments of the waiting times in the approximate M/G/1
model with two Poisson arrival streams, but the overflow process in the original model will be
so irregular, that a Poisson process will be a very bad approximation. Moreover, an overflow
usually occurs when the waiting times are large, and the overflowing customer will increase
the waiting time of the remaining PM jobs, since it will become a high priority customer.
From this we may conjecture that impatient customers will, on the average, see large wait-
ing times, and that the overflow process will be very bursty. Ordinary CM jobs will also
experience longer waiting times than in the M, model. These assumptions have indeed been
verified by test data from simulations.

Numerical results for this approximation method will be discussed in Section 5.1.

4 APPROXIMATION METHOD II

The second approximation method is proposed for the model of Section 2 in which the
service times have a phase type distribution. Furthermore we assume that the deadlines of
low priority (PM) jobs are exponentially distributed. We shall describe this method only
for the non-preemptive priority discipline. The preemptive resume priority discipline can be
dealt with in a similar manner by an appropriate adjustment of the state space.

It is known from literature (cf. for instance KLEINROCK [11, Section 4.2]) that queueing
models with phase type distribution functions can be represented as a Markov process by the
method of stages. We shall explain this in our model for the case of Coxian distributions.
Assume that the service time distributions of customer type ¢, ¢ = C, P, have a Coxian
distribution of order k;, with transition rates v} and transition probabilities p{, n =1, ...,
k;. The state of the underlying Markov queueing process can be represented as

s = (l(/':lPam’j)a

where I; € N denotes the number of waiting customers of type 7, ¢ = C, P, m = the type
of the customer in service, and j the phase of this customers service. The extra notation
s = () denotes an empty system. In Table 1 we show all the possible transitions from state
s = (l¢,lp,m,j) with the corresponding transition rates.

The method of stages allows an exact formulation as a Markov process. The approximation
that we propose consists in truncating the state space of this Markov process. In particular
we truncate the queue lengths of CM and PM jobs, by rejecting arrivals when the respective
lengths exceed K¢ and Kp, for some K¢ and Kp > 0. In addition we prohibit the overflow
of an impatient customer from the PM queue to the CM queue if the queue length I¢ is equal
to K¢. The differences in the transitions as compared to the original model are summarized
in Table 2.

One can expect that the errors introduced by this truncation will be small if in the original
model most of the probability mass of the equilibrium distribution is concentrated in states
that have a small queue length. We may therefore conclude that the approximation method
will fail in heavily loaded queueing systems and will behave well under light or moderate
loads. The equilibrium distribution is computed as the solution of the Kolmogorov equations
using Gauss—Seidel iteration (see for instance T1iMs [18, Appendix B]).



new state transition rate transition type conditions
‘ (le,lp,m,5+ 1) H v pl H phase completion H
(le - 1,1p,C,1) v*(1-pT) service completion le>0
(le,lp—1,P,1) v*(1-pT) service completion le=0,lp>0
0 v (1-p7) service completion lc=1lp=0
(le+1,lp,m,j) Ac arrival type C
(le,lp+1,m,j) Ap arrival type P
‘ (le+1,lp—1,m,7) H lp/Bp H impatience overflow H Ip>0

TABLE 1. Transitions from state (I¢,lp, m,j) in the original model

new state transition rate transition type conditions
(le+1,lp,m,j) Ao arrival type C lc < K¢
(le,lp+1,m,j) Ap arrival type P lp < Kp

‘ (le+1,lp—1,m,j) H lp/Bp H impatience overflow H Ilp>0,lc < K¢ ‘

TABLE 2. New transitions from state (I¢,lp,m, ) in the approximation model

The method provides also an indication of the accuracy of the approximation. In the
approximate model we can compute the total equilibrium probability mass of the set

& :={(lg,lp,m,j) | lc = K¢ or lp = Kp} (3)

and use this as an indication of the approximation error. If the equilibrium probability mass

on the set is large, then K¢ and Kp have to be increased.
We shall discuss numerical results for this approximation method in Section 5.2.

