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Abstract. For any graph G embedded on the torus, the face-width r(G) of G is the minimum
number of intersections of G and C, where C ranges over all nonnullhomotopic closed curves on the
torus. We call G r-minimal if r(G) > r and ~(G") < r for each proper minor & of G.

We classify the r-minimal graphs by means of certain symmetric integer polygons in the plane R2.
Up to a certain natural equivalence, the number of r-minimal graphs on the torus is equal to é—r3+ gr
if  is odd and to 1r® + Zr if r is even.
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1. Introduction

Let S be the torus. A closed curve on S is called nontrivial if it is not nullhomotopic. For
any graph G embedded on §, the face-width (or representativity) r(Q) of G is the minimum
of |C N G| where C ranges over all nontrivial closed curves on S. (We identify a graph G
embedded on § with its image on S.) '

We call a graph G' embedded on § r-minimal if »(G) > r, G has no isolated vertices,
and r(G') < r for each graph G' obtained from G by deleting or contracting any edge of G.
(Clearly, contracting an edge of G, induces an embedding of the contracted graph on 5.)

It is easy to see that, for any fixed r, 7-minimality is maintained under the following
operations:

(1) (i) replacing G by ¢(G), where ¢ : § —> S is a homeomorphism;
(ii) replacing G by its surface dual;
(iii) AY-exchange.

Here AY-ezchange means replacing a triangular face by a vertex connected to the three
vertices of the triangle, and conversely.

The operations (1) imply an equivalence relation for 7-minimal graphs (which we denote
by ~). In this paper we classify the equivalence classes. The classification is based on
considering symmetric integer polygons related to graphs on the torus.
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in R? is the convex hull of a finite nonempty set of points in R% (We do
1 dimensionality.) A polygon P in R2 is integer if all its vertices have integer
ly.” Call P symmetric (about the origin) if P = —P. The height height(P) of
s the minimum value of max{cTz|z € P}, where the minimum ranges over
teger vectors ¢ € Z2. An integer polygon P is r-minimal if height(P) > r,
) < r for each integer polygon P’ # P contained in P. Two polygons
1 equivalent (denoted by P ~ P') if there exists a unimodular transformation
such that UP = P'. (A unimodular transformation is a linear transformation
rZ? = 7Z2. Equivalently, it is a linear transformation # — Az where A is an
. with determinant +1.) :

»r each 7 > 1, a one-to-one relation between equivalence classes of r-minimal
torus and equivalence classes of symmetric r-minimal integer polygons in R2
. there exist only finitely many such classes. We also give a description of
slding a formula for the number of equivalence classes of r-minimal graphs.

cott Randby showed that for the projective plane, for each r, there is exactly
:e class of r-minimal graphs. We do not know any extension to nonorientable
ces of higher genus. i

Integer polygons. A polygon P in R? is fully determined by the function
lefined by:

f(c) := max{cTz|z € P} for c € Z2.

/m quite easily that P is integer if and only if f takes only integer values (this
se of a more general theorem of Hoffman [4]). '

is quite standard to see that for any function f : Z2 — Z, there exists
lygon P satisfying (2), if and only if f satisfies the following (‘norm-type’)

() fle+¢) < f(e) + f(c') for all e, ¢’ € Z2;
(i) f(k-c)=|k|- f(c) forall k € Z,c€ Z*?

satisfies (3), the corresponding polygon is:
P := {e € R¥cTz < f(c) for each c € Z?%}. ’ |

olygons obtained from graphs on the torus

torus S can be obtained from the plane R? by identifying any two vectors y
ver y — y' is an integer vector, it is not surprising that the plane is of help
he torus. In particular, graphs on the torus can be studied with the help of
.2 (cf. [8]).

ent the torus S as the product S x S of two copies of the unit circle S* in
plane C. For m,n € Z,let Cp,, : St —» S x §! be the closed curve on S



Crmn(2) = (2™, 2") -

s is well-known (cf. Stillwell [10]), the curves Cy, , form a system of represen-
e homotopy classes of curves on the torus.

graph G on the torus, let fg : Z2 — Z be defined by:
fe(m,n) := min{c(G, C)|C ~ Cp }

