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This paper describes a semi-Markov reward model for a process system or installation with
components that are subject to failure. The installation is represented as a directed graph with
the nodes representing the components and the arcs representing the material flows between
the components. Each component may have several failure modes. For each component two
actions can be specified: a production and a maintenance decision. The production decision
specifies the production level of the component, and this action depends on the current mode
of the component. The maintenance decision specifies whether maintenance or repair is to
be performed on the component, and this action depends on the current component’s mode
plus the current maintenance manpower allocation. The state of the system together with
the decisions determine the dynamic behaviour and the rewards, the latter of which is split
into maintenance costs and production rewards. Some examples are included.
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1 INTRODUCTION

In this note we describe a general stochastic model for a process system or installation with
components that are subject to failures. The model is meant as a framework for further
research on the relation between maintenance manpower and the performance of a production
plant.

In the literature on reliability and maintenance little attention seems to have been paid
to the relation between production and maintenance. In many practical situations, however,
it seems that these two topics have a significant impact on each other. The decisions that
concern the production management of each component, like for instance the production level,
will influence the failure dynamics. A machine that is operating at its maximum capacity may
show a failure behaviour that is different from a component that is producing at half speed.
Maintenance decisions on the other hand also have an impact on production. A machine that
is undergoing a major repair is generally not available for production.

In this paper we present a semi-Markov reward model for a production plant that shows
the above mentioned interaction. We describe, in this order, the state space formulation, the
control variables, the reward structure and the dynamic behaviour. The state space comprises
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all the possible values that the state variables can take. The state variables carry all the
information of the current quality or mode of the components plus the current maintenance
manpower allocation. The decision variables, which are split in production and maintenance
variables, represent the actions that are undertaken. The set of available actions depends
on the current state of the process. The state variables and the actions together determine
the revenue that is incurred. This revenue is split into rewards associated with production
and costs associated with maintenance. The state and actions also determine the dynamic
behaviour of the process. These dynamics may be caused by completion of repairs or changes
in the state of a component due to tear or breakdown.

This paper is organised as follows. In Section 2 we describe the characteristics of a pro-
duction plant. In Section 3 we introduce a Semi-Markov Reward Process for such a plant.
In particular we introduce the state space description, the control structure, the reward and
cost structure and the dynamic behaviour of the process. In Sections 4 and 5 we discuss
some implications that arise from the Semi-Markov modelling approach. We present some
examples in Section 6 and conclude with some remarks and suggestions for future research
topics in Section 7. An selected overview of related literature is given in Appendix A.

2 DESCRIPTION OF A PRODUCTION PLANT

A production plant is a set of N components. The index set of components is denoted as
C = {1,...,N}. A component can either be a production unit (pu) or a buffer. We let
Cp and Cp denote the sets of pu’s and buffers, respectively. Of course Cp NCp = 0 and
Cp UCp = C. Buffers are passive items, which means that they cannot break down, nor can
we apply any control on how they behave. They function solely as storage space of materials
and intermediate products. An example of a production plant is depicted in Figure 1. The
pu’s and buffers are represented as circles and triangles, respectively.
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Figure 1. Example of a production plant

The plant layout is captured in a directed graph. The nodes in the network represent the
components and the directed arcs correspond to the flow of products in the plant. The values
of the flows over the links in the network are determined by the flows through the production
units — i.e. the production rates of the pu’s — plus the constraints that arise from the layout
of the plant and the contents of the buffers. An algorithm to compute these values is very
problem dependent and we shall elaborate on this in Section 5.



3 A SEMI-MARKOV REWARD MODEL

In this section we shall introduce a semi-Markov reward (SMR) model to describe the be-
haviour of a production plant.

3.1 State space description

The state space of the model must reflect the “state” or of the plant. In the setting of SMR
models this means that the state must provide all information to determine the available
control actions, and the control action together with the state will determine the future
behaviour of the system and the direct costs and revenues.

Recall that the plant is a connected set of components and that the behaviour of the
plant is determined by the behaviour of the individual components and the way in which the
components are connected. The state of the SMR model must thus reflect the state or mode
of all the components. Since the current allocation of the repair facilities will also influence
the direct costs, they must be included in the state description of the model.

NoTATION 3.1 The state variable of component i € C s denoted as s; and the set of possible
values of s; as S;. The state of the repair facilities is denotes as spq and it must lie in some
abstract set Spq. The state of the SRM model is s = (s1,...,5N,5m), and the state space of
the plant s thus S = &1 X -+ X Sy X Spm.

