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mptotic estimates are given of the Stirling numbers S,(q,m) and ézm), of first and
ind, respectively, as m tends to infinity. The approximations are uniformly valid with
o the second parameter m, with 0 < m < n.
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STION

numbers of the first and second kind, denoted by Sﬁbm) and G(Wm), respectively,
irough the generating functions

z(z—-1)--(z—n+1)= Sn_: §{mgm (1.1)
“=i6$zm)$($—1)"'($—m+1)7 (1.2)

t-hand side of (1.1) has the value 1 if n = 0; similarly for the factors in the
le of (1.2) if m = 0. This gives the ‘boundary values’

5 = g™ =1,n>0, and SO =69 =0, n>1.

it is convenient to agree on S&™ = &™ = 0 if m > n.
ling numbers are integers; apart from the above mentioned zero values, the
1e second kind are positive; those of the first kind have the sign of (—1)"+™.

ive generating functions are

[lo(z + D™ _ i s(m) E" (1.3)

m! " !’
n=m

(-7 _1)m Z dm)x : (1.4)
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imbers play an important role in difference calculus, combinatorics, and prob-
More properties of Stirling numbers can be found in, for example, JORDAN
>MTET[5], and in the chapter on combinatorial analysis in ABRAMOWITZ &
H. 24]. Recent interest in Stirling numbers can be found in BUTZER ET AL.

. expansions can be found in several papers. Hsu [7] has given an expansion
s of the second kind that is useful when n—m is small. MosEr & WyMaN [10],
idered several overlapping domains in the n,m—plane with » > m. BLEICK
\ave given a complete expansion for the numbers of the second kind, which is
nm < (n+1)%/3/[r+(n+1)"1/3]. When divergent the expansion is still useful
i asymptotic series. However, the case m ~ n (both large) is not covered. In
199] the numbers of both kinds are considered. Again, the approximations
iy valid with respect to m; the results for the numbers of the first kind become
& n, whereas for the numbers of the second kind the problems arise when
st cases the asymptotic results are obtained by using saddle point techniques
egrals. Recently, KNESSL & KELLER [9] have treated the asymptotics from a
point of view.
»se of the paper is to present new expansions for the Stirling numbers which
with respect to m. The method is based on a modification of the saddle point
scribed in [13]. Short tables are given to show the results for n = 10; further
riments confirm the uniform character of our estimates.

UMBERS OF THE SECOND KIND

resentation of the numbers of the second kind is available as a finite sum:

&fm = -7%-, é(—l)m—" (’Z) k" (2.1)

; by expanding the left-hand side of (1.4) with Newton’s binomial formula and
:he power series of the resulting exponential functions with the right-hand side
(2.1) several limiting forms can be derived. However more powerful results can
ym integral representations following from the generating functions. From (1.4)

- 1)
&™) m, 5o / (e mn,q) (2.2)

our of integration is a small circle around the origin. We write this in the form

1 dz

m) #(z) 2
el —5 [ (2.3)
#(z) = —nlnz 4+ min(e” — 1). ‘ (2.4)

ill be estimated by using the saddle point method (for a general introduction
e, for instance, OLVER[12] or WONG[14]). The saddle point is defined by the
equation ¢'(z) = 0. There is a real positive saddle point zo that solves the

m -z
—z=1- . 2.5
~2 1-e (2.5)
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z¢ = 0 is not of interest, since the contour in (2.3) is not allowed to pass through
oreover, ¢/(0) is undefined. When m < n the solution zo approaches the origin,
. when m ~ n, it approaches infinity. The saddle point method is based on
') by a quadratic function, for instance by writing ¢(z) — ¢(zg) = 2, a local
m near £ = zo. However, straightforward application of the saddle point method
mations that are less accurate when n ~ m. To define a different transformation,
1at when z — 0%, we have ¢(z) ~ (m — n)lnz, and when z — oo, we have
Chis suggests the transformation z — #(z) defined by

d(z) =mt+ (m—n)lnt + A, (2.6)

1ot depending on t. The derivative of the right-hand side vanishes at g =
We prescribe for the mapping in (2.5) the corresponding points

z=0<4=1=0, z=2p<>t=1, ==400<=1t=-400.
A follows from substitution of z = z¢, t = #p in (2.6), which gives
A = ¢(zo) — mtp + (n — m)Int,.
>n (2.6) brings (2.3) in the form

(m) _ ™ et dt

(G) — e ™ f () ———r .
= 22 [emp) S, (27)

tdz m(t—t)
)= — — = —_—
1) z dt zd'(z)
tion like (2.6) is investigated earlier in [13]. From the analysis of [13], it follows
tion f is analytic in a neighbourhood of the origin, and in a wider domain of
slane, including the positive real axis. Especially, f is analytic at ¢ = 0 and at
hen to (that is, zg) tends to zero.

