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b. We show that if G is a graph embedded on the torus S and each nonnullhomo-
ed curve on S intersects G at least r times, then G contains at least | 37| pairwise
onnullhomotopic circuits. The factor % is best possible.

this by showing the equivalence of this bound to a bound in the 2-dimensional
of numbers. To show the equivalence, we study integer norms, i.e., norms ||.||
||z is an integer for each integer vector z. In particular, we show that each
rm in two dimensions has associated with it a graph embedded on the torus, and

r
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d curve on the torus nontrivial if it is not nullhomotopic. For any graph G
. the torus §, the representativity (or face width) r(G) of G is the minimum of
re C ranges over all nontrivial closed curves on §.

how the following theorem.

+ (i) Any graph G embedded on the torus contains at least |3r7(G)| pairwise
rivial circuits.
actor % is best possible.

otes the lower integer part of . A circuit is a simple closed curve contained

The representativity of a graph embedded on a surface is recently a focus of
the study of minimal genus embeddings of graphs and of graph minors and
s (see [1], [8], [13], [L4], [15], [23]).

ilar, Robertson and Seymour [13] showed:

for any compact surface S and any graph H embedded on S there exists a
number 7 so that any graph G embedded on S with representativity at least
7 contains H as a minor.
4
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In fact, Robertson and Seymour showed that for any graph H embedded on a compact
surface S such that each vertex of H has degree at most three, there exists a number r with
the following property: for each graph G embedded on § with representativity at least
there exists a homeomorphism ¢ : § — S such that ¢[H] C G. (This implies (1).)

One of the simplest special cases is that for each natural number k there exists a number
7(k) such that any graph G embedded on the torus S with representativity at least r(k)
contains k pairwise disjoint nontrivial circuits.

Theorem 1 asserts that we can take r(k) = [$k], where % is the best possible factor. |

We will show that Theorem 1 is equivalent to the following result in the geometry of
numbers. For any symmetric convex body K (i.e., full-dimensional compact convex set K
with K = —K) in R", let

(2) K*:={yeR™|yTe <1for each z € K}.

As is well-known, K* is again a symmetric convex body, and (K*)* = K.
Now Theorem 1 is equivalent to:

Theorem 2. (i) For any symmetric convex body K in R?, there exists a nonzero integer
vector in K or there exists a nonzero integer vector in g— - K*.
(ii) The factor % is best possible.

Although we assume that this result belongs to the folklore of the geometry of numbers,
we were not able to locate a proof in the literature. (The best result in this direction we
found in the literature was by Mahler [11] who proved a factor /2 replacing g— in Theorem
2(i).) Therefore, for completeness we describe a proof of Theorem 2 in Section 3 of this

paper.

Remark 2. As is well-known (cf. Cassels [3], Lekkerkerker [10]), there are several equivalent
forms for Theorem 2(i). First, for any symmetric convex body K in R2 not containing a
nonzero integer vector, there exists a nonzero integer vector ¢ such that cfz < % for each
vector ¢ in K.

Second, define for each symmetric convex body K, A(K) to be the smallest value of A
for which A - K contains a nonzero integer vector. Then for any symmetric convex body K
inR% AK)-MK*)< &

Third, for any norm ||.|| in R®, the dual norm ||.||, is defined by

T
yle
3 = sup T+
( ) ”y”* - ”?3“ ?
where the supremum ranges over all nonzero vectors # in R”™. Then, for any norm |.|| in

R?, there exist nonzero integer vectors z and y such that ||2|| - |jy[l« < %.

The equivalence of Theorems 1 and 2 is proved with the help of the following theorem
given in [18] ([20] and [5] gave more direct proofs, and extensions to the directed case). Call
two closed curves on the torus freely homotopic if one can be shifted continuously to the
other over the torus. (So there is no fixed “base point”.)



For any two closed curves C' and D, let mincr(C, D) denote the minimum number of
crossings of C' and D' (counting multiplicities), where C' and D' range over all closed curves
freely homotopic to C and D, respectively.