As we mentioned in Section 2 we distinguish between two types of components, viz. pro-
duction units (pu’s) and buffers. The state of a buffer represents the actual contents of the
buffer. The value of s; of a buffer is allowed to be in an interval [0, L;] for some L; € RU{co}.

The state variable s; of a pu i is a two-dimensional vector (s},s2). The first component
s} represents the state or production quality of unit ¢ and it is an indication of how well the
unit is able to perform. We shall use the phrase mode to denote this first component s}. Its
value must lie in a finite discrete set .5;. Some value may for instance represent a failure and
another value may correspond to a brand new unit. The second component s? € R is the
time that the unit’s production quality has been in the current mode s}. It is introduced to
allow non-exponential lifetime and repairtime distributions.

The mode s} of a pu must not necessarily have a direct relation with a real life technical
situation. As an example s} can lie in the set {0,10,20,...,100} and the mode represents the
percentage of the full capacity that is actually available for production. In another example
the state space might be the abstract set {down, bad, good}. The interpretation can be that
in the down mode no production is possible, in the bad and good mode a full production level
is available, but the pu is more likely to deteriorate (get into the down mode) from the bad
mode.

The mode of a pu is thus an indication of the production quality (or maximally available
production level). The production rate of the unit will be determined by the state and the
production level control variable (to be described in Section 3.2).

The state spq of the repair facilities is an abstract representation of the allocation of
manpower for repair. The exact form is very problem dependent. In a model with mobile
repairmen the variable s may for instance represent the current location of all the repairmen.
In the classical machine repair problem (see for instance T1iMs [34, Chapter 4] and KELLY [20,
Chapter 4]) sa¢ may represent the order of the machines in the queue for the repair shop.



3.2 Control variables

At any moment in time we must be able to take actions to influence the behaviour of the
plant. We shall take into account two ways of controlling the plant, viz. by controlling
the production levels and by allocating the maintenance manpower. The purpose of this
control structure is twofold. First it allows us to influence the future behaviour of the plant:
performing maintenance on a pu will probably bring it into a better mode, or choosing a high
production level might increase the wear. Second it permits us to identify certain costs and
rewards with decisions: we may have alternatives for maintenance strategies with varying
costs, or revenues may differ with the chosen production levels.

In Section 3.3 we shall describe how the current state of the plant together with the
actions will determine the plant revenues and costs. The influence of state and control on the
evolution of the state shall be described in Section 3.4. Since buffers are considered passive
resources, control actions are defined only for pu’s.

If the state of apu i € C is s; € S;, then the unit production level p; is allowed to take
values in a set of allowable actions L{;(si). Like in the representation of unit modes the control
variable p; need not have any physical interpretation. The control variable p; represents
the chosen production level and it determines, together with the state s; of the unit, the
production rate of the unit ¢n isolation. This is not necessarily the actual production rate of
the unit in the plant, since this depends also on the plant layout and the capacity of other
units. As an example consider units 4 and 5 in Figure 1. We assume that the production
rate of both units must be equal. Now suppose that unit 4 has failed and unit 5 is in a brand
new state. The production level decision at unit 4 can only be not to produce, while at unit
5 we can choose any production level that we want. However, the actual production rate in
the “subplant” of unit 4 and 5 will always be zero, since this is imposed by the failure in
unit 4. In effect this means that it is possible to make insensible production level decisions,
but a controller that is trying to maximize revenues will not choose such a decision.

The second type of control action concerns the allocation of maintenance manpower. If
the state of a unit ¢ € C is s; € S;, then the unit maintenance effort m; is allowed to take
values in a set U (s;). Just like the state variable sy (the current maintenance manpower
allocation) the variable m; does not necessarily have any physical interpretation; it is an ab-
stract representation of maintenance manpower allocation. The control action m; determines,
together with the state of the unit, the dynamics of the unit. Just like in the production
level control, the set of available decisions Ufn(si) of unit 7 depends only on the state of the
unit, and not on the states of the components in the rest of the plant. Limitations in the
total available maintenance manpower can, if necessary, be implemented by overlaying the
product set UL (s1) X - - - x UN(sn) with extra constraints. An alternative and more realistic
approach to include this kind of restrictions is to put high costs on maintenance allocations
that exceed the available manpower. For the same reason there is no influence of the current
maintenance manpower allocation, as given by the component sy in the state variable, on
the possible choice of the control variable m;. Maintenance decisions that are undesirable
because of the current allocation, should be discouraged by imposing high costs on them.