Z*. Here cr(G, C) denotes the number of intersections of G and C , counting
. By ~ we denote free homotopy of closed curves on the torus. (That is,
re exists a homotopic shift of C' over the torus, bringing C to C'. We do not
int’.)

difficult to show that the function fg satisfies (3). (The inequality in (1)
the fact that if C' ~ Cpn» and C' ~ Cppr e and (m,n) and (m/, n') are linearly
then C' and C' have a crossing. We can concatenate C and C' at this crossing
n a closed curve C" ~ Cnymt,ntn With cr(G,C") = (G, C) + (G, C').)

e set P(G) defined by:

P(G) := {2 € R¥c"z < fe(c) for each ¢ € Z?}

polygon. -

P(G) is full-dimensional (i.e., not a line segment and not a point) if and only
rly embedded. (A graph G is cellularly embedded if each face is an open disk;
if »(G) > 0.)

tion G — P(G) maintains equivalence:

If graphs G and G' (embedded on the torus) are equivalent, then P(G) and
vvalent.

polygon P(G) is trivially maintained under the operations (1)(ii) and (i)
ially maintained under these operations). Consider now a homeomorphism
Let m,n,m',n' € Z be so that ¢o Ci9~ Cpp, and ¢ o Co,1 ~ Cpytpr. Then
1n),(0,1) — (m',n’) defines a unimodular transformation U/ : R? —» R?,
ich integer vector ¢ € ZZ2 one has: ¢ o C, ~ Cpy.. Then for each ¢ € Z2%
)(Ue). So P(¢(G)) arises by a unimodular transformation from P(G), ie.
p(G)) are equivalent. _ i

\g r-minimal graphs, the concept of ‘kernel’ introduced in [7] is helpful. A
:dded on the torus S is called a kernel, if feu # fa for each graph G’ obtained
leting an edge or contracting an edge that is not a loop.

wn in [7] that

a cellularly embedded graph G on the torus is a kernel if and only if the
medial graph H(G) of G is the union of a minimally crossing system of
simple nontrivial closed curves D;,..., D;.




the following terminology. For any graph G embedded on the torus, ‘the’ medial
of G is ‘the’ 4-regular graph obtained by putting a vertex on each edge of G,
ag, for each vertex v of G, the vertices on the edges incident with v, by edges
1 a circuit, like the interrupted lines in:

he medial graph of G, then G is called a radial graph of H. Each 4-regular
ularly embedded on the torus S so that the faces can be bicolored, has a radial
that each two radial graphs of a cellularly embedded graph can be obtained
her by homotopic shifts and taking surface duals.

arves Dj,..., Dy form a minimally crossing system of closed curves if for all
d D; have a minimal number of intersections among all closed curves D and
motopic to D; and D; respectively. (So each intersection of D; and Dy is a
1 not a touching).)

so shown in [7] that if G is a kernel, and Dy, ..., Dy are as in (8), then

k
fe(m,n) = 3 3" mincx(Cmn, Di)

=1

n)T € Z2% Here mincr(C, D) denotes the minimum number of crossings (count-
ities) of C' and D', where C' and D’ range over all closed curves freely homo-
nd D respectively.

fe and P(G) are maintained under the following operations on graphs embedded

(i) homotopic shifts of the graph over the torus;
(ii) taking the surface dual;
(iii) AY-exchange.

2 surface dual only if the graph is cellularly embedded.)
own in [7] that



(11) if G and G’ are kernels with P(G) = P(G"), then G’ can be obtained from
G by the operations (10).

(The reason is that the closed curve systems making up the medial graphs H (G) and H(G")
can be moved to each other, using only ‘AV-exchange’:

This induces AY-exchanges bringing G to G’ (up to duality).)

This is a special case of a more general result for compact orientable surfaces. On the
other hand, for the torus, a stronger statement can be proved. Let G and G' be graphs
embedded on the torus. We call a graph G’ a AY-minor of G if G' arises from some minor
of G by the operations (10) (maintaining the embedding throughout).

Theorem 2. Let G and G' be graphs embedded on the torus, where G is a kernel. Then G
18 & AY-minor of G' if and only if P(G) C P(G').

Proof. Necessity of the condition is easy, since P(G) is maintained under the operations
(10), while P(G) C P(G") if @ is a minor of G'.