Theorem 3. Let G be a graph embedded on the torus S, and let C be a simple closed
curve on S. Then G contains k pairwise disjoint circuits each freely homotopic to C, if and
only if each closed curve D on S has at least k -mincr(C, D) intersections with G (counting
multiplicities).

To describe the equivalence of Theorems 1 and 2, represent the torus as the product
S x 81, where $' is the unit circle in the complex plane. For each (m,n) € Z?2, let
Crmn : 81 — S x 5 be the closed curve on the torus defined by

(4) Crmnlz) = (2™, 2"),

for z € §2.
Now, as is well-known (cf [22: Section 6.2.2]), the C,y, ,, form a system of representatives
for the free homotopy classes of closed curves on the torus. Moreover,

(5) mincr(Cp pn, Coyt ) = |mn’ — m'n)|

for all m,n,m',n' € Z.

Let G be a graph on the torus, such that each face of G is an open disk, i.e., such that
r(G) > 0. (This clearly will be no restriction in Theorem 1.) Define for each (m,n) € Z2,
fa(m,n) as the minimum number of intersections of C' and G (counting multiplicities),
where C' ranges over all closed curves homotopic to Crmpn-

It is not difficult to see that

(6) (1) fG(m+mlan+n’) < fG(m1 n)+ fG(m’an’) and
(i) fe(km,kn)= k|- fe(m,n)

hold for all (m,n),(m',n') € Z? and k € Z. (The inequality in (i) follows from the fact
that if C is freely homotopic to Cp,, and €' is freely homotopic to Cpyrpr and (m,n) and
(m',n') are linearly independent, then C has a crossing with C". We can concatenate C and
C' at this crossing so as to obtain a closed curve C freely homotopic to Cpym! nin With
(G, C") = a(G,C) + cr(G, "), where cr denotes the number of crossings. The equality
in (ii) is easy.)

Hence there exists a unique norm ||.|| in R? with the property that ||(m,n)|| = fe(m, n)
for each (m,n) € Z2

Having this we give one half of the proof of the equivalence of Theorems 1 and 2:

Proof of the implications Theorem 2(i) = Theorem 1(i) and Theorem 1(ii) =
Theorem 2(ii). The representativity 7(G) of G is equal to the minimum of [|(m, n)|| over
all nonzero integer vectors (m,n). Hence, by Theorem 2(i) (third variant in Remark 2),
there exists a nonzero integer vector (m/, n') such that ||(m/, n')||, < ir(G) 1.

By definition (3) of ||.||.,

(m!,n")T (m, n) 4
l[(m,n)|  ~ 37(G)

(")



1zero vector (m,n) in R% This implies
3r(G)|m'm + n'n| < fo(m,n)

eger vector (m, n). Therefore, as |m'm + n'n| = minct(Cpm n, Cpt, —ms), by Theo-
rains | 3r(G)] pairwise disjoint circuits each freely homotopic to Cp _,r. This
rem 1(i).

istruction also shows that Theorem 1(ii) implies Theorem 2(ii), since any better
) would imply a better factor in 1(i). |

he other implications, we consider integer norms. We call a norm ||.|| in R” an
n if ||| is an integer for each z in Z". ’
'e saw that each graph G embedded on the torus gives an integer norm ||.|| in

t fa(m,n) = ||(m, n)|| for each integer vector (m,n). In fact each integer norm
2 constructed in this way:

t. For each integer norm ||.|| in R? there ezists a graph G embedded on the torus
H(m,n) = |[(m,n)|| for each integer vector (m,n).

give a proof of this theorem in Section 2 below.

ie implications Theorem 1(i) = Theorem 2(i) and Theorem 2(ii) =
L(if). We first show the first implication. Let K be a symmetric convex body
mtaining any nonzero integer vector. We show that - K* contains a nonzero
.

assume that K is a polygon in R? with rational vertices (since we can make K
er). Then also K* is a polygon with rational vertices.

