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Abstract: Hyperasymptotic expansions are recently introduced by Berry and Howls, and yield refined infor-
mation by expanding remainders in asymptotic expansions. In a recent paper of Olde Daalhuis a method
is given for obtaining hyperasymptotic expansions of integrals that represent the confluent hypergeometric
U-function. This paper gives an extension of that method to neighbourhoods of the so-called Stokes lines.
At each level, the remainder is exponentially small compared with the previous remainders. Two numerical
illustrations confirm these exponential improvements.
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1. Introduction

In this paper we give hyperasymptotic expansions for the confluent hypergeometric functions U(a, c, 2)

for large |z|, where z is in a neighbourhood of a so-called Stokes line. An integral representation for the
Ula,c,2) is

U(a,c,z) = % /0 ” e~ #t% (1 4 t)~dt, (1.1)

where b = a — ¢+ 1 and where the constant ¢ fulfils Ra > 0.

First we give a general description of hyperasymptotic expansions. Simple asymptotic expansions are
of the form f(z) = ap + a1z~ 1 + -+ apny—12' N0 + Ry, (z), where Ry,(z) = O(2~"°) as |2| — 0o. The
optimal Ny can be obtained by minimization of the remainder Ry, when z is give .. Generally, Ny is a
function of z. Considering Ry, as a function depending on two large parameters (z and Np), it is expanded
in a new asymptotic expansion, which is truncated at Ny: Ry,(z) = Bg+ By + -+ By,—1 + Rn,(2),
where the remainder Ry, (z) appears to be exponentially small compared with Ry,(z), as |z — oo. The
B,, are not of the form const.z~™~™, Repeating this, we obtain

f(z)=ao+-+an,-12" "M+ Bo+ -+ By,—1+Co + C1 + -+ + Ry, (2), (1.2)

where Ry, appears to be exponentially small compared with Ry, _,,i.e. Ry, = O(e*1#1), as |2| — oo,
where 0 < Mg < A1 < A2 < -~

A hyperasymptotic expansion for U(a,c,2) is given in OLDE DAALHUIS [5], for |z| — co. This
expansion is limited to the sector |arg(z)] < . This is due to new exponentially small terms in the
asymptotic expansion of U(a,c,z), which appear in neighbourhoods of the Stokes lines arg(z) = =£m.
These new terms are of the same order as Ry,(z). For hyperasymptotic expansions in a neighbourhood
of these Stokes lines we need more complicated functions than the functions used in [5].

Two asymptotic expansions for U(e, ¢, 2), in a neighbourhood of arg(z) =, are

— — a)n(b)n
U(a,c,2) ~z “Z(—l)”—%én)—, |arg(2)] < 3w — 3§, (1.3)
n=0 )
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c z) ~z— % Z( 1)"’ (a)n(b)n

1,n
=0 niz
-(a+b)m

-1,z 1—-a)(1-0),
r( )I‘(b)bl Z( bt ): jr—6<arg(z) < 3r+6, (14)

nlzn

mmer’s symbol (a), is defined by (@), = I'(a + n)/T'(a), and where § is a small positive
se expansions are combined into the following expansion given in OLVER [8]

TS N Oy
n=0
bty M1 (1.5)
2) = (= UNZWI‘( T 2 Z( I)M(l —a)f;(!l—b)m FN~m:¢::b—1(Z) + Rur(2),

l—a—-b+1+ @, |a| being bounded, and where M is an arbitrary fixed integer. This

s for | arg(z)| < 37 —6. The extra functlons that we will use in hypera.symptotlc expansions
1 nelghbourhoods of the Stokes lines, are
e~ % [® e—typ-l
F ————dt. 1.
oe) =5 / 1+t (1.6)

is closely related to one of the incomplete gamma functions in the following way: F,(z) =
. —p,2). In OLVER [7] it is shown that

: expl —p|cl 2
N+p(2) = H(=1)Vie P erfc{c(8)\/p} + 0(|——p(—§[_;@]—)|), as |z| — oo, (1.7)

itten as z = pe'’, and where p is fixed and |N — p| is bounded; furthermore c(f) =

) — ). This expansion combined with (1 5) shows the appearance of new exponentially
the asymptotic expansion of U(a, c, 2), in a neighbourhood of the Stokes lines § = %7.
rasymptotic expansion presented in this paper is of the form

No~1
a2 = ) <—1)"(—'§%§:'?l

n==0
as p — 00, (1.8)