- To see sufficiency, assume P(G) C P(G"). I G is not cellularly embedded, then P(G)
is not full-dimensional. In that case, G consists of just a number k of pairwise disjoint
simple closed curves, each freely homotopic to one simple closed .curve, C' say. Then G is
a AY-minor of G’, if and only if G’ contains k pairwise disjoint simple closed curves each
freely homotopic to C. In [5] (cf. [9], [1]) it was shown that this last holds if and only if
for each closed curve D one has cr(G', D) > k - miner(C, D). But this last is equivalent to
far 2 fa,ie., to P(G') D P(G).

So we may assume that G’ is cellularly embedded (in particular, connected). Let H(G)
and H(G') be the medial graphs of G and G' respectively. Since G is a kernel, by (8) H(G)
is the union of a system of simple closed curves D, ..., Dy, where each two D; and D; are
minimally crossing.

Now P(G) C P(G") implies that fg(c) < fg(c) for each integer vector ¢, and hence

(12) mincr(H(G), C) < miner(H(G"), C)



for each closed curve C. Here mincr(H, C') denotes the minimum number of crossings of H
and C', where C' ranges over all closed curves freely homotopic to C so that C' does not
traverse vertices of H.

Combining (9) and (12) gives

k
(13) mincr(H(G'),C) > Y miner(C, D;),
i=1
for each closed curve C on §.

It is shown in [2] that (13) is equivalent to the fact that H(G') contains closed curves
Di,..., DDj, so that no edge of G is traversed more than once, and so that D! ~ D; for
i=1,...,k. We may assume (cf. [6]) that Dj,..., D} form a minimally crossing system of
simple nontrivial closed curves.

In fact, we can assume that the system D1, ..., Dj, traverses each edge of H(G') exactly
once. This can be seen as follows. We can decompose the edges of H(G') not used by
Dj, ..., D; into pairwise noncrossing, simple closed curves Dy ,,..., D]. Any trivial closed
curve among Dy ,,,. .., D can be inserted in one of the other curves without increasing the
total number of crossings. (This can be done since H(G') is connected.) So we may assume
that each of D, Flreees Dj is nontrivial. Since they are simple and pairwise noncrossing, they
must be pairwise freely homotopic. Since H(G') is a medial graph, each closed curve not
traversing vertices of H(G') has an even number of crossings with H(G'). Also, since H(G)
is a medial graph, each closed curve has an even number of crossings with Dy,..., Dg,
and hence with Dj,...,D}. So each closed curve has an even number of crossings with
Diyys-++»Di. Sol— k is even. Therefore, if [ > k we can insert D}, and D}, , into one
of the curves among Dj,..., D, without changing its homotopy. Repeating this, we find
Di,..., Dy, as required.

Now at any ‘touching’ of two D] and D’ (possibly ¢ =), we can ‘open’ the graph as in:

X )C

Doing this at each touching we have transformed H(G') to a graph H" that is the
union of a minimally crossing system of simple closed curves DY,..., D}, with D} ~ D] for
i=1,...,k. Since openings of H(G') correspond to deleting and contracting edges of G’,
H" is the medial graph of some minor G” of G'.



! is a kernel, and by (9), fer = fe. So by (11), G arises by operations (10)
is AY-minor of G'. |

rem states that for each function f : Z?2 — Z satisfying (3) there exists
or-minimal graph among all graphs G with fg > f — unique up to the
)). This is more general than (11), which states that there exists a unique
l graph among all graphs G with fg = f.

corollary on ‘toroidal grids’. Let k > 3. The product Ck X C} of two copies of
7k is called the toroidal k-grid. Clearly, the toroidal k-grid can be embedded
in fact in a unique way, up to homeomorphisms of the torus and of the grid.
embedding of Cj X C}, on the torus, consisting of k disjoint circuits freely
C1,0 crossed by k disjoint circuits freely homotopic to Cg 1.