1e norm ||.|| in R2 by

llell := min{A | 2 € A- K} = max{zTy | y € K*}

Let ¢ be a common multiple of the denominators of the components of the
{*, with the further property that ¢ is also a multiple of four.
Il is an integer norm, as the maximum in (9) is attained at a vertex of K*.
heorem 4, there exists a graph G' embedded on the torus such that fg(m, n) =
or each integer vector (m,n). '
ntains no nonzero integer vector, we know that ||(m,n)|| > 1 for each nonzero
r (m,n), and hence fg(m,n) > t for each nonzero integer vector (m,n). So
tativity »(G) of G is larger than t.
rem 1(i), G contains %t pairwise disjoint nontrivial circuits. They all are mu-
homotopic, say they are all freely homotopic to Cmn- So, by the necessity of
n in Theorem 2 and by (5), for each integer vector (m’,n'):

gt lmn' — m'n| = §t - minex(Cp,n, Cout ) < fa(m', ) = ¢ ||(m!, ).

-m)||« < §, and therefore, (n, —m) belongs to % - K*. This shows Theorem 2(i).
ny better factor in Theorem 1(i) would imply a better factor in Theorem 2(i).
1e implication Theorem 2(jii) = Theorem 1(ii). 1




In Section 2 we will prove Theorem 4, and develop some further results on integer norms
in relation to graphs on the torus, and in Sections 3 we give a proof of Theorems 2.

2. Integer norms and graphs on the torus

In this section we give a proof of Theorem 4 above. To this end, we derive some farther
results.

The following theorem follows directly from the ‘cutting plane theorem’ of Chviétal [4].
It is a slight extension of a result of Hoffman [9] for polytopes (extended by Edmonds
and Giles [7] to polyhedra, forming the basis for the theory of total dual integrality — cf.
[17:Chapter 23]).

A polytope is the convex hull of a finite set of vectors. A polytope P is called integer if
each vertex of P is an integer vector.

Theorem 5. Let C be a nonempty compact convex set in R®. Then C is an integer
polytope, if and only if max{cTz|z € C} is an integer for each integer vector c € R™.

This implies:
Theorem 6. For any integer norm ||.|| in R™ there exist integer vectors y,...,y; in R™

such that for each & € R™:

(11) ||| :ma.x{yfz,...,y,?z}.

Proof. Let K := {z € R"| ||z|| < 1}. Hence for each z € R™
(12) ]| = max{z"y | y € K*}.

As ||.|| is an integer norm, this maximum is an integer for each integer vector z. Hence, by
Theorem 5, K* is an integer polytope. So we can take for y,. .., the vertices of K*. |

Remark 3. One similarly shows the following related result. Any function ¢ : Z" — Z
satisfies

(13) (i) o(z+2') < p(2) + p(2') for all 2,2’ € Z™, and
(ii) p(k-2) = |k|-p(z) forall k € Z and z € Z",

if and only if there exist integer vectors ¥1,...,%; such that

(14) p(2) = max{|y{=|,..., 9=}

for each z € Z™
Equivalently, in terms of groups: Let G be an abelian group. Then any function ¢ :
G — Z, satisfies

(15) (i) p(z+2') < p(e) + (') for all 2,2’ € G, and
(ii)) p(k-z)=|k| - o(z) forall k € Z and = € G,

if and only if there exist homomorphisms ¢;,...,¢; : G — Z such that



¢(2) = max{|pi(2),.. ., |e:(2)[}
G. i

m

ger norms in R? we derive from Theorem 6 a further characterization.

7. A norm ||.|| in R? is integer, if and only if there ezist integer vectors
n R2 such that

18 r
el = 33 IF2|
i=1
= R? and such that both components of the vector z; + ...+ z, are even.

ficiency of the condition follows from the fact that, for any integer vector &,
1 4 1 T
—2-Zz,- z= (5(21 +...tzm))e
=1

t, that differs by an integer value, viz.
k
1
Y- 5 (1l - Fa),
i=1

y (17)).
necessity, let K := { € R?| ||z|| < 1}. By Theorem 6, K* is a polygon with
ices, ¥1,...Yak, say, in cyclic order. So y; 4, = —y; for i = 1,..., k. Define

Z =YY

Lk

ceot Zk = Y41 — Y1 = 2Yk41 is an even vector. We show that (17) holds for
» ,

|| = max{yTe|y € K*}, we know
2]l = max{yi'=, ..., yze}-

ximum be attained by yfz. Without loss of generality, 1 < j < k. It follows
"zf~1” > 0 and Z;r“’, . -,Z;f < 0. Hence

k j-1 k
Z]ziT:cl :Ez,-T:c - Zz?:e.