+(=1)Mo2r ———U(1 — b, ¢, pe' ™) F, v, (2)

et
+ N.HE.,

r § < 0 < 21 — §, where, again, z = pe*’ and § is a small positive constant. The N.H.E.
'mal Hyperasymptotic Expansion, which is of the form described at the beginning of this

‘ [5]

asymptotic expansions of U(a, ¢, 2), for |arg(z)| < & °

ction we summarize the results and the method of [5]. We write z = pei® and we take
lere —m + 6 < § < 7 —§ and 6 small and positive. In this way we obtain an analytic
rith respect to this z-domain for U(a, ¢, z), with

—-za.0 oo

e P (1 4 re= '_bd'r. 2.1
- ( ) (21)

Ua,c,z) =




We define fo(7) = (1 + 7¢~%)~% and we expand fo(7) at =0

Ng~-1

fo(r)= Z (b)"( re~®)" 47N (7). (2.2)

n=0

Taylor’s theorem gives for fi(7) the following integral representation

Al =5 / fo(w)dw (2.3)

0(0,7) wN"(“' -7)’

where we choose (0, 7) the union of the circles jw| = 1 — ¢ and |w — 7| = /2, where 0 <& < } and ¢
is bounded away from 0. In the case that |7| <1 —€/2 we have to adjust this contour. See Flgure 2.1

-
AN

(=]
a

FIGURE 2.1. The normal and adjusted contour of integration of (2.3)

On |7 + €®| > € we have |fo(7)| < e~®, and with (2.3) we obtain
A Sl —e)™™,  asir+e?|> e, (2.4)

where C; does not depend on Ny.
We substitute (2.2) in (2.1) and obtain

No—-1

U(aez) =2 30 (-1 4 gy o) 2.5
n=0
with j-iad poo
Ry, (z) = W@ J, e~ PTre 4N £ (1)dr. (2.6)
With (2.4) we estimate
% % —pr Ra- (1 ~Np
Ry (2)] < m/o e rRa-1+No(] _ oy=Nogr. 2.7)

The integrand has a maximum at 7 = ,, where v; fulfils p = (Ra — 1 + Np)/71. This maximum is

e~ PTiyfM (1 — g)Ra~1-pm and it is the main factor in asymptotic estimations of the right-hand side of
(2 7). This factor as a function of 4; is minimal at 4; = 1 — €. So, we choose Ny = [p(1 —¢) — Ra + 1]
and afterwards we take 7; = (Ra— 1+ Np)/p, where [y] denotes the integer part of y. This z-dependence
of Ny is typical in hyperasymptotic expansions, and with this Ny the remainder is minimal. Laplace’s
method (see OLVER [6, p. 80]) gives the estimate

1
|Rn,(2)] = (9(0’1\/—-pje""‘“')/;]E *” %), as |z| — oo. (2.8)




escribe the method for obtaining the (n+ 1)th-level of the hyperasymptotic expansion from
of the nth-level. More details are given in [5], and the next section is more detailed. The
he nth-level is of the form

e-—ia.ﬂ oo

e~ Tt No (7 — )N (1 = ) frga (7)dr, (2.9)

R OF:
1 fa(w)dw
G e (19

(Yn, T) is a contour that encircles v, and 7. These contours look like those in Figure 2.1.
18 of the Ry, are of the form

N,

,,.920.—1+No n
dr, (2.11)

= - T—hn
< T
RN,,(z)1_c,,/0 pe—

d(71) 0) — P1€

T—Yn
d('Yn; 9) = Pn€

" ‘

)= /72, + 2Yymcosf + 1 and pp, =2 —27™.
N,., such that the right-hand side of (2.11) is minimal, we analyse the integrand of (2.11).
| is of the form shown in Figure 2.2.