1 is a kernel. Since it is self-dual and does not allow AY-exchange (as all
legree 4 and each face is bounded by 4 edges), Theorem 2 implies:

» Let G be a graph embedded on the torus. Then G contains H as an embedded
only if P(G) contains (k,0) and (0, k).

ollows directly from Theorem 2, since P(H) is the convex hull of +(k,0) and
i

iy gives:

1. Let G be a graph embedded on the torus, and let k > 3. Then G contains a
l as a minor, if and only if %P(G) contains two linearly independent integer

ly from Corollary 2a. |

lerive from this result that every graph G embedded on the torus contains a
7)|-grid minor.

btained from symmetric integer polygons

saw that each graph G on the torus gives a symmetric integer polygon P(G)
ww show conversely that for each symmetric integer polygon P in R? there
. G such that P(G) = P. So there exists a kernel G with P(G) = P, which
jue by (11). We give a construction.

v symmetric integer polygon in R2. We first construct a graph I'p embedded
vs.

, V2r be the vertices of P, in cyclic order. (So vjy = —v; for j = 1,...,k.)
ists of the origin, we take k = 0. Let I'p be the set of all points z in R? for
v;)Tz is an integer, for at least one i € {1,...,k}. Then I'p is a graph in R?,
. an infinite set of vertices.



We can obtain the torus S from R? by identifying any two vectors v, v’ whenever v — v’
is an integer vector. Since I'p is invariant under translations by an integer vector, this
identification makes I'p to a graph, denoted by Hp, embedded in the torus S.

The faces of Hp can be colored black and white so that adjacent faces have different
colors. This follows from the fact that we can color the faces of I'p black and white so that
adjacent faces have different colors and so that the coloring is invariant under translations
by an integer vector. (Color z € R?\ T'p black if Y%, | (v;y1 — v;)T2] is even, and white if
this sum is odd. Here | | denotes lower integer part.)

Let Hp arise from Hp by ‘rerouting’ slightly the ‘curves’ traversing any vertex of Hp of
degree larger than four, in such a way that each point of S is traversed by not more than
two of the curves, not introducing any new crossings. E.g., a vertex of degree 10 can be
changed as follows: '

If P is full-dimensional, then Hp is 4-regular and cellularly embedded. Then Gp is by
definition some radial graph of Hp.

If P is not full-dimensional, Hp consists of a number 2t of pairwise disjoint nontrivial
closed curves on S, each freely homotopic to some curve C, say. In this case Gp will be a
graph consisting of ¢ pairwise disjoint nontrivial closed curves each freely homotopic to C.
In fact, if P has vertices v; and vy with v, = —v; then we can take C = Crmn, Where (m, n)
is any integer vector orthogonal to v; with m and n relative prime. If P only consists of
the origin, then Hp and Gp are empty.

It can be derived from (8) that Gp indeed is a kernel (as Hp consists of a system of
closed curves that are minimally crossing). In fact:

Theorem 3. Gp is a kernel with P(Gp) = P.
Proof. We must show P(Gp) = P, or equivalently,
(14) fep(c) = max{cTz|z € P}

for all c € Z2



Choose ¢ E yAS By symmetry we may assume that max{cTz|e € P} is attained at
vertex v;. So cfvy > Ty > . >r UVpt1-

Let B be any curve in Rz connecting vectors y and y’ with y' — y = ¢, in such a way
that B does not traverse any vertex of I'p, and has end points not in I'p. Then by the
construction of T'p, B should cross at least

k k
(15) ‘ Z [cT(v,;H —v)| = ZcT('ui —Vip1) = To — c£+1 = 2¢Ty,
=1 g=1
edges of I'p.
So the projection of B onto the torus § (under the quotient map) should cross at least
2¢T v, edges of Hp, and hence it intersects Gp at least ¢clv; times. As this nummum can
be attained by taking for B a straight line segment, we know that fg(c) = cTv;. ]

5. Equivalence of polygons and graphs

The equivalence relation of graphs on the torus is strongly related to the equivalence
relation of symmetric integer polygons:

Theorem 4. Two symmetric integer polygons P and P' are equivalent, if and only if the
graphs Gp and Gp: are equivalent.

Proof. Let P and P’ be two equivalent symmetric integer polygons. Let U be a unimodular
transformation bringing P to P’. Then it is not difficult to check that there exists a
homeomorphism ¢ : § — § bringing Gp to Gpr.

