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A very well-known model in software reliability theory is that of Littlewood (1980). The parameters in this
model are usually estimated by means of the maximum likelihood (ML) method. The system of likelihood
equations can have more than one solution. Only one of them will be consistent, however. We present
and compare two different approaches to construct estimators for the model parameters of this particular
model and investigate whether they are consistent or not. Our belief is that the ideas and methods
developed in this paper could also be of interest for statisticians working outside the field of (software) reli-
ability theory.
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1. Introduction

Maximum likelihood estimators are generally used in all fields of statistics. For those MLE’s theoretical
(asymptotic) properties are often derived, but seldom verified in practice. LeCam (1990) showed how terri-
bly they can behave sometimes. Another thing to keep in mind is the fact that in many cases the likelihood
equations will have more than one solution. Classical theorems state that under suitable conditions exactly
one of those solutions of the likelihood equations will be consistent and that this consistent solution will be
asymptotically normally distributed and efficient. Here the problem arises how to choose from a couple of
candidates (solutions of the likelihood equations) the consistent one. More seriously, if one has laboriously
numerically determined one solution, how can one be sure there are no others? LeCam (1991) addresses
those kind of problems too. His advice is to just apply one-step of the Newton-Raphson method to an initial
estimator, which is Vi -consistent. It is a well-known result that such an one-step estimator will be asymptoti-
cally equivalent to the MLE. Practical results obtained with the one-step Newton-Raphson method, how-
ever, often turn out to be very disappointing. Moreover, it is often actually rather difficult to construct a suit-
able initial estimator.

In this paper we consider this problem for a particular case in the field of software reliability theory. In the
next section we introduce Littlewood’s parametric software reliability model in more detail. In section 3 we
discuss the maximum likelihood estimation method for counting processes and show that for the software
reliability model of Littlewood (1980) the likelihood equations can have more than one solution. Hence we
face here the problem mentioned earlier. In section 4 a first approach is shown how an initial estimator, that
is Vn -consistent, can be found. We describe an algorithm that produces an asymptotically efficient estimator.
In practice this algorithm works well (and better than the one-step Newton-Raphson method). In the fifth sec-
tion we describe a second, more analytical approach to the problem, exploiting the mathematical properties
of the log-likelihood function of the Littlewood model. Finally, in section 6 we compare the results of the

Report BS-R9129

ISSN 0924-0659

CwiI

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands



2

two methods, when applied on simulated data, generated by the Littlewood model. Qur belief is that the
ideas and methods developed in this paper could also be of interest for statisticians working outside the field.

2. The Littlewood model

Computer systems have become more and more important in modern society. The problem of estimating the
reliability of computer software undergoing debugging has therefore, over the last two decades, received a
great deal of attention. For this purpose a considerable number of models has been proposed. We refer to
Musa et al. (1987) for a complete overview of the most common software reliability models. Two of the
most well-known models in software reliability theory are those of Jelinski-Moranda (1972) and Littlewood
(1980). For the Jelinski-Moranda model Moek (1983) gave a criterion on the data, satisfied with probability
one when the model is true, under which there exists an unique solution of the maximum likelihood equa-
tions. For the model of Littlewood such a criterion, however, is not known and probably will not exist. With
use of asymptotic theory it is proved (Van Pul (1990)) that in case of one or more solutions of the likelihood -
equations exactly one of them will be consistent, if we can make this choice using the data only. Here the
earlier mentioned problem arises: how to choose a consistent MLE, when the likelihood equations have more
than one solution. Also alternative estimation methods do have the same difficulties with the Littlewood
model. In case of M-estimation, nonsingularity of the resulting matrix has unfortunately not been proved yet
(see Geurts et al. (1988)).

We consider the following test experiment. A computer program has been executed during a specified
exposure period and the interfailure times are observed. The repairing of a fault takes place immediately
after it produces a failure and no new faults are introduced with probability one.

Let N be the unknown number of faults initially present in the software. Let the exposure period be [0, 1]
and let n(t), t€[0,7], denote the number of faults detected up to time r. Define To:=0 and let
T;, i=1,2,...,n (1), the failure time of the i-th occurring failure, while ¢; := T,~T;_,, i=1,2,...,n(t), denotes the
interfailure time, that is the time between the i-th and the (i—1)-th occurring failure. Finally we define
iyt =TT

In the Jelinski-Moranda model, introduced in 1972 and a few years later generalized by Musa (1975), the
failure rate of the program is at any time proportional to the number of remaining faults and each fault still
present makes the same contribution to the failure rate. So if (i—1) faults have already been detected, the
failure rate for the i-th occurring failure, A;, becomes:

Ai =¢0[N0 —(i—l)], 2.1

where ¢y is the true failure rate per fault (the occurrence rate) and N is the true number of faults initially
present in the software. In terms of counting processes we can write:

AM@) = ¢, [No -n (t—)] , te[0,1], (22)

where A(z), t€[0,T] denotes the failure rate at time ¢. The interfailure times 1;,i=1,...,n (1), are independent
and exponentially distributed with parameter A; given by (2.1).