0 s, ¥, 5, Yo1 Sa Y, S,

FIGURE 2.2. The graph of the integrand of (2.11)

ima are at 7 = 8;, j = 1,2,-+-,n,n+ 1, and these s; fulfil

pofe-itNMo, M, M (2.12)

8j 8 —m 8 = Tn
follows that sy, ..., 8, are decreasing functions of N,,, and that s, is an increasing function
#t difficult to prove that the local maxima at s, ..., 8, are decreasing functions of N,, and
naximum at $,4; is decreasing on the interval 8,41 € (Yn, Yn+d(Yn, 8)—pre) and increasing
. 8p41 € (Yn + (Vn,0) — pat, 00). Thus for some N, € N the global maximum is minimal,
1ed at s,41. Now we expand fr41(T) at Yn41 = Sni1:

=bo + b1 (7 — Yat1) + -+ by (T — Yai1 )V 4 (T = Y1)V frga(7). (2.13)

this expansion in (2.9) and we obtain the (n + 1)th-level

e—iaf Npg1—-1

[e o]
e b, / el No (1 Na(r _ oy Ydr 4+ Ry (2) (2.14)
F(a) 0

m=0

lained how the integrals in (2.14) can be computed.
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At the first and the second level of the hyperasymptotic process the minimal global maximum is
attained only at the most right maximum (i.e. at sp41). For the higher levels this is not obvious, and in
the next section it is shown what happens if the global maximum is attained at more than 1 of the s;.

At each level we obtain |Ry, (2)| = (’)(p“%e_’\“”) as |z| — oo, where Ag ¥ 1 < A1 < A < A3 < ...
We do not have a proof whether or not {\,}remw is an unbounded sequence. For § = 0 we have A; ~ 1.90
and Ag ~ 3.59. Thus at the second level our Ay exceeds already the limiting value of 2.39 of a different
method, which is described at the end of the next section.

3. Hyperasymptotic expansions of U(a, ¢, z), near the Stokes line arg(z) = =«

In this section we shall obtain a hyperasymptotic expansion for Uf(a, ¢, pe*®) of the form (1.8), which
holds for § < @ < 27 — §. The expansion will be in terms of the function Fyyn,(2), and functions of
the form U(1 - b, ¢, Apei(®=™)) where ) is a positive constant. Notice that for confluent hypergeometric
functions with the present z-domain, we already derived a hyperasymptotic expansion in §2 and in [5).

We start with the expansion (2.5), and we use [8] where an integral representation for Ry,(2) is
given in the form

—i0(a+No—1) 00 U(l _ b, c, p,r)e-pTTa+No—l

RNo(z) = (_1)N0 F(G)P(b) 0 T+ et

dr. (3.1)

This integral is defined for —r < 8 < 7 and Ny > max(R(—a), R(—b)). Now we substitute U(1-b,c, p7) =
{U(1 —b,¢,pr) - U(1 = b,e, pe®=™)} + U(1 — b, ¢, pe'®~™) in (3.1) and we obtain

—i8(a+No~1)

RNo(z) =(—1)NO W \/0 gl(»r, Z)e—PT'r”‘+N°_1dT

(3.2)
2n(—1)No (0
LU\ T 2 —b i(6—m) .
+ T(a)T(0) e*U(1 —b,c, pe VPt No(2),
where we used the integral representation (1.6) for the second term, and where
U(1~b,c,pt) —U(l - b,c, pet®—™
ot 2) = ( pt) = U( P ) (3.3)

t+ eif

This function is regular in t = ¢“®~™), thus the right-hand side of (3.2) is an aralytic continuation of
Ry,(2) for -7 < 0 < 3x.

In the remaining part of this section we shall give an hyperasymptotic expansion for the first term
of the right-hand side of (3.2), that is

e—ib(a+Ng=1) poo

—————I,(a)r——————(b) A a1(T, z)e_PTT“+N5‘1dT. (3.4)

Swo(2) = (=1)™

In the appendix we shall prove that we can bound g;(¢,z) by
lg1(t, 2)| < Cu(t,€)p™7Y,  R(2) >0, (3.5)

where Cy(t,¢) = Cy max(|t|~1®-1% ¢), with ¢ a small positive constant. With (3.5) we estimate

oo
1S, (2)] < C1p® / emPrrReNo-1 g, (3.6)
0

where C; depends on a, b and ¢, and for small € we can obtain the estimate |Sy,(z)| = O(p™~%e7?), as
p — 0.
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wylor series of g1(t, z) at £ = A, where ) is a positive number, we can use the next expression

dn -1
62 = g AP A -0V bt metmpt) —nfzam(t 2], @)
d in the appendix. With the recursion relation
Ula+2,7+2,2z)= Aa +1)U(a+1 +1,2)+ @ +1)U(a,'y,z), (3.8)

from Kummer’s equation, it follows that the coefficients of the Taylor series of g;(t, z), at
omputed easily from the ’known’ U(1—b,c, p)), U(2—b,c+1, pA) and U(1—b, c, pei®=™).
xpand g;(7,2) in a Taylor series at T = 7, where 7, is the maximum of the integrand of

1(r2) =bos +bia(r—m) 4 +bwy—1a(r = 1)V 4 (7 - 1)V ga(r, 2), (3.9)
1 / g1(w, 2)

t,z) = — dw, 3.10

9a(t, 2) = 213 Ja, (s ) (w— )M (w —t) ( )

'y1,t) is a contour that encircles y; and 7. For obtaining sharp estimates for g2(t, z), we
id below for n =1,2,3,...