Conversely, if Gp and Gp: are equivalent, then by Theorem 1 P(Gp) and P(Gp:) are
equivalent. Since P = P(G p) and P' = P(Gp:) it follows that P and P’ are equivalent. §

Theorem 4 implies that there exists a one-to-one relation between equivalence classes of
kernels on the torus and equivalence classes of symmetric integer polygons in R?, given by:

(16) (i) (@) — (P(G)), where G is a kernel;
| (ii) (P) — (Gp), where P is a symmetric integer polygon.

Here (..) denotes the equivalence class of ..
We finally come to the classification of eqmvalence classes of »- nummal graphs. Let P,
denote the collection of all symmetric r-minimal integer polygons.

Theorem 5. For each P € P, the graph Gp is r-minimal. Each r-minimal graph is
equivalent to Gp for some P € P,.

Proof. Let P € P,. Then r(Gp) = height(P) = r. For each proper minor G’ of Gp one
has that P(G') # P, implying that r(G') = height(P(G")) < height(P) = . So Gp is
r-minimal.

Let G be an r-minimal graph. Then P(G) is r-minimal. For suppose not. Then P(G)
contains a symmetric integer polygon P' # P(G) with height(P') = r. By Theorem 2, G
contains a minor G' that arises by the operations (10) from Gpr. Since P(G') = P(Gpr) =

9




P! # P(G), G' is a proper minor of G. However, 7(G') = height(P(G")) = height(P') = r,
contradicting the r-minimality of G. 1

6. r-minimal integer polygons

Fix r > 1. We give a construction of symmetric r-minimal integer polygons. Each
of them is either a quadrangle or a hexagon. For any choice of integers 0 < a < r and
0 <8 <r,let Qug be the convex hull of the four points £(r, @), £(—3, 7). For any choice
ofintegers 0 < a<r,0<fB<rand0< y<r,let H, 3. be the convex hull of the six
points £(r, a), +(r — B,7), £(~7,7 — 7).

Theorem 6. Each Qg belongs to P,.

Proof. To show that height(Q,g) > 7, let (c,d) be a nonzero integer vector. We show
max{(e¢,d)-(z,y)|(2,y) € Qa,s} > r. (Here - denotes inner product.) We may assume that
the last nonzero in (¢, d) is positive. If ¢ > 1 then d > 0, implying (c,d) - (r,a) > cr > r. If
¢ < 0 then d > 1, implying (¢, d)- (-f,7) > dr > r.

Since for (¢, d) := (1,0) and (c, d) := (0, 1), the maximum is uniquely attained at (r, a)
and (-8, r) respectively, Qo g is r-minimal. ]

Theorem 7. Fach H, g, belongs to P,.

Proof. To show that height(H,g,) > r, let (c,d) be a nonzero integer vector. We show
max{(c,d) (2,y)|(2,y) € Ha,p,} > r. We may assume that the last nonzero in (c, d, c+ d)
is positive. If c +d > 1 and ¢ > 1 then (¢,d) - (r,a) > (¢,1 - ¢)- (r,@) =c(r —a) +a > r.
Ifctd>1andd>1then (c,d)-(r-B,7)>(L—-d,d)-(r—B,7)=df+r—-B>r. If
c+d=0then ¢ < ~1,d > 1, implying (¢,d) - (~y,7 —7) = dr > 7.

Since for (c,d) := (1,0), (¢,d) := (0,1), and (c,d) := (—1,1) the maximum is uniquely
attained at (r, ), (» — B,7), and (—7,r — 7), respectively, H, g, is r-minimal. |

Theorem 8. FEach polygon in P, is equivalent to at least one of the Qaps Hap,y
Proof. 1. Let P € P.. We first show that for each vertex v of P

(17) there exists a nonzero integer vector ¢ such that ¢fv = 7 and Tz <r—1
for each integer vector z # v in P.

Indeed, by the r-minimality of P there exists a nonzero mteger vector d such that
dfv =1 >randdTa:<r—1foreachmtegervector:c#va If »' = r we are done, so
suppose ' > r. We may assume that the components of d are relatively prime (otherwise
we could divide d by the g.c.d. of the components), and therefore we may assume that
d = (1,0)T. So v = (v, A)T for some A.

