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Abstract. We show that any graph G embedded on the torus with face-width » > 5 contains the
toroidal | 2r|-grid as a minor. (The face-width of G is the minimum value of [C NG| where C ranges
over all homotopically nontrivial closed curves on the torus. The foroidal k-grid is the product
Ck x Cj, of two copies of a k-circuit Cy.) For each fixed r > 5, the value [%r_] is largest possible.
This applies to a theorem of Robertson and Seymour showing, for each graph H embedded on any
compact surface S, the existence of a number py such that every graph @ embedded on S with
face-width at least py contains H as a minor. Our result implies that for H = Cj x C}. embedded
on the torus, pg = [ %k] is the smallest possible value.

Our proof is based on deriving a result in the geometry of numbers. It implies that for any symmetric
convex body K in R? one has X,(K) - A1 (K*) < 2, and that this bound is smallest possible. (Here
Ai(K) denotes the minimum value of A such that A- K contains i linearly independent integer vectors.
K* is the polar convex body.)
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1. Introduction

For any graph G embedded on a surface S, the face-width (or representativity) v(G) of
G is the minimum of |C NG|, where C ranges over all homotopically nontrivial closed curves
on S. Robertson and Seymour [1] showed: '

(1) for each graph H embedded on a compact surface S there exists an integer
pH so that each graph G embedded on § with »(G) > pg contains H as a
minor.

In this paper we determine the smallest value of pg for a certain class of graphs H
embedded on the torus, viz. the toroidal grids. For each k > 3, the toroidal k-grid is
the product C X Cy of two k-circuits Cy. (By definition, Cj, x C, has vertices (2,7) for
0<4,j < k-1, where (4,7) and (¢, j) are adjacent if either i =¢' and j = j+ 1 (mod k)
orj=j'andi=¢+1 (modk).)

Clearly, each toroidal k-grid can be embedded on the torus. In fact, there is a unique
embedding, up to homeomorphisms (of the torus and of the grid). (If k > 5, this follows
easily from the fact that each face of the embedded graph should be a quadrangle. For
k = 3 and 4 this takes some elaboration.)
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‘We show:

Theorem 1. For the toroidal k-grid H = Ci, X C), embedded on the torus, pg = [3k] is
the smallest integer value one can take for pg in (1).

We derive this from:

Theorem 2. Any graph G embedded on the torus contains the toroidal | 2r(G)|-grid as a
minor (if r(G) > 5). For each integer r > 3 there exists a graph G embedded on the torus
with »(G) = r and not containing the toroidal |%r| + 1-grid as @ minor.

Proof of the implication Theorem 2 = Theorem 1. Choose k > 3. Let G be a graph
with »(G) > [2k]. Since k = |2[3k]| < |2r(G)], Theorem 2 implies that G contains the
toroidal k-grid as a minor.

Let r := [3k] — 1. By Theorem 2 there exists a graph G on the torus with »(G) = r
and not containing the toroidal |2r| + 1-grid as a minor. Since k = |2r| + 1, Theorem 1
follows. |

To prove Theorem 2, we use some results from [2] and [3]. Represent the torus as the
product §! x §* of two copies of the unit circle S! in the complex plane. For (m,n) € Z2,
let Cpp 0 S* — S x S be the closed curve on the torus given by:

(2) Cmnlz) := (2™, 2")

for z € S1.
Let G be a graph embedded on the torus. Define ¢ : Z2 — Z by:

(3) PG(m, n) = C’EIC'ifnl'n CI'(C, G),

where C' ~ C' means that C is a closed curve freely homotopic to closed curve C' and where
cr(C, G) denotes the number of intersections of C and G, counting multiplicities. So #(G)
is equal to the minimum value of pg(m, n) over all vectors (m,n) # (0,0) in Z2.

Let P(G) be the following set in R

4) P(G) := {(z,y) € R¥me + ny < pg(m,n) for all (m,n) € Z%}.

Then P(G) is a symmetric integer polygon (i.e., P(G) = —P(G) and it is a polygon with
all vertices having integer coordinates only). Define the height height(K') of a polygon K
by:

(5) height(K) := max{me + nyl|(z,y) € K}.

(m,n)EZ%n)#(0,0)
As pg(m,n) = max{mz + ny|(z,y) € P(G)} (cf. [2]), we have:
(6) 7(G) = height(P(G)).

The following was shown in [3}:



(7) : let £ > 3; a graph G embedded on the torus contains a toroidal k-grid
as a minor, if and only if %P(G ) contains two linearly independent integer
vectors.

Assertions (6) and (7) imply that to prove Theorem 2, it suffices to show:

Theorem 3. Let r > 3. Then for each symmetric integer polygon K of height r, the
polygon |2r|~1K contains two linearly independent integer vectors. Here |2r| cannot be
replaced by any larger integer.

We show Theorem 3 in Section 2. We first note that it implies the following bound in
the geometry of numbers. Let K be a symmetric convex body in R? (i.e., K is a compact
full-dimensional convex set with K = —K). Let A;(K) denote the minimum value of A so
that A - K contains a nonzero integer vector. Let Ay(K) denote the minimum value of A
so that A - K contains two linearly independent integer vectors. Let K* denote the polar
convex body:

(8) K*:={y e R¥eTy <1forall z € K}.
Then:

Corollary 3a. For each symmetric convex body K in R? one has Ay(K)- Ay (K*) < &, The
bound % s smallest possible,

Proof. It suffices to show the corollary for symmetric integer polygons K with r :=
height(K') being a multiple of 3. Now r := A;(K*), while by Theorem 3, A(K) < (3r)7L
So Aa(K) - A (K*) < %

Similarly, any better value in the corollary would imply a better factor in Theorem 3. ||

2. Proof of Theorem 3

Call a symmetric integer polygon K r-minimal, if height(K) > r while height(K') < r
for each symmetric integer polygon K’ # K contained in K. So Theorem 3 follows from:

(9) let 7 > 2; then for each r-minimal symmetric integer polygon K, the polygon
237 - K contains two linearly independent integer vectors; moreover, there
exists an r-minimal symmetric integer polygon K so that (lZl+1)t-K
does not contain two linearly independent integer vectors.