N { {we Cl [0 =Tal = Yo —pasor fw—t|=2""c}  for  Ri>pe, g

{wecC |w — Y| = Tn = pne or |w —t| = Rt} for 0 <Rt < pge,

-21="_ Thus Q,(7s,t) is the union of two circles. In the case that these discs intersect, we
the outer part of these two circles. (See Figure 2.1). With this £;(v1,t) it is not difficult

|g2(t, 2)| < Cat, )™ 1 (m — o)™, R(t) >0, (3.12)

is of the same form as Cy(t,¢), used in (3.5).
tute (3.9) in (3.4) and we obtain

o € et No=1) = * +No-1

- [ b —-pT 0 0— . n .

1(2) = (% S 2 bas [ et a4 ), 19)
Sw.(2) = (~1)Ne oot (r, 2)e=PmrotNo=1(r _ 4 )1 (3.14)
Ni\Z I‘(a)I‘(b) o y? y 7 T. .

b is explained how to compute the integrals in (3.13). With (3.12) we estimate

— Nl
T7n g, (3.15)

oo
Sy (z <C ?Rb—l/ e-—p‘r,’,Ra+No—1
|Sw, ()] P A P

-depends on a, b and ¢. The graph of the integrand of (3.15) looks like Figure 2.2; it has 2
and it is not difficult to prove that the most right maximum is the global maximum. This

rinimal for Ny = p(y1 —p1€)?(21 — p1€) . So we choose Ny = [p(v1 — p16)2 (271 — pls) 1,
» the place where the integrand has its maximum. We have 12 = 211 — p1e + O(p~ 1), as

o small £ we obtain |Sw, ()| = O(p®~2e~(130)7) a5 p — 0.
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mt to expand gs(7,2) in a Taylor series at 7 = 5. By writing g2(7,2) = {gl(‘r, z) —
y)Hr - 41)~ ¥, it follows that the Taylor series of ga(7, 2) at T = 73 , can be computed
series of g1(7,z) at 7 = 1. We write

7,2) = bog + b a(T — 72) + - -+ byy—1,2(r — 1)V 4 (7 — 712)V2g3(1, 2), (3.16)

e—i0(at+No—1) Np-1

RS TAO

o0
bu2 f e Pt N0l (s _ Wi (1 — yp)dr + Sn,y(2),  (3.17)
n=0 0

—iB(at+No—1) poo
(&)= (D™ Frorm

(@)r(®) Jo
for gs(t, z), which look like (3.12), we estimate

gs(7, z)e"’TT“+N°—1(1' - 71)N1 (r - 72)N2d'r. (3.18)

N2
dr. (3.19)

T—n ik

T — P1€

T2
Y2 — P2£€

o0
|SN2(Z)| S Capmb_lf e-—pTT&a.*_No_l
0

ind has 3 local maxima, at 7 = s1, 89,53, with s; < s3 < 83. The local maxima at
ecreasing functions of N,, and the local maximum at s3 is decreasing on the interval
12€), and increasing on the interval s3 € (27, — p2¢,00). For small and medium Ny, the
1is at sq, but for a certain large Ny (N ~ (1.85..)p with € small) the global maximum
it is attained at s; and s3. With the add of the computer we were able to show that
b=3¢=(1:94.90) a5 p — 0o.

m of ga(T, 2) at T = s1, will give an estimate of |Sn,(2)|, which is of the form (3.19), with
(1 —81)(81 — p3e) 2 INS in the integrand. When N3/p is bounded away from 0, for large
jor is too large in a neighbourhood of s3, and the estimate of |Sy,(z)| explodes. Thus,
s next level of the hyperasymptotic expansion , we expand g3(7,2) at 7 = v3 = s3. The
ining this level is the same as the method for obtaining the previous levels, but much
needed for a large exponentially improvement. This follows from the estimate