NoTaTION 3.2 If the state of the plant is s = (s1,...,SN,5m), then the plant control var:-
able is represented as u = (u,...,un) with w; = (pi,m;) € UL(s;) X UL (s;). The set of
allowable control actions in state s will be denoted as U(s) = (Up(s1) X Up,(s1)) X ... X



UN(sn) x U (sn)). For notational convenience we also introduce wp = (p1,...,pN) and
upm = (mq,...,mpy).

With respect to control of the production plant, we shall restrict our attention to deter-
manistic state feedback policies, meaning that we only allow non-randomised decisions that
are based on the current state of the process.

8.3 Cost and revenue

We already mentioned that the control actions together with the state of the plant will deter-
mine the direct costs and revenues. The direct costs are usually related to the maintenance
and repair actions, while the direct revenues are associated with production level decisions. In
the remainder of this paper we shall restrict ourself to the use of revenues, with the convention
that costs are revenues with a negative value.

Assume that the state of the plant is s € S and the decision u € U(s) is chosen, then
the total revenue per time unit will be denoted as c¢(s,u). It can be decomposed into
c(s,u) = cp(s,u)+ cm(s,u), the revenues per time unit from production and maintenance, re-
spectively. In the functions ¢, and ¢,, we can include immediate or lump rewards (cf. Ross [30,
Chapter 7]), but we shall not elaborate on this to avoid notational complexity.

The production revenue c,(s,u) in state s € S under action u € U(s) represents the value
that is added to the materials and products by the processing in the pu’s. In particular this
means that the production revenue will be a function of the flows of products and materials
in the plant. In order to determine the value of c,(s,u) we need to compute the value of
the flows on all the arcs in the production network. Algorithms for this computation will be
discussed in Section 5.

In the function ¢, we can incorporate “restrictions” on the control decisions, that were not
modelled in the control action sets /(). Consider for instance the decision to have a machine
operate at full speed and at the same time have it undergo repair. If this is an impossible
combination, then the revenue for this decision should have a large negative value. In a
situation where a controller is responsible for optimizing revenue, then clearly such a decision
is very unlikely to be taken. This mechanism thus allows us to implement restrictions that
arise from practical considerations, in an indirect way. Via the function ¢, we also include
the restrictions arising from the physical layout of the plant. Using the example that was
mentioned in Section 3.2, the production revenue should reflect the uselessness of operating
unit 5 when unit 4 has broken down. This is possible by making c, independent of ps when
the production decision ps at unit 4 is “do not produce”. Moreover, by making the pu 5
wear out faster, when it is decided to produce in this situation, we can force an optimizing
controller to avoid this decision.

The function c¢,,(s,u) is the (presumably negative) revenue for the manpower allocation
u in state s. It is intended to model only the costs involved with the decision uxs — the
maintenance allocation — and it should not depend on the production level decisions up.
Strictly speaking c,, should thus be a function only of the current allocation sps and the
new allocation ua¢, but this is merely a question of formulation. The function c,, models the
real cost of maintenance allocation, but it is also used to induce restrictions on allocation
decisions. Consider for instance the situation that there are 10 repairmen, who can each
perform maintenance on one pu at a time. By imposing a huge (or infinite) cost on any



allocation decision upaq that assigns more than 10 repairmen to do repair, an optimizing
controller will never make such a decision. The advantage of inducing this kind of restrictions
indirectly, as opposed to hardwiring them into the action sets U/, is the flexibility that it
offers. Restrictions in practice are always a little looser than they seem at first; in the
above mentioned example we can adjust the model to make it possible to hire an extra
repairman externally, possibly at a substantially higher cost than an ordinary repairman.
The dependency of the cost c¢,, on the current maintenance allocation sx¢ is important,
because it enables us to model extra costs when the current and the new allocation differ
significantly. As an example we can think of a model for two production platforms, where
there is a high cost involved in transferring a repair crew from one platform to another. In
a model for a plant with only one production site, this approach can be used to include
switching costs, when changing the manpower allocation.

3.4 Plant dynamics

The dynamics of the model should reflect how the state of the plant evolves in time, given
the current state and the chosen control actions. Recall that the state of the plant was
represented by the states of the different production units and buffers, plus the current
maintenance manpower allocation.