5 NUMERICAL RESULTS

In this section we present numerical results for the two approximation methods that we
introduced in Section 3 and 4. Both methods were tested on a model in which the parameters
are based on real life data of a small production platform. The arrival rate of corrective
maintenance is 225 jobs per year, and for preventive maintenance 275 jobs per year. A CM
job requires on average 10 manhours of work, a PM jobs on average 20 manhours. One
manyear totals 2000 manhours, i.e. one repairman can work for 2000/365 hours per day.
The mean of the deadline distribution is 30 days. We normalize the time axis by setting
one day equal to one time unit, so A¢ = 225/365, Ap = 275/365, B¢ = 3650/(r x 2000),
Bp = 3650/(r x 1000) and Bp = 30, where r is the number of available repairmen. Note that
the workload a = 3.875/7, so the minimally required manning level is » = 4. Recall that the
manning level is reflected in the speed of the server, not in the number of servers. This is
held constant equal to one.

5.1 Numerical results for approzimation method I

In the example that we used to test approximation method I we consider exponentially
distributed service times. For the deadline distributions we consider the following four cases:



Service time distribution

Exponential Erlang-2 Hyper-2-exp.(1) Hyper-2-exp.(2)

Approx. | Simul. || Approx. | Simul. | Approx. | Simul. || Approx. | Simul.
2.27e-01 | 1.88e-01 || 1.81e-01 | 1.32e-01 || 2.58e-01 | 2.16e-01 || 3.34e-01 | 2.88e-01
7.43e-02 | 6.83e-02 || 2.79e-02 | 2.47e-02 || 9.48e-02 | 8.61e-02 || 1.52e-01 | 1.38e-01
3.53e-02 | 3.37e-02 || 7.78e-03 | 7.74e-03 || 4.67e-02 | 4.45e-02 || 8.22e-02 | 7.82e-02
2.07e-02 | 2.03e-02 || 3.17e-03 | 3.21e-03 || 2.78e-02 | 2.72e-02 || 5.07e-02 | 4.87e-02
1.36e-02 | 1.34e-02 || 1.59e-03 | 1.52e-03 || 1.84e-02 | 1.81e-02 || 3.44e-02 | 3.34e-02
9.70e-03 | 9.75e-03 || 9.10e-04 | 8.92e-04 || 1.31e-02 | 1.31e-02 || 2.48e-02 | 2.45e-02
10 || 7.20e-03 | 6.93e-03 || 5.68e-04 | 5.86e-04 || 9.80e-03 | 1.00e-02 || 1.87e-02 | 1.85e-02
11 || 5.60e-03 | 5.68e-03 || 3.77e-04 | 4.16e-04 || 7.60e-03 | 7.51e-03 || 1.46e-02 | 1.45e-02
12 || 4.50e-03 | 4.49e-03 || 2.63e-04 | 2.68e-04 || 6.10e-03 | 6.13e-03 || 1.17e-02 | 1.16e-02

O[O0 =]| | O =] =3

TABLE 3. Fraction of overflowing customers based on approximation method I.

Exponential Fp(t)=1— e t/#p,

2t
Erlang-2 Fp(t) =1 — e /P x (1 + ﬂ_>
D

Hyper-2-exponential (1) Fp(t) =1— 0.1 x e %/%p _ 0.9 x e~3t/26p
Hyper-2-exponential (2) Fp(t) =1—0.1x e /70 — 0.9 x e3t/Pp,

The results for the computation of ¢, the fraction of PM jobs that flow over to CM jobs,
are presented in Table 3. They are compared with estimates of this fraction as derived from
simulation. The approximations for large values for r are fairly good: relative errors range
from 5% for r = 6 to 2% for » = 12. For small values of r (i.e. a high load) the maximum
relative errors are 37% for » = 4 and 13% for r = 5 (both for Erlang-2 distributed deadlines).
The number of iterations that we needed to satisfy the convergence criterion with ¢ = 0.0001
varied from 30 for » = 4 to 3 for r = 12.