In order to prove (9), we use the classification of r-minimal symmetric integer polygons
given in [3]. Each of these polygons is a quadrangle or a hexagon. The quadrangles arise
as follows. Choose integer values 0 < a < r and 0 < 8 < ». Let Qa,s be the convex hull of
the points +(r, @), £(~f,r). Then Qq g is r-minimal, and all symmetric r-minimal integer
polygons that are quadrangles arise in this way, up to unimodular transformations (= linear
transformations of R? fixing Z?).

The hexagons arise as follows. Choose integer values 0 < a < r,0 < B < rand
0 <7 <r. Let Hqg,y be the convex hull of the points +(r, a), +(r — Byr), £(—v,r— 7).
Again, H, g, is r-minimal, and all symmetric 7-minimal integer polygons that are hexagons
arise in this way, up to unimodular transformations.
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So it suffices to show the following two lemmas.

Lemma 1. For each chozce of integers 0 < a < r a,nd 0<B<r, A(Qap) £ 2
r, we cannot replace = 3 Dy kT ~1 for any integer k > &

For fized

YoM

Proof. One easily finds that Q4 g is determined by the following inequalities:

r—a r+p
<
(10) et et < b
T+ o
<
lr2+aﬁz+r2+aﬂy, s 1

For each vector (z,y), let the norm ||(2, y)|| be the minimum A for which (z,y) belongs to
A - Qa,p- Note that (z,y) can be easily calculated from (10):

(1) L e

To show the first statement in the lemma, we have to find two linearly independent
integer vectors each with norm at most A(r). We may assume a < 3.
Then

(12) l(1,0)]] =
(The first inequality follows from a < 8. The second inequality follows from the fact that

(1+2)<3(1+2*)forallz € R.)
If B < r/3, then:

r+a r+a 3
< < —.
r2+af ~r24+a% " 2r

(13) o)) = —FP 748 3

r2 4+ aff P2 27

If 8 > r/3, then:

_r+B8 2r+a-f _ 3r+a _3r+3af/r 3
(19) IO+, -Vl = G ip+ 2l ke JdriSebl 3,
implying that at least one of (0,1),(1,~1) has norm at most 3/2r. This shows the first
statement of the lemma. '
To show the second statement, choose » > 3. Let k := |%]| + 1. Let o := 0 and
= |r/2]. We define a norm as in (11). Let (z,y) be any integer vector with norm at
most 1/k. We show that y = 0, implying that there do not exist two linearly independent
integer vectors each with norm at most 1/k. We may assume z > 0.
First let 7 be even. Then ||(2,y)|| = max{|z + 3y|,|e — Ly|}/r < 1/k. X z = 0 then
3y < rfk < 2,a.ndhencey—() Hz>1l,y>1thenr/k>|e+3y| >35> r/k K
:c> Ly< -1, thenr/k>|z—1y >3 3 > r/k.
Next let 7 be odd. Then ||(a:,y)|| = max{l:c + (3’ )yl |z — (1 + =)y|}/r < 1/k. Note

thatk> r+3,1mplymgk(3 =) > (E+ (G- 1 T+ E— &> If:c—Othen
|(2 )y|<r/k<(3 =), y1eld.mgy_0 If:c>1,y>1 thenr/k>]a:+( L)yl >
2 21'. $>r/k. Ifz>1y< 1thenr/k>|:c—(2+2r)y|> >r/k. Soalsoﬁ'a:>1
then y = 0 |




Lemma 2. For each choice of integers 0 < a < r,0<f<rand0<y<r, A2(Hap,y) <
3
gn

Proof. One easily finds that H, g is determined by the following inequalities:

r—a B
<
(15) ‘r2+aﬂ—arz+r2ﬂ+aﬂ~—aryl = L
Y -1
< 1,
B - ﬂr”+r2+ﬂ'y—ﬂr”] .

1.

| yor-e T
+7a 7 4 ya—qr

IA

yl

For each vector (z,y), let the norm (|(z, y)|| be the minimum A for which (z,y) belongs to
A+ Hg gy Again, (2,y) can be easily calculated from (15). It follows that:

(16) Lol = FE=L
ol = =
r+0-—-a

(L, D

r2+aff —ar’

We show that at least two of these norms are less than 2 3+ Suppose not. By symmetry we
may assume that [|(1,0)]| > 2 and ||(0,1)] > &. As 0 < 7 < r, the first norm in (16) is
monotonically increasing in «, while the second norm is monotonically decreasing in 8. So:

(17) L R <2r——7 r+v— r+7
r2+ya—qr 72 72 4+ By — Br r2
Since 27— < 3ror r+7 < 2r (as (27 —7) +(r +7) = 3r), this contradicts our assumption.
1
References

[1] N. Robertson and P.D. Seymour, Graph Minors. VIIL. Disjoint paths on a surface, Journal of
Combinatorial Theory, Series B 45 (1988) 212-254.

[2] A. Schrijver, Graphs on the torus and geometry of numbers, preprint.
[3] A. Schrijver, Classification of minimal graphs of given face-width on the torus, preprint.