In the model, introduced by Littlewood (1980), it is again assumed that at any time the failure rate is pro-
portional to the number of remaining errors. The main difference in the Littlewood model with respect to the
Jelinski-Moranda model, is the fact that each fault does not make the same contribution to the failure rate
M#). Littlewood’s argument for that is that larger faults will produce failures earlier than smaller ones. He
treats ¢;, the failure rate of fault j, as a stochastic variable and suggests a Gamma distribution:



¢;~T'(ag,bp), j=1,...N.
We define the expected occurrence rate of faults not occurred up to time # as
0(1) :=Bo; | Tj>t,
with
o; ~ T(ao,bo),
T;10;=¢ ~ exp(9).
A simple calculation yields that the 7; have exceedance probability

by o
PrTj>1) = bott|
0

that is, the 7; have a generalized Pareto distribution. Furthermore
0;1T;>t ~ T(ag,bott)
and hence:
ao
bot+t’

o=

An application of the so called innovation-theorem (Aalen (1978)) now shows, that the failure intensity of
the software at time ¢ is given by:

ap [No—n (t —)]

AL (1)= b (2.3)
By a simple reparametrization, namely:
ao 1
=‘b‘;’ 80=E,
we get from (2.1):
ASL(r) = aoﬂ"l_—Jr"sf)—tt—_E,ze [0,7]. (2.4)

Actually formula (2.4) provides an extension of the Littlewood model (2.3), allowing also small values of
€0<0. Restricting ourselves to the conventional parameter space

© =4 (N,o,e)eR® | N0, 00, 20},

which is not compact, we will investigate the model behaviour at the boundary of the parameterset.
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We will see that letting certain combinations of N, o€ converge to their boundary limits (zero or infinity) at
various speeds, this may lead to different limiting models. Apart from the null-model (0) (where, as for
instance N=0, nothing happens) we can roughly distinguish four non-trivial boundary models:

ey

?

©)

(C))

The explosion model (E 8):

If for instance O<N <oo, O=c0 and 0<eg,oo, the failure-intensity at time zero becomes infinite. Thus
the expected number of bugs detected makes a jump from zero to 8 at time zero and remains con-
stant for 7 >0. The failure-intensity drops to zero for ¢ >0. Special cases are E° (the null-model), EY
and E™. E* represents the class of all explosion models{ E® | 0<8<oob.

The Jelinski-Moranda model (JM):

If 0<N <o, O<oi<eo and €=0, we are dealing with the model we discussed earlier, namely the
Jelinski-Moranda model (2.2) with occurrence rate parameter ¢ equal to o.. We can therefore treat
the Jelinski-Moranda model as a special (limit-)case of the Littlewood model.

The inhomogeneous Poisson model (IP):

If N—eo, 0—0 and 0<g<eo such that No.—39, the influence of the past of the counting-process 7 (f—)
is eliminated from expression (2.4) and the general model reduces to an inhomogeneous Poisson
model with intensity function A(¢) = 6/(1+¢€t), t€[0,1].

The homogeneous Poisson model (HP):
If N>, 0—0 and €0 such that No.—?9, all time-dependence is eliminated from the expression

(2.4) and the general model reduces to a homogeneous Poisson model with constant failure intensity
d.

Table 1 shows which of the above mentioned limiting models occur for which (N, o.,€).

N=0 0O<N<oo N=co
e=0 O<g<oo €=00 e=0 O<e<eo €=o0 e=0 O<e<oo €=co
o=0 0 0 0 0 0 0 HP IP EA
0<o<oo 0 0 0 M LW 0 E> E> E
O=co 0 0 0 EN EN Oor EV = E~ EA

Table 1: Boundary cases of the Littlewood model (LW)

Note that for instance for 0<N <oo, —o0 and €—eo the limiting model heavily depends on the way we let o
and ¢ increase. In figure 1 we plotted expected number of faults detected versus time for various choices of
parameter triples (N, o.,€) approaching the boundary of the parameterset ©. The bold curves represent the
limit models.
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3. Maximum likelihood estimation for counting processes

By using the information obtained from the test experiment one can estimate the the parameters of the under-
lying model. Mostly maximum likelihood estimation is used for this purpose. Aalen (1978) showed using
theory of Jacod (1975) that the likelihood function for the vector-parameter 8 of the stochastic intensity AF(¢)
of a counting process 7 (t) observed on [0,7] and conditioned on the past F,_, is given by:

L(8;t|F,_) :=exp jlog AF(s;0) dn(s)—P»F(s :0) d% )
0 0

The past here only consists of the minimal (or self-exciting) history of the counting process n (¢):
F,_ = o{n(s):0ss<th

For the Littlewood model with intensity (2.4), parameter 6=(N,0,€) and exposure period ¢=t, the log-
likelihood function becomes:

O a(N=i+l)| "®q 1+€T;
) = =T Y S (N-i+
logL(N, o, €;7) >=:11 g 17¢T, Z ( i+1)log 1+l
= n(log(@) - a(N-n (1) EHE
n(t) n(17)
+ I log(N—i+1) - (ox+€) ):1 log(1+€T)), (3.1
= = &

where T := 0 and T}, ()., :=T. Hence the log-likelihood equations are:

n@ -gelog(14€7) _

ilogL(Nocsr)—

=0 .
oN E N £ (3.2)
n@ log(1+€T;

9 og LV, ot = 2O _ (o (ry) JogUFED % g(d+ely) =0; (3.3)
ao o € i=1 £
d oUN-n (1)) et |, a"® eT;
Z log L(N, 0,&;1) = ———22 |[oo(1+£T) — = 14€T;) - ——
% og L (N, o,€&;T) 2 og(1+e1) Trer 2 Z log(1+4€T;) TeT,