Now there exists an 7 € {1,...,7' — 7} such that i\ — [:—’,‘ |r' < r. Otherwise there would
exist i < jin {1,...,r' — r} such that iA — |2 |r' = jA — |2 ]r' (since each iX — 2]’
would bein {r +1,...,7' — 1}). Then

. P —j+i _r—gj+if e -4
. == (it ) = () -

10



nteger vector ¢ # v in P with ¥z = ' — j + i > r, contradicting our

._(—Li%-)

Ve show that ¢T2 < r — 1 for each integer vector z # v in P, thus proving

# v is an integer vector in P with ¢cfz > r. Let 2’ be the point on the line
cting # and the origin such that ¢T2’ = ¢Tv. Now consider the point

u::v—(_éé )

"v. So u, v and ' are on a line. Since d¥v =7' > r,r < du =7 —i < ¢,
z < r—1, u is on the line segment connecting v and z’. This implies that u
:ontradicting the fact that u is an integer vector with u # v and d¥u > ».

show the theorem. Let vq,..., v be the vertices of P, in counterclockwise
,=—v;forj=1,...,k) Write v; = (v_,',-,v.,’,-’)T forj=1,...,2k.-
reach j = 1,...,2k, there exists an integer vector c; satisfying cJI-"u,- =r and
¢ # vj in P. We may assume that c; = —c;.
wch two distinct j,j’ from {1,..., %k} one has that ¢; and c; form a basis for
, the triangle with vertices ¢;, ¢;1,0 would contain a nonzero integer vector
and d # c¢;. Then we would have d¥z < r for each vector z in P. This
: fact that height(P) > r.
sume that ¢; = (1,0)7 and ¢; = (0,1)F. Moreover, k = 2 or k = 3, since
< j < k should be equal to (1, +1)T.
1en v} = 7, |v{| < r and v = r,|vj| < r. Moreover, v4v{ < 0. For suppose
< 0 and v{ < 0 then max{z’' + 2"|z € P} < r, as this maximum is attained
. while v{ = v§ = r. If vj > 0 and v{ > 0 then —v), < 0 and —v{ < 0,
¢{—2' + 2"|z € P} < r, as this maximum is attained at v, or at vz, while

vyv) < 0. By symmetry we may assume v{ > 0 and v5 < 0. So P = Q.

18:=—v). '

1en we may assume that c3 = (—1,1)T. Then v} = »,|v}| < r,|[v) —v}| < r,

r, vy — vh| < 7, and v§ — v} = r,|vg] < 7, |v§] < . So P = H,g, for

ol o ') l
vy, Y 1= —v5.

ne can show that for any polygon P in P, the number of edges of the kernel
» the area of P. This follows from the fact that the number of vertices of
is equal to the number of crossings of the curves making up Hp (counting
Let vq,. .., vs be the vertices of P in cyclic order. Let L; be the set of points
ich (vip1 — 'u,-)T:z: is an integer. Then L; is the union of a collection of parallel
: a unit square so that no two of the L; cross each other on the boundary of R.

11



imber of crossings of L; and L;;; on R is equal to | det[(viy2 —viy1) (vip1 —w)]l,
y checks.

ce k < 3, one has that the area of P is equal to Y5 | det[(viys — viy1) (vip1 —
zives the required equality.

at the area of P is equal to the number of integer vectors contained in the interior
1alf of the number of integer vectors on the boundary of P, minus 1. |

ng equivalence classes

e, two polygons @, Q' are called equivalent (denoted by @ ~ Q') if there exists
ar transformation U : R? — R? such that UQ = @’. Tt follows directly from
that:

3. For each r, the number of equivalence classes in P, is finite.

2ctly from Theorem 8, since the number of Q4 g and H, g, is finite. |

an explicit formula for the number of equivalence classes can be given. First we
containing quadrangles. To this end we first note:

0. Forany0< a,a' <7 and0< 8,8 <r, Qg is equivalent to Qo g if and

= {al’ﬂl}, or
= {0,7},{c, '} = {0,7 — 7} for some 7.