The state of a production unit represents the actual production quality of the unit plus
the time spent at that quality level. Assume that a given unit 7 € Cp is in state s; € S;
and we apply control action u; € U;(si) X U, (s;). The time until the quality level or mode
of the unit changes (taken from the entrance time to that level), has a distribution function
Fi(s;,u;) : Ry — [0,1] and the next quality level of the unit will be s;/ with probability
Ds;,s;'(;). A change of mode can occur due to wear of the unit or completion of a maintenance
action.

The second component of the state variable of a pu represents the time that the unit has
been at the current quality level. Since this is a continuous variable, we are in principle
allowed to constantly change the control variables. For practical purposes we shall allow
changes in the decisions only when this timer exceeds some level, and for each component we
shall allow only a finite set of levels. This is a restriction, but it still allows us, for instance,
to admit age replacement type strategies.

The state of a buffer represents the actual contents of the buffer and this will change con-
stantly if there is an imbalance in inflow and outflow. This means that the actual production
flows in the plant can stay the same until one of the buffers becomes empty or full. The time
until this event can be computed from the buffer contents and the flows. At that time we
might get blocking or starvation and the actual production flows will have to be recalculated.
After adjustment of the flows, the pu states may continue to evolve as if nothing has changed,
since the distribution function F;(s;,u;) does not depend on the flows. An alternative is to
allow a change of decisions when some of the buffer levels change. An example is to change
the production level decisions when a certain buffer becomes 90% full. For each buffer only
a finite set of such buffer levels may be considered.

The last component of the state variable, sp¢, changes as follows. If the current allocation
is spaq, and the new allocation decision is uaq, then the time until the allocation changes —
taken from the time that the decision is made — has distribution function Faq(sat, ua).



After the transition the new value of sy should be such that it corresponds to the manpower
allocation decision uaq.

4 REMARKS

In this section we shall explain some of the choices that we have made in the model.

REMARK 4.1 For each component ¢ we have chosen the action sets L{; and U}, to depend
only on the local state s;. Note that this does not mean that we cannot use global state
information in the decisions. One reason for this choice is to allow the decision maker to
make unprofitable decisions. In the case of U, this means that we can have “infeasible”
allocations bring about high costs. An infinite cost would then represent a really impossible
allocation; a cost that is considerably larger than other allocations could represent the extra
expenses of hiring manpower externally.

The action sets U;; for production level decisions do not use global state information, since
the restrictions that are caused by the plant layout and the buffer contents are very difficult
(or practically impossible) to calculate beforehand. It also would require that the plant would
have to be controlled globally, i.e. all the decisions p; of all the components would have to
be determined at the same time, thus prohibiting distributed control.

REMARK 4.2 In Section 3 there is no explicit description of the possibility that components
may queue for maintenance. One aspect of queueing — the availability of servers — is modelled
implicitly by the maintenance allocation costs. Queueing disciplines can be implemented by
an appropriate choice of the maintenance allocation strategy.

5 PRODUCT FLOWS

In this section we discuss some aspects of the computation of product lows. In Section 3.3
we described that in order to determine the product revenue cp(s,u) for a given state s € S
and decision v € U(s), we have to determine the flows on all the arcs in the network.
Unfortunately it is impossible to give a general exact algorithm for this computation, because
it is very dependent on the way the plant’s physical restrictions are implemented. We shall
illustrate some of these aspects using the plant model of Figure 1 as an example.

Consider a pu 7 € Cp. The first step in the algorithm is to determine the product flow
through this pu if it would have an infinite supply at the input side and an unlimited buffer
at the output side. The value of this flow is uniquely determined by the state s; of the pu
and the production level decision p;.

The layout of the plant may impose restrictions on the actual flows in a number of ways.
First there may be a production unit j with its output connected to the input of z. If the
production flow through j is smaller than the flow through 7, and there is no buffer in between
the two pu’s, then the actual production flow through ¢ will be reduced to that through j.
In such a situation we say that ¢ is starving. As an example consider components j = 4 and
¢t = b in Figure 1. The actual flow through ¢ has to be reduced to the flow through j. This
situation can also occur when there is an empty buffer between 7 and j. Note that after this
reduction we may also have to adjust flows through other components downstream of 7.