=TT e (34
Remark 3.1:

Natural questions to ask are whether logL (N, o, €;t), as defined by (3.1), might have more than one (local)
maximum, and whether the system of likelihood equations (3.2)-(3.4) might have more than one solution,
which is a different problem. The answer to both questions is affirmative. Consider the following dataset:

n(1)=3;
T,=1,T,=399.9,T,=400.1;
1=709.5.
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We will see later (in remark 5.2) that logL (N, o, €;T) has a global maximum at the boundary (N=n (1) and =0
) and both a local maximum and a saddlepoint in the interior of the parameterset ©. The dataset constructed
here is of course in bad agreement with the Littlewood-model. In section 5 we will consider this dataset in
more detail. (End of remark 3.1)

As the system of the three highly non-linear likelihood equations (3.2)-(3.4) obviously can not be solved
analytically Moek (1984) and Geurts et al. (1988) use the parametrization (2.3) and suggest to simplify the
problem by fixing one of the parameters a=1. Furthermore, Moek (1984) was able to express both N and a
as functions of » and used this to derive an equation f (b)=0 from which b can be solved numerically rela-
tively easy. Criteria were formulated which ensure the existence of at least one solution. The problem of the
possibility of multiple solutions is ignored. Geurts et al. (1988) signal this problem but do not provide a solu-
tion. They state that in case of multiple solutions exactly one of them will be consistent; moreover this con-
sistent solution is asymptotically normal distributed and efficient. In sections 4 and 5 two approaches are
presented to construct estimates that are indeed consistent. Method I in section 4 describes how an initial
estimator can be obtained that is Y -consistent. Starting with this initial estimator several (iterative) methods
will then provide us with estimators that are asymptotically equivalent with the MLE. Another, more analyt-
ical approach is presented by Method II in section 5. Here we reduce the problem of maximizing the log
likelihood function logL (N, o,€;7), given in (3.1), to a one-dimensional one by eliminating first the parameter
o explicitly and then the parameter N implicitly. We show that the resulting estimator has desired statistical
properties.

4. Method I
4.1. Constructing an initial estimator €~); applying an (iterative) optimization procedure on it.

We define m (t) as the expected number of failures detected up to time ¢. From (2.4) it follows that:

Sl

In theorem 1 we will prove that given an arbitrary triplet (s;,5,,53)€ [0,1]* solving

m(t) = E{n@®}=N

m(s;)) = n(s;)

for N, o and €, will have one solution at most. This solution 6, which can be viewed as a generalized moment
estimator, will turn out to be a good starting point for estimating 6.

Lemma 4.1:
Consider the function:
1

o %
H=N|1l-|—— , t20, N>0, a>0, £>0. 4.1
x(1) [ [ 1+£t} J a>0, &> (4.1)
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Given three points in time s1,5,53, with 0 < s < 5, < 53, the determinant of the Jacobian

0 0 0
i ?x(sl) §x(sl) §x(sl) i
D = I WX(SZ) mx(sz) Ex(SZ) I “4.2)
| iJc(s ) —a—x(s ) ix(s ) |
| aN~ Y Ba” T gem Y| -

is non-zero.

Proof of lemma 4.1: (Duistermaat)
Fix s, and s3. Consider D (s,5,,53) as a function of s only. It is easy to verify that

82
ﬁD(S 1)

has only one zero, hence only 3 zeros for D(s;). Obviously, however, D (s)=0 for s, equal to 0, 5, and s3.
As it is given that O<s | <s,<s3 it follows immediately, that D is non-zero. Od

Theorem 4.1:

We again consider the function x(t) defined by (4.1). Let be given three points in time s.,5,,53, With
0 < s, < s, < s3 and three positive numbers x,x,,x3. Then there is at most one parameter-triple (N, 0,€),
such that:

x(s;) = x;, i=1,2,3. 4.3)

Remark 4.1:
It is obvious that there are situations in which there exists no solution (N, a,€) to (4.3). This is the case for
instance when monotonicity

0<X1<X2 < X3 (4.4)
or convexity

X1 Xo—X X3—Xp
—_ > >

4.5)
S $2751 $3—82

are violated. Notice that (4.4) and (4.5) are necessary, but not sufficient conditions for the existence of a
solution of (3.1.3). See also remark 4.3. (End of remark 4.1)

Remark 4.2:

Obviously the result of theorem 4.1, would follow directly from the non-zeroness of the determinant D,
given in (4.2), if we could prove that the boundary of the image of

0: R} 5 R (V,0,8) > (x(s1),x(s2),x(s3))
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is simply connected. These two facts together, namely, would imply that the mapping ¢ is 1-1 by standard
covering arguments (see e.g. Greenberg (1966)). The first result, i.e. the non-zeroness of the determinant,
follows from lemma 4.1 and will be used later on. The connectivity of the boundary, however, is much
harder to show. Therefore we have chosen for an alternative, more direct analytical proof, using an appropri-
ate transformation of the parameters N, o and €. (End of remark 4.2)

Proof of theorem 4.1:
Let (N, a,€) a solution of (4.3). Define

u; = log(l+€s;), i=1,2,3. (4.6)
=

=

Then we have
x; = N[ l—exp(—o u,-)], i=1,2,3;
and hence

_1
o

u; log(l—%), i=1,2,3. 4.7)