(2.8)

the contour in (2.7) is a small circle around ¢ = 0, but it can be deformed into

>ugh the new saddle point #3. A first approximation to G(nm) is now obtained by
'in (2.7) with the value of this function at the saddle point 9. The remaining
ily evaluated, giving the one-term approximation

&lm) ~ eAm"'mf(to)(Z> , a8 M — oo (2.9)

1 mig to
i0) = — | ———— = . 2.10
Tl) =25 \/ ¢ (<o) \/ (1 + to)(wo — to) (2.10)
f(to) follows from applying I’Hopital’s rule on the second form in (2.8), giving

m

zo¢"(zo) dz/dt”

f(to) =




m am (2.9) m ™ (2.9)

1 1 0.9993 6 29827 22922
2 511 512.98 7 5880 5897.7
3 9330 9390.1 8 750 751.45
4 34105 34319 9 45 45.04
5 42525 42750 10 1 1

ble 1. Approximations of the Stirling numbers of the second kind

comparison with the first form in (2.8), we obtain an expression of dz/dt eval-
To,t = to. This finally gives f(fp). In §4 a second term in the asymptotic
is given.

ute the limiting values of f(fp). Let ¥ = m/n, and consider v — 1. It easily
=2(1-v)+ O [(1-v)?]. Hence,

ft)=1+0(1-v), as v—1.
we have z9 ~ 1/v, giving
fte)=14+0(v), as v—0.
give the exact values of 6(181) (m =1,2,...,10) and the approximations based
value for m = 10 is not computed via (2.9)). The maximal relative error is
scurs at m = 3. Similar computations with n = 20,7 = 30 show the following:
srrors are 0.0031, 0.0021, and occur for m = 7,m = 10, respectively. Observe

mal errors do not occur at boundary values of m, but at about m = %—n Also
if n show the uniform character of the asymptotic estimate (2.9).

NUMBERS OF THE FIRST KIND

15 used the generating function (1.3) giving the representation

st = / In(z+ D",
m' i ’

zn+1

tour is a small circle around z = 0. To make the integral representation similar
s case, he transformed 1+ z = e®. This gives

Stm) = /
m' 2ri ) (ef — 1)"+1

" parts and £ — —z gives

(my _ (=D} (= 1)"—
Sn T (m-1)! 2mi /(l—e"”)" ’

ntour is a small circle around z = 0. This representation has been used by
ly the saddle point method. We have used the method of the previous section
il, but the results were quite inaccurate.




To try an alternative representation we turn to (1.1). It is easy to verify that

nemo(m+1) 1 (z4+1)(z+2)---(x+n) 1 #(z) 4%
(—1) m5n+1 = -2';; R - dz = — e?\® ":l-:—, (31)

where

d(z)=hf(z+1)(z+2)---(z+n)] —mlnz.

The saddle point is the solution of ¢/(z) = 0. When 1 < m < n — 1 there is one positive
solution zg. To prove this, note that ¢'(z) is negative when z is small and that for positive
values of z we have ¢'(z) > n/(z + n) — m/z. Hence, ¢'(x) > 0 when z > nm/(n — m). This
shows that ¢’ has at least one positive zero. Next we observe that ¢’ has at least one zero
in any of the n — 1 intervals (—2,-1),(-3,-2),...(-~n,—n + 1). Now we reduce the n + 1
fractions of ¢’ to a common denominator. Then the nominator of ¢' is a polynomial having
degree n and having at most n zeros. From the distribution of the zeros of ¢' just mentioned
we infer that ¢’ indeed has one and only one positive zero.

The present function ¢(z) has the following behaviour on the positive real axis:
¢(z) ~ —mlnz, asz —0, ¢(x) ~(n—m)lnz, asz — oco.
Combining these two limiting cases, we observe that the function nln(z + 1) — mlnz has
(globally on (0,00)) the same graph as ¢(z). This suggests the following transformation

z — t(x)

¢(z) =nin(l +t)— mlnt + B. (3.2)

The derivative of the right-hand side vanishes at o = m/(n — m). We prescribe for the
mapping in (3.2) the corresponding points

z2=0<=1=0, z=29<=t=1, T=-+00<=1=-o0.
The quantity B follows from substitution of # = xo, t = o in (3.2), which gives
B = ¢(z0) — nln(to + 1) + mIn to.
Transformation (3.2) brings (3.1) in the form

B n
—mgtmtt) _ € [(1+1)
(0" 51 = 5 | e

g(t) dt, (3.3)

where, initially, the contour is a small circle around ¢ = 0, and

_{n-m}t-m

= G Ded(@) (3:4)

t dz
t) = — —
9(1) ol

A first approximation to ng;“) is now obtained by replacing g(¢) in (3.3) with the value of

this function at the saddle point . The remaining integra] is evaluated by using

LAyt (n>

2me tmt+l m




I ER] (3.5) m_ | |S5a7] (3.5)
1 362880 362880 6 63273 63007
2 1026576 1018563 7 9450 9420.8
3 1172700 1163168 8 870 868.2
4 723680 718718 9 45 44.95
5 269325 267855 10 1 1