A second type of conflict may arise when the output of ¢ is connected to the input of j
and 7 is producing faster than j. If there is no buffer in between the two components, or if



there is a buffer but it is full, then the flow rate through 7 has to be adjusted. In such a
situation we say that 7 is (partially) blocked. One way to resolve the flow imbalance is to let ¢
produce at the chosen rate and let the excess flow be lost. The production revenue function
¢p(s,u) should account for this waste. Note that in this approach there is an imbalance in
the flow into and out of the component. Another approach is to force the flow rate through ¢
to reduce to j’s flow rate. This approach differs from the first one, since it may bring about
further adjustments upstream of component <.

Conflicts can also arise when several parallel branches of the production network join
their outputs into the input of one component. In Figure 1 we find such an example in
components 3, 5 and 6. Here we may encounter situation similar to the ones described above.
If for instance the total flow out of 3 and 5 is larger than the flow of 6, then either 3 or 5 or
both have to be slowed down (or have their outputs lost). The algorithm for this adjustment
should be part of the design of the plant.

6 EXAMPLES

In this section we describe some examples to illustrate the formulation described in the
preceding sections. The first example considers a system of two production units with a
buffer, and the second example concerns a k-out-of-n system with ¢ repairmen.

6.1 FEzample 1: Two production units and a buffer

The first example concerns a serial production line, consisting of two production units and
a buffer (see Figure 2). In this model intermediate products from pu 1 (component 1) are
stored in a buffer (component 2), which provides input for component 3.

1 \‘Z/ 3
FiGURE 2. A serial production line with a buffer

The modes of components 1 and 3 represent the production quality of the units. For both
components we distinguish three levels of quality, viz. down, bad and good. With respect to
component 2 we assume that the buffer has an infinite capacity, so Sy = [0, 00).

The state of the repair facilities is described by the vector spq = (54, s3) € {0,1} x {0, 1}.
A value of 53\4 = 1 means that repair or maintenance is being performed on component %,
7 =1, 3, while 53\4 = 0 means no repair.

The action spaces for the production levels are constructed as follows. If a pu is down, then
no production is possible. We denote this as U, (down) = U3(down) = {0}. If a pu is in mode
bad, then we can decide to let the unit produce (action p; = 1) or to let the unit idle (action
pi = 0), so Up(bad) = U2(bad) = {0,1}. The same set of actions is available for pu 3 if its
mode is good, i.e. Ug(good) = {0,1}. For pu 1 we have an extra production action available,
namely to produce at half speed, so U;(good) =4{0,0.5,1}.



The action sets for maintenance manpower allocation are identical for both pu’s. If a pu
is in mode good, then the only choice is not to repair (action m; = 0). For the down and
bad modes we have a choice to repair (action m; = 1) or to do nothing (action m; = 0).
Summarizing we thus have U? (good) = {0} and U? (down) = U: (bad) = {0,1},7 =1, 3.

The production revenues represent the values that are added to the (intermediate) products
by the pu’s. We assume that the production flows through the pu’s are equal when they are
both operating at full speed and that the product revenue is not affected by the maintenance
manpower allocation. Note that no value is added at a pu when the flow through that pu
is 0. First we consider component 1. We assume that the revenue gained per time unit is
proportional to its production speed and this revenue is normalized to 1 when operating at
full speed. For pu 3 we assume that a value of 2 is added to the intermediate products per
time unit when it is operating. (Recall that for pu 3 we can only decide to operate or to idle.)
However, in the computation of the actual product revenue of pu 3 we have to account for
the possibility of an empty buffer. If the buffer is not empty (s > 0), then a revenue of 2 is
incurred per time unit when s} € {bad, good} and p3 = 1. If the buffer is empty, then the flow
through pu 3 is bounded by the output flow of pu 1. Summarizing, in state s = (s1, s2, $3, SAm)
the production revenue in pu 1 under action v = (ug,us), with u; = (p;,m;), ¢ = 1, 3, is
equal to p; (provided the unit is not down) and the production revenue in pu 3 is

2 * p3, if s3 > 0 and pu 3 is not down,
2% py xp3, if s3 =0 and pu 1 and pu 3 are not down, (1)
0, otherwise.