The symmetry in expressions (4.6) and (4.7) inspires us to define for i=1,2,3:

log(s+t;A)
A ifA>0;
vi(A) = 5 ifA=0: (4.8)
Zlog=xil) o e L
u *3
wi(W) = x; ifp=0. 4.9)
We now define V:=v,/v,, Vy:=v3/v, , W;i=w,/w, , Wy:=w3/w, and consider the two curves in R?:
V) = (Vi(M), Va(h), 0<Ah <o (4.10)
1
W = (Wi, Wa), 0<p< - 4.11)

It is easy to check that every intersection of the curves V and W corresponds (in a 1-1 way) with a solution
(N, 0,€) of (4.3). We will show now that there exist at most one such crossing, by proving:
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Lemma 4.2:
For a crossing, say (Ay,Wg) of V and W, given by (4.8)-(4.11), we have:

daw,
aw, (Uo)- (4.12)

v,
E(M) <

The proof of lemma 4.2 will be given in appendix A. From (4.12) it follows directly that the curves V(A)
and W (L) can have one intersection at most. This corresponds with at most one parameter-triple (N, 0,€) as a

solution to (4.3). Theorem 4.1 is now completely proved. O
Remark 4.3:
Define

A= 1+2‘/5_ 4.13)

Set (s 1 ,52,S3)=(1,2,3) and (xl’x27x3)=(2,37y)’ where

2log(1+3))

3.672276 ~ log(141)

<y <4 (4.14)

Then one can easily verify the monotonicity and convexity conditions (4.4)—(4.5). Despite of this, the curves
V(A) and W(u), defined by (4.8)—(4.11), have no intersection. This example counters the idea that
(4.4)—(4.5) would also be sufficient for the existence of such a crossing. We need an extra condition, perhaps
embodying the fact that x””(£)>0 for all ¢. (End of remark 4.2)

It is obvious that maximizing logL (N, o, €;T), as defined in (3.1), can be very hard, but is not impossible.
In Van Pul (1990) we have used a standard optimization program written in Pascal, called Amoeba and
described in Vetterling et al. (1985), which carries out a fast down-hill simplex method. This method does
not treat the problem as a series of one-dimensional maximizations and only function evaluations are
involved, not derivatives. As input it requires the four edges of a non-degenerate simplex S in R, a (func-
tion) tolerance € and the function f, which is to be maximized. An appropriate sequence of reflections, expan-
sions and contractions of the initial simplex S should always converge to the maximum of the function f, not
necessarily lying in the initial simplex S. Guarantees, however, that Amoeba finds the absolute maximum in
the presence of local maxima, cannot be given. The existence of more than one (local) maximum, however,
is very well possible, although so far multiple solutions have never been found in practice, as we know (see
also Moek (1983). The dataset constructed in remark 3.1 shows, however, that it is theoretically possible.
Furthermore it is possible that Amoeba crashes, because the maximum of the function was taken at the boun-
dary of the simplex. In such a case we had to restart the Amoeba procedure with a different initial simplex
S’. In the sequel of this paper, we will need an optimization procedure with nice mathematical properties.
Therefore we introduce the following assumption:

Assumption 4.1:

There exists an optimization program, say Max, which, when given a continuous, concave function f :R>*—R
and a compact subset S of R>, will always return an x ., € S with the property that for all x€ S:

fx) £ f (xmax)-
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The algorithm to find a consistent MLE consists of the following four steps:
(stepl)  Choose three time points 0<s | <s,<s3<T, independent of the the past of the counting process. For
instance: s;:=iT/3. Suppose the number of faults detected up to those time points are n,n,,n3.
We assume all conditions necessary for the existence of a crossing of V(A) and W(u) are
satisfied.

(step2)  One can determine numerically estimators A for Ao and ft for |y, such that V(?:) = W(]:L).

(step3)  Compute 1;/, o and € by:

No=1
M
- - log(1=x;
o = _joed—xi) (4.14)
log(1+s;A)
and
€= A

Notice that & in (4.14) is independent of i. Define the initial estimator é = (N,0,€).
(step4)  Construct a regular tetrahedron around 8 with vertex length equal to Cn(t)™" and apply the
optimization program Max (hypothesized in Assumption 4.1) to the (locally concave!) log likeli-
hood function (3.1) on this tetrahedron. With a probability tending to one, the consistent max-
imum likelihood estimator 6 will be in this tetrahedron too and if so Max will find it.

Remark 4.4:

If such a crossing as mentioned in step 1 does not exist, we could repeat this step with new s;, but the
developed theory could then not be applied; for the theory it is namely essential that the choice of the s; is
independent of the data. Note that if it is very hard to find a triple (s,s,,53), satisfying the necessary condi-
tions, then one might suspect that the data reject the Littlewood model decisively. It is then, of course, of no
use searching for accurate estimators. (End of remark 4.4)

4.2, Statistical properties of method I

In order to discuss the statistical properties of the estimator, we have to give some more background. Impor-
tant will be the way in which we will treat asymptotics. It does not make sense to let T, the stopping time,
grow to infinity. In the long run the estimate of the total number of faults will trivially be equal to the true
number of faults. It makes more sense to (conceptually) increase the number of faults in the program. The
idea is that then asymptotics should be relevant to the practical situation in which N is large and n (t)/N,
not close to zero or one.