=1 =1 =37

“Yht1 = ——;—(zl+...+z;,), implyingy; =1 +z+...+2zj1 = %(z1+ et
...— z). Hence the right hand side of (22) is equal to 2y = = 2||z|. |

now able to prove:



Theorem 4. For each integer norm ||.|| in R? there exists a graph G embedded on the torus
such that fg(m,n) = |[(m,n)|| for each integer vector (m,n).

Proof. Let ||.|| be an integer norm in R2. By Theorem 7, there exist integer vectors z, .. .,
in R? such that
1 k
(23) lell = £ 3 IF]
i=1

holds for each z € R? and such that z + ...+ 2 is an even vector.

We may assume that, for each 1 = 1,.. ., k, the two components of z; are relatively prime
(as z1, ...,z need not all be different). Write z; = (2/,2/)T fori=1,...,k.

Agam, let § = S x 5! be the torus. Let II : R2 —+ S be the usual projection of R2
to the torus (i.e., () := (e2™%', e27=") for each 2 = (2, 2")7 in R?). Call a simple closed
curve D on § geodeszc if each component of II71[D] is a straight line in R2.

Foreachi=1,...,k, let D; be a geodesic simple closed curve on § freely homotopic to
Czu , in such a way that each two of the D; are different and no point of § is in more
than two of the D;. So mincr(Cyy 0, D;) = |mz} + nzl| for all m,n.

Let H be the 4-regular graph on the torus formed by the union of Dy, ..., D;. Then
one easily checks that for each (m,n) € 22

(24) each closed curve C freely homotopic to Cm n, not traversing vertices of H,
has at least

chr(om n;D ) - Z |mz + nz" = 2”(m) n)“

i=1 1=1

crossings with H; moreover, at least one such curve has exactly this number
of crossings with H.

(Indeed, C has at least miner(Cr, 5, D;) crossings with part D; of H. This gives the lower
bound. Equality can be attained by Cp, . itself or a slight shift of it.)

Since 2y + ...+ z is even, we know that each closed curve on § not traversing vertices
of H, has an even number of crossings with H. So we can color each face of H black or
white in such a way that adjacent faces have different colors. »

Hence we can construct a ‘radial’ graph G as follows. In each black face F, put a vertex,
and connect it by (pairwise disjoint) lines through F, to each of the vertices of H incident
with F. Doing this for each black face of H, we obtain a graph G, called a radial graph G.

Now each closed curve on § intersecting H » times and not intersecting vertices of H,
can be shifted slightly so that it intersects G 37 times (in vertices of G). So from (24) we
have that fg(m,n) = [|(m,n)|| for each integer vector (m, n). |

Remark 4. The graph G in Theorem 7 need not be unique, but (as was shown in [19]) the
minimal such graphs are unique, in the following sense.

Let G be a graph embedded on the torus S. A minor of G is any graph obtained
from G by a series of deletions and contractions of edges (contracting loops only if they
enclose a face). Any minor of G has a natural embedding on § derived from the embedding
of G. It is a proper minor if at least one edge is deleted or contracted. Call a graph @

7



on the torus 5 a kernel if for each proper minor G’ of G one has for # fa (i-e.,
< fe(m, n) for at least one integer vector (m,n)).

ach integer norm |.|| in R? there exists at least one kernel G on § with fg(m,n) =
r all integer vectors (m,n). Now by the results in [19], for any fixed integer norm
wo such kernels can be obtained from each other by a series of the following

(i) shifting the graph over the torus;

(ii) taking the surface dual of the graph;

(ii) AY-exchange.
zchange means replacing a triangular face F by a vertex in the face connected
re vertices incident with F, or conversely. (This operation was introduced by
.], who called it the f-process.) ]
>f Theorem 2

Theorem 2 is nothing but a simple exercise in plane geometry, for completeness
roof here. As a preparation, we first give another simple fact.