The maintenance costs are calculated as follows. We assume that there is one repairman
who can work on one pu at a time. We can hire an extra repairman, but this gives a
considerable extra cost. The maintenance manpower revenues are

em(s,u) = —1(mq + mg = 1) — 10 x 1(mq + ms = 2). (2)

We conclude this example with a description of the dynamic behaviour of the plant. If a
pu is down and no repair is undertaken, then the unit stays in that mode. If a pu is in mode
down or bad and repair is being done, then the unit will become operational again (good)
after 10 time units. A unit in mode bad with control chosen not to repair, will go down after a
time that has a Weibull distribution with shape parameter 2 and mean 100. A unit in mode
good under production will stay in that mode for a time that has a Weibull distribution with
shape parameter 3 and mean 80. After that time it will become bad with probability 0.9 or
down with probability 0.1.

6.2 FEzample 2: A k-out-of-n system with ¢ repairmen

The second example concerns a plant that consists of 20 pu’s, denoted as 7 =1, ..., 20. Each
pu ¢ can be in any of 5 different modes numbered s; = 0, ..., 4. The mode 0 corresponds
to a breakdown, while in the other modes the component is capable of making products.
The quality of the pu is an increasing function of the value of its state variable, so s; = 4
corresponds to a unit being brand new, while a value of s; = 0 means that the unit has
broken down. The maintenance allocation state variable is represented as spq = (%4, s%;).
Here sf,t represents the set of indices of the pu’s that are under repair. We assume that
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there are at most 5 repairmen available, so 5,1/34 must be a subset of {1,...,20} with at most
5 elements. The second component of the state variable, sm represents the pu’s that are
waiting for repair. It is a vector s%, = (s%(1),...,s%, (1)), where [ is the number of pu’s
waiting and s%(7) is the index of the i-th pu in the queue.

The action sets for the production decisions are quite simple: if a pu is capable of production
(s} € {1,...,4}), then the available decision p; is either to produce (p; = 1) or to let the
machine idle (p; = 0). If the pu is down (s} = 0), then there is no choice: we have to stop
production (p; = 0).

The action sets for maintenance decisions are identical for all components: If a pu is in
mode 0, 1 or 2, then can we choose to either move it to the repair shop (m; = 1) or to
do nothing (m; = 0). In modess 1 and 2 a decision of m; = 1 corresponds to preventive
maintenance. If a pu is mode 3, 4 or 5, then the only maintenance decision for the pu is to
do nothing (m; = 0).

The production revenues represent the values of the goods that are produced by the pu’s.
The value does not depend on the quality of the machine, so the total revenue per time unit
is proportional to the number of operational machines. However, when there are less than
10 machines operational and producing, then we incur extra costs because of contractual
obligations. More specifically, if the state of the system is s = (s1,...,520,5A1), then the
total production revenue under action u = (uq, ..., uz) with u; = (p;,m;), 1 =1, ..., 20, is

cp(s,p) = zzl(sz1 >0)xp; — Kq % 1{(2 1(s} > 0) *pi) < 10} (3)

where K; € R is the penalty cost for not having the required number of 10 operational
machines.

The maintenance costs are split in a lump cost that is paid at the decision moment plus
a cost that is paid per time unit until the next decision epoch. The lump costs are start up
costs and they have to be paid when all the repairmen are idle and one of the pu’s is sent to

the repair shop. This lump cost can be expressed in the state variable spq = (s1,. . ., $20, SM)
and the decision variables u = (u1, ..., us) with w; = (p;,m;), t =1, ..., 20, as follows:
20
K>+ 1(#(sR) = 0) x1(3mi > 0). (4)
=0

where #(s%,) is the number of elements of the set s§, and K is the overhead cost for repair.
The “continuous” part of the maintenance costs are paid per time unit for each operational
repairman, so for state s and decision u they are proportional to

min{5,§:mi} (5)

The dynamics of the plant can be summarized as follows. Repair of a broken down unit
requires an amount of time (excluding waiting) that is uniformly distributed over the interval
[9.0,11.0]. Preventive maintenance on a a pu in mode 1 or 2 takes 5.0 time units with
probability 0.8 and 10.0 time units with probability 0.2. When repair of a pu completes
then a pu is fetched from the waiting queue in FIFO order, if any. Otherwise the repairman
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waits until a pu is sent to the queue. A pu that is not broken down and not under preventive
maintenance. (i.e. s; > 0 and m; = 0) can only change to another mode when it is producing;
if it is left idling then it stays in the same mode. A pu that is actually producing (i.e. s; > 0
and p; = 1), stays in that mode for an Erlang distributed time, after which it will change to
an inferior mode. The parameters of the “lifetime” distributions per mode and the transition
probabilities are given in Table 1.