Let a counting process 7 (¢) be given. Only during a specific time interval [0,1], are jumps of the counting
process n(t) observed. In this paper we will assume that the intensity function associated with the counting
process exists and is a member of some specified parametric family, that is:

M?) = AN, ), te[0,1], NeN, ye ¥, YcRP™!

for an integer p. Let Ny and y, be the true parameter values. Typically the parameter N, represents the
scale or size of the problem (sometimes Ng=n (o)), while Y, is a nuisance vector parameter. We will be
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interested in estimation of Ny and y, as Ny—»e. We assume that the model is also meaningful for non-
integer N. For instance the intensity function (2.2) of the Jelinski-Moranda model can be generalized to

AM(p) = ¢[N—n(t—)] En(t) <Ny, te[0,1],

where K.t denotes the indicator function. As we are particularly interested in the parameter estimation when
Ny is large, we will introduce a series of counting processes n(?), t€ [0,1],v=1,2,... and let N conceptually
increase. Let N =N, — o for v — . By the reparametrization

Ny = vy
with a dummy variable 7,, we can denote the associated intensity functions by
M@y =Mevy,y), te[0,1], yeRY, ye?, v=1,2,...

Now we consider the estimation of y and y as v—eo. If the real-life situation has v=N,, then y=y,=1 and
y=y,. It is rather unorthodox to increase a model parameter itself, in this case N. This complication is
solved by estimating Y. We will assume that the maximum likelihood estimators (y,,\,) for (yp, o) exist.
Typically, (y,,Wy) is a root of the likelihood equations

J
logL, (v, ¥;1) =0, v=1,2,..., 4.15
ALY ogL, (v, y;1) 4.15)

where the likelihood function at time 7 L, (Y, y;¢) is given by (see Aalen (1978)):
t t
L,(r,y;0) == exp| [log Ay (531, W) dny(s)—[Ay (s 17, 9) da] (4.16)
0 0

We define for v=1,2,... the stochastic process x,, () by:
xy(t) =vin, (1), te[0,1].

In most practical situations, this sequence of stochastic processes converges uniformly on [0,t] in probability
to a deterministic function x((t) as v—ee (Kurtz (1983)). We assume that the counting processes n, are gen-
erated by associated intensity functions A, (z), satisfying:

M) = VB(t:05x,(-)),

for an arbitrary non-negative and non-anticipating function B:[0,T]x®xK — R* where the model parameter
0=(Y,¥) consists of the parameter of most interest y and a nuisance parameter vector . Furthermore, we
define for 8€ OcR?,” 1€ [0,1], i,j€ 1,2,...,p and v=1,2,... the log-likelihood:

C,(6,1) :=log L(0,1);

the score function:
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U,i(0,t) = %Cv(e,t) 4.17)

and the minus information matrix:

2

d
1,(8,1) .= 96.96.
199

Cy(8,1). (4.18)

Under classical smoothness and boundedness conditions on the function B (see for instance Borgan (1984) or
Van Pul (1990)), we have the following result:

Theorem 4.2:

(i)  Consistency of ML-estimators: With a probability tending to 1, the likelihood equations (4.15) have
exactly one consistent solution ©,. Moreover this solution provides a local maximum of the likelihood
function (4.16). R

(ii) Asymptotic normality of the ML-estimators: Let 0, be the consistent solution of the maximum likeli-
hood equations (4.15), then

o D
W (6,~89) — N(0,X7), Voo,
where the matrix £={c;;(8)} with for i,je {1,2,..,p}, 0 Oy is given by

9
© 08,

B(sa eax0)£ B(sa e’x())
J
Gij(9)=£

B(S, 97x0)

ds (4.19)

and can be estimated consistently from the observed information matrix I, given in (4.18).
(iii) Local asymptotic normality of the model: With U,,v=1,2,... given in (4.17), we have for all he RP:

Po,

1ogdP°" “BTU, + ShTER 5 0, vy,
dPy, 2

_1 D
where 8,=0p+v 2 hand U, — N(0,X), £ given by (4.19).
(iv)  Asymptotic efficiency of the ML-estimators: ©, is asymptotically efficient in the sense that the limit dis-
tribution for any other regular estimator 0, for 0 satisfies:

- D(8,)
W(0,-6,) — Z + 7,

where Z ~; N(O, E_l), Z and Y independent.

This theorem and its proof can be found in Van Pul (1990). We are now able to formulate the following
results:
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Theorem 4.3:
0 is N -consistent.

Proof of theorem 4.3: .
We first prove consistency of 6. From Lemma 4.1 and Theorem 4.1 it follows directly, that we can write

0 = g(x),

for some function g: R* — ©, with continuous partial derivatives. Let (;0 = g(xp) and 6\, = g(xy),
where we use the asymptotics developed in the beginning of this section. Then by the theorem 8.1 of Kurtz
(1981) we have:

Xy o x
in probability uniformly in ¢ on [0,7]. Hence by the continuity of g¢ we deduce the consistency:
0,—6p = g(xy)-g(xo) —p 0,

asVv — oo, The Vn -consistency now follows immediately from theorem 8.2 of Kurtz (1981) and an applica-
tion of the delta method. This proves theorem 4.3. O

Corollary 4.1:
The algorithm described in section 4.1 works, that is, it yields an efficient estimator for 6.