8. For any nonsingular 2 X 2 matriz A there exist nonzero integer vectors z and
ch that

Azl - 9T A1 < 2(v2+1).

may assume that det A = 1. Let A and A* be the pair of dual lattices
A:={Az | 2€ 2%, A*:={yTA |y c Z%}.

sume that A has a basis b = (b1,52)T, ¢ = (¢, c2)” satisfying
by > by >0and ey > —¢; > 0.

b be a nonzero vector in A minimizing ||b||c.. Without loss of generality, ||b||cc =
). Let ¢ be a nonzero vector in A minimizing |c,| over all nonzero vectors ¢ € A
||b]|co. We may assume that c; > 0, and that the triangle A with vertices 0, b, and
1al area. If b and ¢ do not form a basis, A would contain another vector ¢’ with the
operties, contradicting the minimality of A. Moreover, ||¢||e = ¢2 > ||8]|c0 > le1]-
re can replace ¢ by ¢ — b. Thus we obtain b and c satisfying (28).
thmetic-geometric inequality (af < (%a + %ﬁ)2 applied to a = (v/2—1)bics, 8 =
¢y and the fact that byjca — bac; = det A =1 give

—bibzecice < (5(V2 — L)bicz — 3(V2+ 1)bae1)? = (V2 + 1) — bica)?.

+ 1) —biep > 1 — biepg = —bgey > 0. Hence at least one of bycy and —bye; is
V2 + 1) — bycz. That is, at least one of (b1 + b2)cz and by(—ey + ¢3) is at most

Since b and c belong to A and since (by, —b1) and (cz, —c1) belong to A*, we
quired vectors. ]

bound 1(+/2 + 1) in Theorem 8 is best possible, as is shown by the matrix

8



(30) A:(ﬁ1_1 1_1‘/5).

Theorem 2.(i) For any symmetric convez body K in R2, there exists a nonzero integer
vector in K or there exists a nonzero integer vector in 3 - K*,
(ii) The factor & 3 ts best possible.

Proof. (i) We may assume that K is a polygon. We show that if K contains no nonzero
integer vectors in its interior, then %K * contains a nonzero integer vector.

We may assume that each edge of K contains an integer vector in its relative interior
(otherwise, we can shift the edge until it contains an integer Vector in its relative interior
or until the edge ‘disappears’).

H K has four edges, the result directly follows from Theorem 8 (applied to the matrix A

with rows the coefficients of the inequalities determining the edges of K), since 1(v/2+1) <
4

? If K has at least six edges, let vy, ..., vy be the vertices of K (in cyclic order), and let z;
be an integer vector in the relative interior of the edge connecting v;_; and v; (i=1,...,2k,
taking indices mod 2k).

By Minkowski’s theorem [12], the volume of K is at most 4. Hence, there exists an
i =1,...,2k so that the volume V of the quadrangle (0, z;, v;, z;41) is at most 4/2k. As
the tnangle (0, 2, 2;41) contains no further mteger vectors, z; and z;4; form a basis for the
lattice Z2. So the vector ¢ satisfying ¢z = ¢T Ziy1 = 1 is an integer vector. Let V; and V5
be the volumes of the triangles (0, z;, z;41) and (z;, zi1,v;) respectively. So V; = 1/2 and
V2 = V — V1. Moreover, V/V; = (cTv; — ¢f'z)/c* 2. This implies ¢Tv; = 2V. Hence

(31) max{cTelz € K} = Tv; =2V < 24 < &

(ii) Let K be the convex hull of the vectors £(2, 2), +(%,2), £(—2,%). Then K* is the
convex hull of the vectors +(—3,1),+(1,—3), (3, 2) Since 1o slight shrinking of X and
of 3 % . K* contains any nonzero integer vector, we obtain that 2 3 is best possible. |

Remark 5. In fact, in this proof k cannot exceed 3, as no two of the vectors z; and z;
for 4,3’ = 1,...,k are equal mod 2 (otherwise %(Zi + z;) would be an integer vector in the
interior of K'). (This is a special case of a result of Doignon [6] (cf. {2], [16]).) |
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