Erlang lifetime transition probability
parameters from s; to s;
state | # phases |mean | s; =3 |s; =2 |s;=1|s;=0
s; =4 4 10.0 0.8 0.1 0.1
;=3 4 8.0 0.7 0.2 0.1
8 =2 3 5.0 0.6 0.4
s;=1 3 5.0 1.0

TABLE 1. Lifetime distributions and transition probabilities

7 ToPICS FOR FUTURE RESEARCH

We already mentioned in the Introduction that the model described in this note is meant
as a framework for future research on the relation between maintenance manpower and per-
formance of production plants. In this section we introduce some proposals for research
topics.

PrOPOSAL 7.1 A model that consists of two production units with a buffer in between can be
considered. The performance of several heuristics for control should be evaluated, preferably
by exact analysis. Research topics should include the influence of lifetime and service time
distributions, buffer size, maintenance strategies, etc.

PrOPOSAL 7.2 A study can be made on the effect of switching costs for maintenance man-
power allocation. As a basis for this we can consider the model of ASSAF AND SHANTHIKU-
MAR [5], which can be extended to include two production sites with one repair crew. The
switching of the manpower allocation may have its effect on both the costs structure and
the dynamic behaviour: transportation of the crew from one platform to another costs both
money and time.

ProPoOsSAL 7.3 For a small plant, e.g. two production units with one buffer, different optimi-
sation criteria may be formulated. Both the optimal production and maintenance strategies
can be investigated. Special attention should be paid to the influence of the optimisation
criteria and the influence of the cost and reward structure.

PROPOSAL 7.4 An investigation should be made of algorithms for exact and approximate
analysis of complex plants. The idea is to provide a set of algorithms that allow a quick and
easy evaluation of the performance of different operational strategies. The algorithms could
form the core of a decision support system to be used in the operation of a real production
plant.
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A LITERATURE OVERVIEW

This appendix presents a literature overview of maintenance and repair models in which
there is some kind of interaction between production and maintenance. In most papers this
interaction is due to a limitation in manpower for repair and maintenance or due to a limited
number of spare parts.

A.1 General machine repair models

The standard machine repair model consists of a finite number of machines that are subject
to failures. A finite number of repairmen are available to perform repair. The main difference
with machine replacement models is the fact that repairs take time as opposed to replacement,
which might be considered immediate repair.

A.1.1 Performance analysis model

ALBRIGHT AND SONI present in [3] computational algorithms for the performance analysis
of a machine repair model with one machine type, several repairmen and exponential lifetime
and repairtime distributions. Included in the formulation is the probability that a failure of
a machine may be non-repairable. New machines are ordered according to a state dependent
ordering policy.

In [13] GROSs AND INCE present an approximation method for a machine repair model with
two machine types, one FCFS server and exponential lifetime and repairtime distributions.
The approximation is based on state aggregation combined with brute force calculation of
the equilibrium distribution.

In FosTER AND GARcCIA-D1Az [11] the performance analysis is presented of some specific
Markov models of machine repair problems. It is shown that the steady state distribution
has a product form in the case of exponential lifetime and repairtime distributions for a series
system, a k-out-of-n system and a k-out-of-n system with multiple repairmen.

In vaN DER HEIIDEN AND SCHORNAGEL [19] an approximation method is introduced
for the computation of the stationary interval uneffectiveness distribution of a k—out—of-n
system. This distribution is approximated by the distribution of a two—state single unit, with
Gamma type life time and repair time distributions.

A.1.2 Optimal stochastic control models

Albright considers in ALBRIGHT [2] an optimal control problem for a machine repair model.
The system consists of several machines of one machine type and failure and repair time
distributions are exponential. The service rate, failure rate and number of servers are con-
sidered to be controllable. The main result is the derivation of monotonicity properties of
the value function with respect to the optimal decision variables. The cost function here is
a combination of service costs, machine operation costs and revenue from production. The
monotonicity properties include for instance the fact that the number of repairmen to use
increases when the number of broken down machines increases.

In CrABILL [10] an optimal stochastic control problem is discussed for a machine repair
problem where there is one server that can operate with different service rates. Lifetime and
repairtime distributions are exponential. Results include structural properties of optimal
policies.
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GOHEEN in [12] presents an optimal stochastic control problem for a machine repair model
with a multiserver repair shop. Lifetime and repairtime distributions are allowed to be of
Erlang type. It is shown how the control problem can be reformulated as a nonlinear program.