5.2  Numerical results for approzimation method 11

For an evaluation of approximation method II we consider the same model of the production
platform. In this example the deadlines have an exponential distribution with mean Sp = 30,
and we vary the type of the service time distributions. We consider the following cases:

Exponential B;(t) =1 - e Tt/Bi §=(C, P,

Erlang-k Bj(t) =1- Lh2f (e /P £ =2,5,10,i=C, P,

B
Hyper-2-exponential (1) B;(t) =1 - 0.9 x e THO01B: _ 01 x e "B = (O P,
Hyper-2-exponential (2) B;(t)=1-0.9 x e TH/05B: _ .1 x e~ "H/55B: ;= C, P.
The fraction ¢ of overflowing customers, for various values of the manning level r, is pre-

sented in Tables 4 and 5. It is apparent from these tables that the approximation method



performs very well for all values of ». We must remark here that the errors in the approxima-
tions for larger values of r are mainly due to the difficulties in getting accurate figures from
the simulations.

Service time distribution
Exponential Erlang-2 Erlang-5

Approx. | Simul. || Approx. | Simul. | Approx. | Simul.
1.88e-01 | 1.88e-01 || 1.64e-01 | 1.63e-01 || 1.47e-01 | 1.47e-01
6.85e-02 | 6.83e-02 || 5.47e-02 | 5.47e-02 || 4.56e-02 | 4.56e-02
3.41e-02 | 3.37e-02 || 2.64e-02 | 2.65e-02 || 2.16e-02 | 2.16e-02
2.03e-02 | 2.03e-02 || 1.55e-02 | 1.54e-02 || 1.26e-02 | 1.28e-02
1.35e-02 | 1.34e-02 || 1.03e-02 | 1.01e-02 || 8.28e-03 | 8.18e-03
9.60e-03 | 9.75e-03 || 7.28e-03 | 7.06e-03 || 5.87e-03 | 5.92e-03
10 || 7.19e-03 | 6.93e-03 || 5.44e-03 | 5.35e-03 || 4.38e-03 | 4.42e-03
11 || 5.59e-03 | 5.68e-03 || 4.22e-03 | 4.22e-03 || 3.39e-03 | 3.46e-03
12 || 4.47e-03 | 4.49e-03 || 3.37e-03 | 3.44e-03 || 2.71e-03 | 2.72e-03

O[O0 =~J| | O =] =3

TABLE 4. Fraction of overflowing customers based on approximation method II.

Service time distribution

Erlang-10 Hyper-2-exp.(I) Hyper-2-exp.(II)
Approx. | Simul. || Approx. | Simul. | Approx. | Simul.
1.41e-01 | 1.42e-01 || 4.20e-01 | 4.25e-01 || 2.98e-01 | 3.02e-01
4.25e-02 | 4.24e-02 || 2.56e-01 | 2.62e-01 || 1.49e-01 | 1.47e-01
1.99e-02 | 2.00e-02 || 1.66e-01 | 1.64e-01 || 8.58e-02 | 8.47e-02
1.16e-02 | 1.17e-02 || 1.15e-01 | 1.16e-01 || 5.51e-02 | 5.52e-02
7.61e-03 | 7.70e-03 || 8.31e-02 | 8.13e-02 || 3.82e-02 | 3.83e-02
5.39e-03 | 5.34e-03 || 6.28e-02 | 6.18e-02 || 2.79e-02 | 2.83e-02
10 || 4.02e-03 | 4.04e-03 || 4.89e-02 | 4.90e-02 || 2.13e-02 | 2.11e-02
11 || 3.11e-03 | 3.13e-03 || 3.91e-02 | 3.97e-02 || 1.68e-02 | 1.71e-02
12 || 2.48e-03 | 2.54e-03 || 3.20e-02 | 3.23e-02 || 1.35e-02 | 1.39e-02

O 00| =~J| | O | =3

TABLE 5. Fraction of overflowing customers based on approximation method II.

There are two sources of inaccuracies in this approximation method, viz. errors from the
the Gauss—Seidel algorithm plus errors caused by the state space truncation. The first type of
error can be controlled efficiently by the convergence criterion of the Gauss—Seidel algorithm:
in our implementation it was set to stop only when a seven-digit accuracy was achieved.

The second source of errors, i.e. those caused by the state space truncation, is much less
under control. We can compute the total equilibrium distribution on the border of the state
space (& in (3)). From trial runs it appeared that we could obtain relative approximation
errors in ¢, the fraction of overflowing customers, in the order of 1% by taking K¢ and Kp so
large that the probability mass of & was smaller than 0.001. In the case of exponential and
Erlang distributions this accuracy could be accomplished by taking K¢ = Kp = 20, but for
the two examples with hyperexponential distributions we had to resort to large truncations
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of the state space (K¢ = Kp = 40) to obtain similar results. The number of iterations for
the Gauss—Seidel algorithm varied around 600 for heavily loaded systems to around 200 for
r=12.