N3
dr, (3.20)

T-"N ik

71— P1€

T2
Y2 — P2€

T—73
73 — P3€

(z)l S C4P§Rb—l /oo e—p’r,,_?Ra+Nu—1
0

yal maximum of this integrand is greater than the previous maximum times [(73 —s1)(y3—

the method still works and with this method we can obtain nth-level hyperasymptotic

xxpansion (1.5) is obtained by substituting

M-1
U= beor) = ()t 3 (- d ":jgﬁ); O 4 iy (o), (3.21)
m=0

mainder Ry(z) in (1.5) is

_1\N+M _,—if(e+N-1) 00 —pT a+N-1 poo —pra M-b
(-1) € / e~ PTT '0 / Ula,c,prs)e™ s ds dr. (3.22)
T(a)T(b)T(1 — a)[(1 —b) Jo T+e 0 s+1

This substituting of the asymptotic expansion of the U-function in the remainder can
d a hyperasymptotic expansion is obtained. This method is described in more detail in
LS [2]. And in that paper it is proven that at each level the optimal number of terms



waller than the optimal number of terms at the previous level. The final error in [2] is
e=(2:39-)12]) a5 |z| — oco. In this method the universal hyperterminants are ’horrible’
ands, while the coefficients are very simple. In our method the universal components are
2e [5]), easily calculated by recursion, but the coefficients, the by, are more difficult to
vel we obtain Sy (2)] = O(z|** %e_)‘""l) as |z| — oo, where A9 < A\; < Az < ..., and
Yr — 6. For the first 5 of the A, we have \g ~ 1, Ay ~ 1.30, Ay ~ 1.94, A3 ~ 2.38 and
z| — oo. Thus in neighbourhoods of the Stokes lines our A4 exceeds already Berry and
: value of 2.39.

sion
in {5], it has been shown how a hyperasymptotic expansion can be obtained for U(a, c, z).

_is valid far from the Stokes lines. This method can be generalized to any function F(z)
1 Laplace transform:

F(z) = /0 ~ telg=2t f(g)ay, (4.1)

and f(t) is an analytic function in a sector containing [0, co), with | f()] < Ce’*, t € [0, 00),

shown how a hyperasymptotic expansion can be obtained for U(a, ¢, z), which is valid near
This method can be generalized to any function G(z) expressible as a Stieltjes transform

— ® a—1 _—=zt f (t)
G(z) = /0 wte L, (4.2)
conditions on f and a.

there are two main methods in the literature, for obtaining hyperasymptotic expansions
the first method, by Berry and Howls, the difficult part’ of the integral representing the
function 7 +— U(1—b,¢, pr) in (3.1)), is expanded in a simple asymptotic expansion. The
e hyperasymptotic expansion is obtained by substituting the simple asymptotic expansion
al representing the remainder. This method is used in [2], JONEs [4], [8], and in PARIS
9] Paris starts with a Mellin-Barnes integral representation of U(a,c, 2), and he obtains
). The advantage of the first method is that it remains valid across the Stokes lines.

d method was anticipated in BOYD [3]. Boyd indicates how hyperasymptotic expansions
nsforms can be obtained. This method is worked out in more detail in {5]. In this
1ded this method to neighbourhoods of Stokes lines. We start by expanding the ’large
;pendent part’ of the integral representing the remainder (the function fr4+1(7) in (2.9)),
ies at the main saddle point. The next level of the hyperasymptotic expansion is obtained
: the Taylor series into the integral representing the remainder. With this method we can
accuracy.

ical fllustrations

ate the method of the previous sections with the K-Bessel function. We choose ¢ = b = %

UL, 1,2) = n~ e Ko(L2). (6.1)
g illustrations we calculated the U F-contribution of (3.2), that is the second term on the

: of (3.2), ’exact’. The zeroth-level is (2.5). The UF-level is the zeroth-level plus the
n of (3.2). The first level is the previous plus (3.13). And so on.