WINSTON describes in [35, 36] two optimal stochastic control problems for machine repair
models. In both papers the optimality of simple repair policies is established.

In [31] SCHORNAGEL presents an optimal stochastic control approach to the problem of
finding the best preventive maintenance strategy in a complex system with interdependent
equipment units. The model allows performance correlation (e.g. repair queueing) or eco-
nomic or statistical correlation. The approach taken in these papers is to formulate the model
as a generalised Markov decision process (cf. DE LEVE et al. [24, 25]).

A.2 Multiechelon systems

Multiechelon systems were first introduced by SHERBROOKE [32]. He designed the so-called
METRIC (Multi-Echelon-Technique-for-Recoverable-Item-Control) for the US Air Force as
a method for determining stock sizes. A multiechelon system is a stochastic model of a
production system where there are more than one production sites (often called bases) and
repair depots. Usually these systems have a two-level hierarchy: there are a number of
operating bases, having their own repair shop, plus a central depot for repair of items coming
from the different bases. MUCKSTADT [28] extended the class of models to allow multi-item,
multi-echelon and multi-indenture inventory systems (the so called MOD-METRIC models).

A.2.1 Performance analysis models

In Gross et al. [14] an approximation is presented for the steady-state analysis of a mul-
tiechelon inventory model for repairable items. The approximation is based on an iterative
method involving aggregation at base level. It uses algorithms from the performance analysis
of product form queueing networks.

The same authors discuss in [15] an approximation method for large Markov models of
multiechelon repairable item inventory systems. The method uses state space truncation and
randomisation techniques to analyse the transient behaviour of these models.

In GRoss AND MILER [16] randomisation is used to perform a transient analysis of a multi-
echelon inventory model with time-varying parameters. Lifetime and repairtime distributions
are exponential.

A.2.2 Optimal stochastic control models

In [17] Gross et al. describe a constrained optimisation problem for a queueing network
model of a multiechelon repairable item inventory system. The optimisation problem is to
minimize the operational costs with a constraint on the availability of the system. The lifetime
and repairtime distributions are exponential and the service discipline at the different repair
depots are all FCFS. The optimisation problem is solved using the product form equilibrium
distribution together with some monotonicity results.

In HaTovAMA [18] an optimal stochastic control problem is discussed for a machine repair
model. The model has an operating machine, several spare machines and a repair facility. The
decision maker has to decide to repair or leave the operating machine, and to close or open
the FCFS queue repair facility. The machine can be in a number of (observable) states, and
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the time spent in each state has a state dependent exponential distribution. Repair times are
exponentially distributed. Hatoyama shows that under some conditions the optimal policy
for this two-dimensional queueing system is of control limit type.

A.3 Series-Parallel systems

There are a number of papers by Japanese researchers, that present the performance analysis
of different variants of a series-parallel system. The system is a production line consisting
of a tandem of different components in series with a parallel part of identical components.
The failure times are exponentially distributed, while the repair times may have a general
distribution. KoDAMA in [21] presents expressions for the reliability and availability of (small)
systems with a preemptive repeat priority discipline. In NAKAMICHI et al. [29] three different
repair disciplines — preemptive repeat, preemptive resume and head-of-the-line priority —
are considered. In TAKAMATSU [33] the system has two different components in the parallel
part.

A.4 Reviews

CHO AND PARLAR [9] is a survey on maintenance models for multi-unit systems.

A.5 Coherent systems of Multi-state components

An important aspect of the model that we introduced in this paper is the multi-mode nature
of the components. Components can be in more different states than just “up” or “down”.
A number of papers have been published on coherent systems in which the components can
be in more than one state, but most of the results in these paper are of a theoretic nature.
They concern the translation of reliability concepts like for instance the reliability function,
duality and critical elements from the binary to the multistate case. Examples of papers are
Brock AND SaviTs [1], BARLow AND WU [6], BAXTER [7, 8], and MONTERO et al. [27].

A.6 Mziscellaneous

In ALBRIGHT AND SONI [4] an approximation method is presented for the calculation of the
steady-state distribution of large multidimensional Markov processes. They illustrate the
method with an example of a repairable item inventory model with returns.

LEHTONEN gives some stochastic ordering results for repair policies in machine repair
problems in [22, 23].

In L1 [26] a machine repair for a serial production line with buffers is discussed. The
model is interesting, but the paper is badly written and the analysis is based on dubious
assumptions.
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