Corollary 4.2: . .
The maximum likelihood estimator © with the smallest Euclidean distance to 0 is consistent.

Corollary 4.3: _ R
The k-step Newton-Raphson modification of 0 is asymptotically equivalent with the MLE 6.

As we do not know of the existence of an optimization algorithm, like Max, satisfying assumption 4.1, to
apply corollary 4.1 we make use of the program Amoeba instead. In practice, this yields nice results (see Van
Pul (1990)). Corollary 4.2 is a pure theoretical result. In general there are no numerical recipes available that
deliver all(!) solutions of a system of non-linear equations. Corollary 4.3 is frequently used in practical
situations, but results often turn out to be very disappointing, especially for k=1. For k=4 or k=5 this
method should however work (see Anderson et al. (1992)).

5. Method I
5.1. Exploiting the mathematical properties of the log-likelihood function

It will turn out to be of great advantage to apply the parameter-transformation:
M = N-n(1),
The log-likelihood, as expressed in the new parameters, is:

n@ log(1+€T; n()
logL(a.M.€) = n(t)logo: — (e+0) T & - 2 —aMlOg(:'eT) + X log(M +i) (5.1)
1= i=
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with parameter-domain{ (o, M, €):0:>0,M >0,e>0;. When M and € are kept fixed, it is quite easy to maximize

logL (oL, M, €); it can be done analytically. If
R,(M,¢e) = sug log L(0,M, €)
o>

then

S 1 o,M,e) = sup R,(M,e).
a>0,ll}12%,s20 OgL( ) MZO,EZO 2( )

Now

dlogL  n(t) "M log(1+€T)) log(1+£7)
= - -M
oo o i=1 € €

and it is easy to check that logL (o, M,¢€) for M, € fixed, is maximal for

n@ log(1+€T; -!
o = nev .Zl 8( - i) . Mlog(1€+€‘c)-| :
i=

SO

n( log(1+€T;
Ry(M,&) = n(t)logn (1) —n(T)log )_;1 g(g ) + Mlog(i+e1:)]

n(1) n(t)

- '21 log(1+€T;) + 4}:1 log(M +i).

(5.2)

(5.3)

In order to maximize R,(M,€) we can first maximize with respect to M, keeping € fixed, and then maximize
with respect to €. The first maximization is relatively easy because we can make use of the following

theorem:

Theorem 5.1:
For n integer and 22, and 1 real and >0, the function

h(M) = —nlog(M +n)+'):".llog(M +i)

has precisely one local extremum, which is realized at:
n
o M=0, for n<n[ le‘]_l ,
i=1 I

° M=oo,forn2n-2'—1 s

o Me (0,), for intermediate values of 1.

The proof of theorem 5.1 can be found in Appendix B. Now R,(M, €) can be rewritten as:

R,(M,e) = n(t)logn (t)—n(’t)log[log(l%cl

] - n(Dlog(M+n(e))

n(t) n(1)

+ '21 log(M +i) — '21 log(1+€T;),
i= i=

where
n )(:t) log(1+¢€T;)

e = i=1 log(1+€7)

(5.4)

Only the third and the fourth of the terms in the right-hand side of (5.4) depend on M. Their sum has a form
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similar to the function 4 (M) of theorem 3, and so R,(M,€) has for € fixed, exactly one local supremum,
which occurs for M =0 if 1(€)<n[Z1/i]™!, for M =c if N(€)2(n+1)/2 and for a finite, positive value of M oth-
erwise.

Remark 5.1:
M(g), the value of M which maximizes R,(M,€), can not be expressed explicitly, contrary to the o of (5.2).
If € increases, 1(€) increases as well, and so will M(€). (End of remark 5.1)

Finally then, if we define:
R\ (e) = Ry(M(¢),¢),

we have to maximize R (€). While doing this, one must bear in mind that R (€) might reach its maximum for
€=0. As a matter of fact, we have encountered this feature several times when analyzing real data-sets.

Remark 5.2:

We now return to the dataset mentioned in remark 3.1:
n(1)=3;
T,=1,T,=399.9,T;=400.1;
1=709.5.

The function R (€) takes its global maximum for £=0, a second local maximum for £=1.152 and a local
minimum for £=0.023. This corresponds to a global maximum for R,(M, ) for =0, M=0, a second local
maximum for R, (M, €) for £=1.152, M=9.8, and a saddlepoint at €=0.023, M=0.0015. (End of remark 5.2)

All results are easily obtained by a standard optimization procedure for one-dimensional functions, called
Golden section search (see for instance Vetterling et al. (1985)).

5.2. Statistical properties of method IT

Although we were not able to prove the following conjecture, practical results obtained made us strongly
believe that it does hold:

Conjecture 5.1:
Method II yields consistent estimators.