Besides the fraction of overflowing customers we can compute other performance measures.
In Tables 6 and 7 we show the mean waiting time of all high priority customers, i.e. including
the overflowing low priority customers. The mean waiting times are, as was to be expected,
very sensitive to the type of the service time distribution. The figures for the H-2(II) example
are about 15 times larger than those of the Erlang-10 example, regardless of the workload.

Service time distribution
Erlang-2

Exponential Erlang-5

Approx.

Simul.

Approx.

Simul.

Approx.

Simul.

1.08e4-00

1.08e4-00

8.00e-01

8.00e-01

6.35e-01

6.34e-01

6.40e-01

6.38e-01

4.75e-01

4.77e-01

3.78e-01

3.79e-01

4.23e-01

4.19e-01

3.15e-01

3.16e-01

2.51e-01

2.51e-01

3.00e-01

3.01e-01

2.24e-01

2.24e-01

1.78e-01

1.78e-01

2.24e-01

2.23e-01

1.67e-01

1.67e-01

1.33e-01

1.32e-01

O[O0 ~J| | O =] 3

1.73e-01

1.74e-01

1.29e-01

1.29e-01

1.03e-01

1.03e-01

1

0

1.38e-01

1.38e-01

1.03e-01

1.03e-01

8.23e-02

8.19e-02

1

1

1.13e-01

1.13e-01

8.42e-02

8.42e-02

6.72e-02

6.74e-02

1

2

9.38e-02

9.41e-02

7.00e-02

7.02e-02

5.59e-02

5.59e-02

TABLE 6. Mean waiting time over all type C' customers

Service time distribution

Erlang-10

Hyper-2-exp.(I)

Hyper-2-exp.(II)

Approx.

Simul.

Approx.

Simul.

Approx.

Simul.

5.80e-01

5.82e-01

9.81e4-00

1.05e+01

3.99e+4-00

4.04e+00

3.46e-01

3.47e-01

5.90e+00

6.02e4-00

2.29e+4-00

2.27e4-00

2.29e-01

2.29e-01

3.90e+00

3.84e4-00

1.50e4-00

1.49e4-00

1.63e-01

1.63e-01

2.76e+00

2.81e+4-00

1.05e4-00

1.04e4-00

1.22e-01

1.22e-01

2.05e+00

2.00e+4-00

7.79e-01

7.73e-01

O[O0 =] O O =] 3

9.44e-02

9.43e-02

1.58e4-00

1.56e4-00

5.99e-01

6.00e-01

10

7.53e-02

7.50e-02

1.25e4-00

1.25e4-00

4.75e-01

4.69e-01

11

6.15e-02

6.16e-02

1.02e4-00

1.02e4-00

3.86e-01

3.91e-01

12

5.12e-02

5.12e-02

8.41e-01

8.35e-01

3.20e-01

3.20e-01

TABLE 7. Mean waiting time over all type C' customers

To conclude this section we present some comparisons between the queueing models with
and without impatience. In Tables 8 and 9 we show the server utilization of both type C' and
P. The total server utilization is given in Table 10. As expected we see in the models with
impatience that the workload shifts from preventive to corrective maintenance and that this
shift becomes more prominent when the coefficient of variation of the service times increases.
Note also that the total server utilization decreases in a system with impatience. This is no
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surprise, since the mean service time for a CM job is smaller than for a PM job. This does
not necessarily mean that it is desirable to have a large fraction ¢, since, although this means
a relatively small total server utilization, it leads to a high corrective server utilization, and
this has a significant impact on availability.