Table 5.1. Hyperasymptotic approzimations to U (%,l,z) for z=10e™ and €=i%6

Level approximation exact—approximation

zeroth —0.325318874276844 1.4x1075+1.2x1075; No=11
UF 0.00001403163469—0.32531593185480: ~1.7x107%;

first 0.00001403163469--0.325317633748644 1.4x1078; Ny=5
second 0.00001403163469—0.325317620089561 —1.8x10714 N2=19
third 0.00001403163469—0.32531762010763% —9.2x107 144 N3=67
exact 0.00001403163469—0.325317620107734 0

Notice that on the Stokes line arg(z) = = the UF-contribution of (3.2) takes into account the real
part of the U-function. This U F-contribution is of the same order as Ry, (10€™), and it is due to this
U F-contribution that the hyperasymptotic expansion in §2 is limited to | arg(z)| < .

Table 5.2. Hyperasymptotic approzimations to U(},1,z) for z=10e%™ and €=1t5

Level approximation exact—approximation

zeroth 0.22848404036066—0.217537546235251 6.9%1079 —2.4x10-% ¢ No=
UF 0.22848580197590—0.21753930930013% ~1.7x107% —6.4x10"7 4

first 0.22848403527347—0.217539962605051 1.2x10~8 +8.9x1079 ¢ Ni=5
second 0.22848404727888—0.217539953655821 —1.4x10~11-1.3x10"113 Ny=19
third 0.22848404726479—0.21753995366845: —6.9x10714—6.5x 10143 N3=67
exact 0.22848404726472—0.21753995366852: 0

In these numerical illustrations the third level approximation is better than the final approximation that
can be obtained with the method described at the end of §3.

Appendix

For obtaining estimates for g(t, 2) on Rt > 0 we write z = pe'® and t = se*, where 0 < 6 < 27 and
—lr<v< 1m. We use (1.1) in (3.3) and obtain

Pt T ) T ) T = (L ) T ()
gi(t, z) = m/() [ o — i) dy, (A1)
where the function between brackets is bounded for s > €. Thus
lg1(t, 2)| < Cf p®1, Rt >0 and |t| > €. (A.2)
For [t| < € we first estimate U(1 — b, ¢, pt) with
(1 = bye, pt)]| < ;r—(l‘l—‘zﬂ /0 " mprngmBY(1 . g)Re-lgy (4.3)
In the case that Ra < 1 we can estimate the right-hand side of (A.3) with
1 sz, b Ra—1 1 ® o psz, —Rb
I—I-‘(—l:—zﬂ/o e PPzl + ) dmsm/o e i dx »

F(l ?Rb)( )?Rb—-l
~ T~ 9)] '
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And in the case that Ra > 1 we can estimate the right-hand side of {A.3) with

1 /oo e“”"m‘m(l N z)ﬁ“"ldz _ pm—1 ® e_,,yy-sﬁb(l + y)aea—l dy
T(1—-8)] Jo IT(1-8)| Jo p
< p?Rb—l we_ayy_gu,(l +y)sta—1dy
T - )] Jo (A.5)
I‘(1 - Rb) -1
U(l - Rb,Re, s
“Ta-pf )

<. Cp&‘.b -1 —]?Rcl-

In * we used that U(a,%,2) = o(z~1®7), as z — 0. This rough estimate follows from ABRAMOWITZ &
STEGUN [1,13.5.5...13.5.12]. Thus we obtain the estimate

|UQ - b,¢, pt)] < CJt|Ro—1s~ 1 Ral-IR0] (A.6)

and finally
lo1(t, 2)] < 7 p®e-1je[®el-1® R4 > 0and Jt| <e. (A.7)

Estimate (3.5) is the union of estimates (A.2) and (A.7).
For the proof of (3.7) we start with

00 e-—-pta: — epewz

— 1 -b a—1
gl(t,z)——r(l_b)/ oo (L+2)" e

= pry(t+ei?) —ptz g 1-b a—1 A.8
I‘(l—b)/ / e dye 1+ =z)**de (A.8)
I‘(2 b) _ i0
f\—d_—b) U(2 be+1,p[t(1 — y) — ye*’])dy.

In the following derivation we use a‘g—;—U(a,'y, y) = ()" () U(a+n,v+n,y)

:tngl(t z)=-p(1 _b)/ Frey U(2-b,c+1,pt(1-y) — ye'a])
=(=p)"" (1= Dats /0 (L-y)"U(2~b+mn,c+n+1,p[t(1 —y) - ye'®])dy

___(_—Q%[U(l-bm,wwt) o

1
- n‘/(; (1—y)" WA -b+n,c+mn,p[t(l ~y) — ye'])dy

1 n drt
=irew [(=p)*(1 - 8).,UQ —b+mn,c+mn,pt) — nam!h(t, z)].
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