When trying to prove Conjecture 5.1 we encountered a third alternative way of constructing an useful esti-
mator for 8. The idea is to regard the failure times 7; as the outcomes of n (1) independent variables from a
FPareto (a,b) distribution that is truncated at T. We condition on N and then maximize the partial likelihood
with respect to a and b. It can be shown that the the total likelihood now is maximized by substituting a sim-
ple function of the data and the maximizers a and b for N. This approach and a proof of its consistency,
hopefully together with a proof of conjecture 5.1, will be discussed in a next paper appearing in Statistica
Neerlandica (1992).
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6. Comparison of the results of method I and method II

In this section we will discuss the results of some simulation experiments. We generated failure times
according to the Littlewood model (2.4) with 0p=1, £y=1 and different values for N (100, 1000 and 10000).
The exposure period was kept fixed: 7=4. We compare the initial estimator 6 (suggested in step 3 on page
11), a 5-step Newton-Raphson modification 6 applied on 8 and the maximizer of the likelihood 8. Note that
the initial estimator 6 does not exist for all datasets (see remarks 4.1 and 4.3). We did repeat the simulation
experiments and parameter estimations for each value of N For each value of N we repeated the simulation
experiments and parameter estimations K ,=1000 times. In table 2, K denotes the actual number of cases in
which the curves V(A) and W () intersected each other, leading to an initial estimator .

No K
100 521
1000 940
10000 1000

Table 2: Number of successful trials to construct 6

For each value N, we picked randomly 5 datasets from those leading to an initial estimator é, and computed
the associated 6" and 0. These three estimators, together with the corresponding values of the loglikelihood
function are given in table 3. From the figures in table 3 we may draw the following conclusions:

1) All estimators become better as N gets larger. This is not strange as we have more statistical infor-
mation.

2) o can be estimated relatively well already for small N; this in contrary to € which has for
N=10000 still a large range. _ R

3) The value of the likelihood function in 6" is larger than in 6, and in 6 again larger than in 6", as

might be expected. The differences are in some cases very small, indicating the extreme flatness of
the likelihood in the neighbourhood of its maximum.

6] For almost all datasets the value of the log likelihood function at 6™ is already higher than logL,
the value in the true parameter 6.

5) Different triples can lead to almost same curve (up to T) and likelihood. The Littlewood class is very
broad in the sense that different parameter triples can give a very good fit to the same data. Predic-
tions of events after T will differ, of course.

(6) In two cases (dataset 2 and 3) the likelihood function takes its absolute maximum on the boundary
e=0. We checked that in both cases there are no other (local) maxima. The data here falsely suggests
the Jelinski-Moranda model.

In figure 2 we give plots of the observed and expected number of faults detected versus time, according to
the Littlewood model with parameter 6, 8, 6" and 0. In figure 2a we used dataset 5, in figure 2b dataset 9
and in figure 2c dataset 13. From figure 2b we see once more very clearly, that the estimators are strongly
influenced by stochastic deviations of the observed counting process from the expected m (z, 6y)=En (¢).



18

(@) 1 2 3 4 5
logLo 183.3 212.8 191.0 196.8 198.7
N 83 87 84 114 112
o 1.156 0.991 1.083 0.950 0.782
£ 0.414 0.056 0.243 1.440 0.860
logL 184.5 215.5 192.6 196.6 198.0
N 85 83 84 109 101
o 1.047 1.078 1.037 1.047 1.011
e 0.404 0.056 0.239 1.454 0.932
logL™ 184.6 216.0 192.7 196.7 198.8
N 79 85 80 88 98
o 0.994 1.094 1.022 1.067 1.081
e 0.042 0.000 0.000 0.408 0.922
logL 185.2 216.2 193.2 197.1 198.9
(b) 6 7 8 9 10
logL, 3746.8 3862.8 3604.1 3801.1 3563.4
N 1505 1246 828 942 973
o 0.804 0.958 0.900 1.008 0.885
£ 2.541 1.972 0.183 0.697 0.818
logL 3744.0 3862.8 3603.0 3801.4 3566.6
N 1443 1179 819 937 971
o 0.750 0.998 0.955 1.031 0.903
e 2.046 1.779 0.189 0.708 0.845
logL™ 3745.8 3863.2 3603.9 3801.5 3566.7
N 1044 1041 908 948 1029
o 0.902 1.050 1.020 1.039 0.895
£ 0.986 1.223 0.745 0.782 1.089
logL 3747.6 3863.9 3606.9 3801.5 3566.9
© 11 12 13 14 15
TogL, 56728.7 55770.9 56476.9 55908.5 55976.8
N 9693 9580 10114 9709 9607
o 1.004 0.975 0.984 0.947 0.947
£ 0.812 0.774 0.996 0.762 0.726
logL 56729.0 55769.9 56477.2 55913.7 55966.5
N™ 9692 9502 10062 9743 9452
o 1.014 1.003 1.002 0.940 1.010
e 0.828 0.787 1.006 0.766 0.757
logL"" 56729.3 55770.9 56477.5 55913.8 55971.7
N 10028 9789 10225 9819 10321
Q 1.012 1.002 0.999 0.940 1.002
e 0.993 0.926 1.082 0.800 1.176
logL 56730.4 55771.7 56477.7 55913.8 55977.9

Table 3: Numerical results for 6, 0" and (; with (a) 6,=(100,1, 1), (b) 6,=(1000,1,1), (c) 6,=(10000,1,1).
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Figure 2a: N=100 Figure 2b: N=1000
o] e}
£ 120 | £1200 1
(0] .
:“g 100 - 4 §1000 b
2 80 o 2 800 — iil
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S 40 | S 400 -
[0)] [0)]
.g 20 -g 200 -
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Time Time
Figure 2c: N=10000
©
gzooo 1
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£ 8000
3 6000
S 4000
2 2000
£
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Figure 2: Observed and expected counting process according to Littlewood’s model with parameters
69, 6, 6" and 6.
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Appendix A: Proof of lemma 4.2.
For the proof of lemma 4.2 we will need two other lemma’s.