In Tables 11 and 12 the mean waiting times for type C customers are summarized. The
figures for the model with impatience are computed by the approximation method. The
differences between models with and without impatience are again most prominent in the
case of hyperexponential distributions (an increase of 20% for H-2(I)). For exponential and
Erlang distributed service times the increase in the waiting times is less than 5%.

queueing system no

with impatience impatience
Expon. Erl.-2 Erl.-5 Erl.-10 || H-2 (1) || H-2 (2) all dist.
3.46e-01 || 3.38e-01 || 3.32e-01 || 3.30e-01 || 4.23e-01 || 3.84e-01 2.81e-01
2.44e-01 || 2.40e-01 || 2.38e-01 || 2.37e-01 || 2.95e-01 || 2.66e-01 2.25e-01
1.95e-01 || 1.94e-01 || 1.92e-01 || 1.92e-01 || 2.26e-01 || 2.07e-01 1.88e-01
1.65e-01 || 1.64e-01 || 1.63e-01 || 1.63e-01 || 1.83e-01 || 1.72e-01 1.61e-01
1.43e-01 || 1.42e-01 || 1.42e-01 || 1.42e-01 || 1.55e-01 || 1.47e-01 1.41e-01
1.27e-01 || 1.26e-01 || 1.26e-01 || 1.26e-01 || 1.35e-01 || 1.29e-01 1.25e-01
10 || 1.14e-01 || 1.13e-01 || 1.13e-01 || 1.13e-01 || 1.19e-01 || 1.15e-01 1.13e-01
11 || 1.03e-01 || 1.03e-01 || 1.03e-01 || 1.03e-01 || 1.07e-01 || 1.04e-01 1.02e-01
12 || 9.43e-02 || 9.41e-02 || 9.41e-02 || 9.40e-02 || 9.74e-02 || 9.53e-02 9.38e-02

Ol =1 ot x|

TABLE 8. Server utilization of type C for queueing systems with and without impatience

queueing system no

with impatience impatience
Expon. Erl.-2 Erl.-5 Erl.-10 | H-2 (1) || H-2 (2) all dist.
5.58e-01 || 5.75e-01 || 5.86e-01 || 5.90e-01 || 3.99e-01 || 4.82e-01 6.88e-01
5.12e-01 || 5.20e-01 || 5.25e-01 || 5.27e-01 || 4.09e-01 || 4.68e-01 5.50e-01
4.43e-01 || 4.46e-01 || 4.48e-01 || 4.49e-01 || 3.82e-01 || 4.19e-01 4.58e-01
3.85e-01 || 3.87e-01 || 3.88e-01 || 3.88e-01 || 3.48e-01 || 3.71e-01 3.93e-01
3.39e-01 || 3.40e-01 || 3.41e-01 || 3.41e-01 || 3.15e-01 || 3.31e-01 3.44e-01
3.03e-01 || 3.03e-01 || 3.04e-01 || 3.04e-01 || 2.86e-01 || 2.97e-01 3.06e-01
10 || 2.73e-01 || 2.74e-01 || 2.74e-01 || 2.74e-01 || 2.62e-01 || 2.69e-01 2.75e-01
11 || 2.49e-01 || 2.49e-01 || 2.49e-01 || 2.49e-01 || 2.40e-01 || 2.46e-01 2.50e-01
12 || 2.28e-01 || 2.28e-01 || 2.29e-01 || 2.29e-01 || 2.22e-01 || 2.26e-01 2.29e-01

O 00| 3| | OV =~ =3

TABLE 9. Server utilization of type P for queueing systems with and without impatience

6 CONCLUSION AND REMARKS

In this paper we have described two approximation methods for the performance analysis
of an M/G/1 queue with two customer types of different priority. We have compared the
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queueing system no

with impatience impatience
Expon. Erl.-2 Erl.-5 Erl.-10 | H-2 (1) || H-2 (2) all dist.
9.04e-01 || 9.13e-01 || 9.18e-01 || 9.20e-01 || 8.22e-01 || 8.66e-01 9.69e-01
7.56e-01 || 7.60e-01 || 7.63e-01 || 7.64e-01 || 7.04e-01 || 7.34e-01 7.75e-01
6.38e-01 || 6.40e-01 || 6.40e-01 || 6.41e-01 || 6.08e-01 || 6.26e-01 6.46e-01
5.50e-01 || 5.561e-01 || 5.51e-01 || 5.51e-01 || 5.31e-01 || 5.43e-01 5.54e-01
4.82e-01 || 4.82e-01 || 4.83e-01 || 4.83e-01 || 4.70e-01 || 4.78e-01 4.85e-01
4.30e-01 || 4.29e-01 || 4.30e-01 || 4.30e-01 || 4.21e-01 || 4.26e-01 4.31e-01
10 || 3.87e-01 || 3.87e-01 || 3.87e-01 || 3.87e-01 || 3.81e-01 || 3.84e-01 3.88e-01
11 || 3.52e-01 || 3.52e-01 || 3.52e-01 || 3.52e-01 || 3.47e-01 || 3.50e-01 3.52e-01
12 || 3.22e-01 || 3.22e-01 || 3.23e-01 || 3.23e-01 || 3.19e-01 || 3.21e-01 3.23e-01