iciency is easy. (Note that @q,, goes to Qg r—, by the unimodular transformation
+v, _y))

acessity, let Qg be equivalent to @, g. Let U be a unimodular matrix bringing
6+ Since the unimodular transformation (z,y) — (—y,«) brings Qa8 to Qg.a,
te conditions (i) and (ii) are independent of the order of a, 3, we may assume
gs (7, a)T to (r,a'). Then U brings (—f,r) either to (-8, 7) or to (8, —).
1igs (—pB,r) to (—f',7), then the matrix corresponding to U is:

r —fB r -p - 1 r2+ap r(B-p8")
o 7 a r T r2taf\ r(a'-a) rP+aB |’
; an integer matrix, 7% + af should divide both r(a’ — @) and r(8 — f'). So

8 =p. :
igs (—B,r) to (8, —r), then the matrix corresponding to U is:

r B Y[(r -8Y_ 1 r2—af B+ )

o —r a r 24\ r(d+a) —r24+aB )’
this is an integer matrix, 72 + af should divide both r(c + o') and »(8 + 4').
mnd both a + o' and 8+ ' belong to {0, 7}. This yields (ii) or (fa =8 =o' =
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A" = 0) (i). - 1
This implies:

Theorem 11. For each fized r, the number of equivalence classes in P, consisting of
quadrangles is equal to %rz + % if r is odd and to %rz + 1 #f r is even.

Proof. From Theorem 10 it follows that the number of classes is equal to the number of
sets {c, 8} with a,8 € {1,...,r — 1} (possibly @ = ), plus the number of sets {0, 3} with

B €{0,...,|r/2]}. This number is equal to » — 1 + ( r—2-1 ) + 1+ |r/2], which equals

the values given in the theorem.

Next we count classes containing hexagons. We first show:

Theorem 12. Forany0 < a,a'<r,0< 3,8 <rand0< 9,7 < r, Hy g is equivalent to ’
Hor g1y if and only if (o', B',7") is a cyclic permutation of (a, 8,7) or of (r~v,r—B,7—a).

Proof. Sufficiency can be seen easily. To see necessity, first observe that ¢ := (1,0) is the
only integer vector for which max{cfz|z € H, .} equals r and is uniquely attained at
(v, ). Similarly for ¢ := (0,1) with respect to (r— 8, ) and for ¢ := (—1, 1) with respect to
(=7,7~7). So any unimodular transformation U that brings Ha g,y to Har g1+ would bring
the set {£(1,0),£(0,1),£(—1,1)} to itself. It implies the condition given in the theorem.

This implies:

Theorem 13. For each fized r, the number of classes in P, consisting of hezagons is equal
to g7 — L2 4 Er— L ifr is odd and to Fr3— 12+ 4r — 1 4f r is even.

Proof. We use Theorem 12. If a, 8,7 are distinct and {a, 3,7} # {r —a,7 — 3,7 — 7} then
there exist six triples (o', 8',7') such that Qu g1y ~ Qa8

If a, B, are distinct and {a, 8,7} = {r — a,7 — 8,7 — 7} then there exist three triples
(!, B',7") such that Q¢ g1,» ~ Qo The number of such triples (e, 3,7) is equal to 0 if
7 is odd and to 3(r — 2) if r is even.

¥ |[{a,8,7}| = 2, then there exist six triples (o, #',7') such that Q1614+ ~ Qo The
number of such (a,3,7) is equal to 3(r — 1)(r — 2).

If [{a,8,7} = 1 and a # r — a, then there exist two triples (c/,3’,7’) such that
Qo' gyt ~ Qa,py- The number of such (a, B,7) is equal to r — 1 if r is odd and to » — 2 if
r is even.

¥ {a,8,7}) = 1 and @ = r — «a, then there exists one triple (c/,',7’) such that
Qo gy ~ Qa,p,y- The number of such (e, 3,7) is equal to 0 if  is odd, and to 1 if r is
even.

This all gives that if » is odd, the number of equivalence classes is equal to
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s("—l)(r—z)(7'~3)+0+ sBr-1)(r-2)+3(r-1)+0

=gr?—1rf4+ -1

, it is equal to

%((1’31)(" 2)(r— 3) 3(r—2))+35(3(r—2))+§(3(r—1)(r—2)) +3(r- 2)+:
= 3T —~r + zP —

ing Theorems 11 and 13 gives:

14. The number of equivalence classes of P., and hence of equivalence classes
al graphs on the torus, is equal to tr® + 3r if v is odd and to It irifris

ectly from Theorems 11 and 13. |
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