Lemma A.1:
The function

_ (+wlog(w) o,

fu:

is strict monotone increasing.

Proof of lemma A.1:
Calculating the first derivative of f we find:

u —log(14+u)
u? if u>-1, u#0;
fu) =
1 if u=0.
2

As u > log(14u) both for —1<u <0 and for u >0, we find that f'(«)>0 for all u >—1. This proves lemma 2. [

Lemma A.2:
If M <A\, <A; and v <v,<v3 are six real numbers, then

|e}"|V| e;‘?vl elzvl
lghva vl g,
ieklvs e)"zva eXJVSI
Proof of lemma A.2:
Can be found in any textbook on matrix theory, see e.g. Gantmacher (1954). O

We now return to the proof of lemma 4.2. Differentiating (4.10)-(4.11) yields:

$3 51
av, 1+s3k]og(1+s1k) - 1_'_Sl}»log(l+s37»)
v \ = ; (A.1)
! 2 og(l4s,0) — ——log(1+s,)
1+S2}\. g ! 1+Sl)\, g 2
3 1og(1 1 og(l
aw, r—— og(1-x ) T— og(1-x3p)
W W = . (A2)
1 X2 —X
log(1-x,p) - log(1-x,1)

I-=x,p l-x;p
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Now with
10 1+Si
u = i(%—%), i=1,2,3.
we have:
log(1-x;19) log(1+s;Ag) Moo
= = —, 1=4,5.
log(1-x 1) log(1+s12g) U

The derivatives (A.1)-(A.2) hence can be written as:

S3 S1
u, — Uus
dV2 1+S3}\,0 1+S1}\0
200y = : A.
av, (Ao) 5, 5 (A3)
1+S2;\.0 “1 1+S1)\.0 “2
X3 X1
uy — us
W2 1“X3l,10 l—xl“{)
= . A4
dW] (“0) x2 xl ( )
I—X2ll0 1 l—x,uo "2

From lemma A.1 it follows directly that the denominators of (A.3) and (A.4) are respectively negative and
positive. So inequality (4.12) is equivalent to

S3 S1 X2 X1
I+s3A¢ " I+s 12 "3 1-x,1 " 1-x1lg "2
S2 S X3 X1
- A5
{ Trsoho 1 Tas kg "2] [ [Tt R WA “3} (A-3)
and (A.5) is égain equivalent to:
} 51 X1 =
]1+Sl)\0 U, l—xlpol
| 32 x2 l O A 6
> 0. .
} 1+S2}\0 “2 I—X2u0 = ( )
| $3 us x3 |
I 1+S3A‘0 I—X3|JO I
Notice that for i=1,2,3:
—Aolt; "
Si 1-e —AgV
= = |le *dv; (A7)
l+S,'}\0 AO ‘([
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Xx; ot _ cho 't
_ el o [ av; (A.8)
I-x;ilo Ho Mo o

U;

;= [1dv. (A.9)

Substituting (A.7)-(A.9) in (A.6) yields another equivalent inequality:

uy U, us |C_}1)vl ec%v' |
e e e”’““' dvsdvadv, > 0. (A.10)
vi=0 v,=u; vy=u, Ie_}‘“v3 1 e 3I

As a direct consequence of lemma 3 the determinant in the integrand of (A.10) is strictly positive. Therefore -
inequality (A.10) and equivalently (4.12) are satisfied. Lemma 4.2 is now completely proved. O

Appendix B: Proof of theorem 5.1

It is easy to check that
d +xL
—_— M PR ——
dmM ) = M+n i=1l M+
n ol 1 ]2
—h(M) = ~—X|——|.
dM M+m)? =l M+1J
If for a finite value M’ of M
d
—hM) =0, B.1
dM( ) (B.1)
then
& n [ )
hM)= ——-3%
dm? ) M’4m)?  i=t| M'+i
n n
=i{z ! z[ !
n i=1M+l i=1 +z
<0, (B.2)

as n2>2. So there is at most one finite value 2M' for M for which (B.1) holds, because if there were two of

them, say M’ <M’,, then we would have 5-h (M) 2 0 for either one of them, or there would be an inter-

2
mediate value M"3, M’;<M’3<M’, for which ﬁh M'5) =0, #h (M’3) 2 0. Both options are, how-
ever, excluded by (B.2).

-1
n

e Casel:m <n[>:l1
i l

It is easy to check that %h (0) < 0. From this and (B.2) it follows immediately that ih (M ) < 0 for
all M >0. Hence M =0 provides the unique local maximum of & (M).
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n+l

2
We find that for all M >0:

e Case2:1m >

d -n o1
—hM) = z
th( ) M+n +i=1M+i

-n U |
+ ;
n+l i=1l M+i
2

v

M+

= 0.

So the supremum is reached at M =co,

i=11

) Case3:nl2i} <1< n;-l.

We have ﬁh ) > 0, but
2_d .
li —hM) = - Xi
MIELM th( ) =m Ell
< 0.

So there exists a M, 0<M <o, such that for all M>M, we have M?> ﬁh (M) < 0 and hence also

—&dﬁh (M) < 0. Thus again there exists a finite positive value M’ for which ﬁh (M’) = 0 and the

unique local maximum of the function 4 (M) is realised.

This completes the proof of theorem 5.1. O
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