OO0 || OV |3

TABLE 10. Total server utilization for queueing systems with and without impatience

Service time distribution
Exponential Erlang—2 Erlang-5

Impatience. | No impat. || Impatience. | No impat. || Impatience. | No impat.
1.08e4-00 1.02e+00 8.00e-01 7.73e-01 6.35e-01 6.22e-01
6.40e-01 6.24e-01 4.75e-01 4.68e-01 3.78e-01 3.74e-01
4.23e-01 4.13e-01 3.15e-01 3.10e-01 2.51e-01 2.48e-01
3.00e-01 2.94e-01 2.24e-01 2.21e-01 1.78e-01 1.76e-01
2.24e-01 2.20e-01 1.67e-01 1.65e-01 1.33e-01 1.32e-01
1.73e-01 1.71e-01 1.29e-01 1.28e-01 1.03e-01 1.02e-01

10 1.38e-01 1.36e-01 1.03e-01 1.02e-01 8.23e-02 8.17e-02

11 1.13e-01 1.11e-01 8.42e-02 8.35e-02 6.72e-02 6.68e-02

12 9.38e-02 9.26e-02 7.00e-02 6.95e-02 5.59e-02 5.56e-02

OO0 ~J| | O =~ =3

TABLE 11. Mean waiting time of type C in systems with and without impatience

approximation methods with numerical results from simulation. Both methods appear to
provide fair to good approximations for ¢, the fraction of overflowing customers. The second
method, based on state space truncation, gives better results and provides more performance
measures than the first method. The first method, however, has the advantage that the
computational efforts are considerably smaller. Both methods were implemented in Pascal
on a Sun Sparcstation—1. A typical run of the first method takes less than 1 minute, while
the second method for worst case — hyperexponentially distributed service times — may
take up to 20 minutes.

A number of suggestions come to mind for future research topics. It seems worthwhile to
include the computation of more performance measures in approximation method II. The
busy period distribution is an interesting candidate in this matter.

We also want to include the following extension to the model. The preventive maintenance
jobs are served by a PM-dedicated FCFS server, but when PM jobs become impatient, they
flow over to a queue with an infinite number of servers. This model represents the situation
where contractors can be hired externally for corrective maintenance. In this case we are for



13

Service time distribution
Erlang-10 Hyper-2-exp.(I) Hyper-2-exp.(II)

Impatience. | No impat. || Impatience. | No impat. || Impatience. | No impat.

5.80e-01 5.71e-01 9.81e+400 7.34e+00 3.99¢+4-00 3.19e+00

3.46e-01 3.43e-01 5.90e+00 4.85e+00 2.29e+00 2.01e+4-00

2.29e-01 2.27e-01 3.90e+00 3.35e+00 1.50e+4-00 1.34e+00

1.63e-01 1.62e-01 2.76e+00 2.42e4-00 1.05e+00 9.55e-01

1.22e-01 1.21e-01 2.05e+00 1.82e+4-00 7.79e-01 7.14e-01

9.44e-02 9.38e-02 1.58e+00 1.41e+00 5.99e-01 5.54e-01
10 7.53e-02 7.49e-02 1.25e+4-00 1.13e+4-00 4.75e-01 4.43e-01
11 6.15e-02 6.12e-02 1.02e+400 9.23e-01 3.86e-01 3.62e-01
12 5.12e-02 5.10e-02 8.41e-01 7.68e-01 3.20e-01 3.01e-01

O 00| =]| | O | =3

TABLE 12. Mean waiting time of type C in systems with and without impatience

example interested in the influence of the size of the PM repair crew, i.e. the speed of the
dedicated server, on the cost of externally hired personnel.
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