Table 2. Approximations of the Stirling numbers of the first kind

e one-term approximation

S,(g“l"l) ~ (—1)"_meBg(to)(:z>, as n — oo. (3.5)

mpute g(to). It follows from (3.4) that

(t to dz n—m
glto) = To dt  (to + 1)zod"(0)dz/dt’

is evaluated at t = . This gives a relation for dz/dt at t = to, from which we

1 [m(n—m)
nqSII(xo)

ction ¢(z) and its derivatives occurring in the above formulas are elementary
\d can be computed straightforwardly. However, when n and z are large, one
esentations in terms of the logarithm of the gamma function and the derivatives
t is,

(z4+n+1)-Wl(z+1)-mnz, ¢'(z)=y@E+n+1)-¢(+1)-m/z
axpansions of these functions are given in [1], Ch. 6.

pping defined in (3.2) is of the same kind as the one in (2.6). The analytic
;ain follow from the results in [13].

g(to) =

curious finite expansion follows by substituting

o) =3 extt

k=0

1 which we obtain the exact representation
(m+1) Em: n
n—-m o(m+1) _ B
("“1) Sn+1 = € 2 Ck( _ k) .

, when m = 0, we have ¢g = g(0) = 1, eB = nl, giving S’n+1 = (-1)"nl

2 2 exact values of |S’10 )I, (m = 1,...,10) are compared with absolute values
ximations given in (3.5) (the values for m = 1, m = n are not computed via
maximal relative error now occurs at m = 3, and is 0.0082. For » = 20, n == 30,
. errors are: 0.0063 and 0.0053, respectively; again they occur at m = 3. These
confirm the uniform character with respect to m of the result in (3.5).



4. HIGHER ORDER APPROXIMATIONS

The estimates in (2.9) and (3.5) can be supplied with more terms, and eventually written
as complete asymptotic expansions. We concentrate on the numbers of the second kind; the
treatment for the numbers of the first kind is more complicated owing to the special form of
the function ¢ in (3.2).

Consider the integral in (2.7) in the form

Fy(m) = =— / mtf(t)tm, (4.1)

where m and X are positive integers. The contour is a small circle around the origin, where
f should be analytic (the method also works (with minor modifications) when m and A are
complex numbers). Writing

f(t) = f(p) + (¢ = p)g(®), p=A/m,

we obtain

Fy(m) = fw)+ 5=

2

F(A + 1) / - ”)emtg(t)tm

Writing

di 1
_ mi—Alnt22 _ mi-Alni
o [t - e G = o [ gaemm,

2mms

and integrating by parts, we obtain

A

1 L di
Fy(m) = I\(—T:‘l‘)‘f(ﬂ)—m/fl(t)e tm,

where
) = kot = S LO10)

Repeating this procedure (observe that the final integral has the same form as the starting
function (4.1)), we can obtain eventually

FA(m) ~ T +1) Z( 1) fe(uym™*

where the functions fi(t) are defined by

d fi) = fel) . _ o4 2.

fen(t) =1t— =

with fo(t) = f(t). This procedure gives for (2.9) a complete asymptotic expansion of the form

(o]
&m ~ eAmmm (:) ‘;(“1)kfk(to)m-k, as n— 0o, (42)
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w = (n—m)/m and f is given by (2.8). The first coefficient of the series is given
1e second one, fi(fy), can be obtained as follows. The function f is analytic in
ntaining the positive real axis. Consider the Maclaurin expansion around ¢ = %o
there we expect the main contributions to the integral in (2.7))

f@)= ;ak(t —to)F, ax= Zlif(k)(to)-

ws that o
A) =t Y (k+ Daksa(t — t0)*,
k=0
(to) = toas. Further coefficients fr(to) can also be expressed in terms of ag, the
f f at the point 5.
pute ax, we need the coefficients 4 in the expansion

T =xzo+z1(t —t0) + z2(t — o) +---, (4.3)

the solution of (2.5) and z1 = apZo/to = f(to)zo/to. See the first relation in
is given in (2.10). With (2.8) we can express other values ax in terms of zx. So
y formal manipulations of power series

YozoTe + T1Zo — tod?% - 3zatozo + 2582:17(2) — dtgzoz129 — 23%:1:0 + toz?

3 ’ 2 3
o To

1(to) = toaz we need zo,z1,%2,23. To obtain z3,z3, we substitute (4.3) in the
ion of (2.8). After several manipulations we finally obtain the coeflicient of the
in (4.2), that is

223 + 23 + 413 + 414 + 3zto — 6zot§ — 5z ltd + 2udto + zdto — 62318 4 8281
240,0(1 + to)2 (xo — t0)4 )

ialysis shows that fi(fo) is a bounded function of # on [0,00). Using the two-term
2.9), that is,

1
&lm ~ eAm”'m(n) [f(to) - -f—lg—g—)-] , as n— 00 (4.9)
m m
1e following maximal relative errors:

n=10: relative error = 0.00047 occurs at m=4
n=20: relative error = 0.00012 occurs at m =3
n=30: relative error = 0.00006 occurs at m=4
n =40: relative error = 0.00003 occurs at m=25
n=50: relative error = 0.00002 occurs at m=7
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